Institut national de recherche scientifique français Univerité Pierre et Marie Curie Université Paris Diderot - Paris 7


  • Mercredi 28 fĂ©vrier 2018 à 11h00 (Salle de rĂ©union du bâtiment 16)

    Small-scale structures in the upper atmosphere of the Sun

    Krzysztof Barczynski (LESIA)

    Numerous small-scale structures (sizes of the order of megameters) constitute the background for the large-scale structures in the solar atmosphere. Their large number suggests that they play an important role in the energy transport and the magnetic structuring in the solar atmosphere.

    Properties of the small-scale structures in the solar atmosphere will be discussed. Particular attention is given to miniature loops (with a length of approximately 1 Mm) observed for the first time at coronal temperature (> 1 MK), and their relation between the emission of the small-scale structures and the underlying magnetic field. We also make a focus on the structures which are unresolved by modern instruments. We investigate the relation between emission from the different part of the solar atmosphere and underlying magnetic field. This study provides a statistical proxy of the properties of unresolved small-scale structures. We present study based on UV and EUV observation (images, spectra) with a combination of photospheric magnetic field maps.

    We show that miniature loops are a small-scale version of the hot coronal loop. We also find how the correlation and intensity-magnetic field relations (presented in our study as a power-law) change moving up from the upper photosphere to the transition region and discuss possible interpretations of obtained dependencies.


  • Jeudi 15 fĂ©vrier 2018 à 16h00 (Salle de confĂ©rence du bâtiment 17)

    Active Galacti Nuclei at very high energies - observations and modelisation

    Andreas Zech (LUTh)

    Until now, more than 70 active galactic nuclei, nearly all blazars, have been identified as emitters of gamma rays at very high energies (TeV), by means of Cherenkov telescope networks like the HESS experiment in Namibia. The spectral and temporal information collected from these sources allows to better understand the extreme conditions in the region of emission. The main tool for linking observations to the physics of the sources is the modelisation of spectral distributions incorporating models of radiative transfer. I will present recent observations in this domain and I will discuss their interpretation with leptonic and hadronic models. Projections for CTA will also be discussed.


  • Jeudi 15 fĂ©vrier 2018 à 11h00 (Salle de confĂ©rence du bâtiment 17)

    Calibration of mixing length parameters with 3D simulation models

    Sonoi Takafumi (LESIA)

    Observation by space missions such as CoRoT and Kepler have provided with a wealth of high-quality data of stellar oscillations. Particularly, rich spectra of solar-like oscillations should allow us to perform precise determination of stellar global parameters such as age, mass and radius, and interior structure. To make the best of such data, we need theoretical stellar models with precise near-surface structure, which has significant influence on solar-like oscillation frequencies. Mixing length parameters of the convection models are a key factor to determine the near-surface structure. However, we have not yet a definitive recipe for giving its value.

    We aim at calibrating values of these parameters across the Heltzsprung-Russell (HR) diagram based on 3D hydrodynamical models, provided by the CO5BOLD code. Although previous calibration with 3D models have limited to the classical mixing length theory (MLT), we analyze also the full spectrum turbulence (FST) models proposed by Canuto & Mazzitelli (1991) and Canuto, Goldman & Mazzitelli (1996). We perform calibration by matching entropy profiles of 1D envelope models with those of the 3D models. For atmosphere of the 1D models, we compare the Eddington grey T-tau relation and the one with the solar calibrated Hopf function based on Vernazza et al. (1981).

    For both the MLT and FST models with a mixing length l=alpha*H_p, calibrated alpha values increase with increasing surface gravity or decreasing effective temperature. For the solar model, the calibrated alpha values for the MLT and FST models with the Eddington T-tau relation are found to be in good agreement with previous works which performed alpha calibration with the Eddington T-tau by matching with the observables of the Sun. It is found that the solar Hopf T-tau relation generally gives photospheric minimum entropy closer to a 3D model than the Eddington T-tau in a wide range of the HR diagram. Since the alpha values substantially vary with effective temperature and surface gravity, 1D computation of stellar evolution should not be performed with the alpha value fixed, but the calibrated alpha values should be implemented into such computation.


  • Mercredi 14 fĂ©vrier 2018 à 11h00 (Salle de confĂ©rence du bâtiment 17)

    Numerical Simulation of a Global Superflare from Kappa-1 Cet

    Benjamin Lynch (Space Science Laboratory, U. Berkeley, USA)


  • Mercredi 31 janvier 2018 à 15h00 (Salle de confĂ©rence du bâtiment 17)

    Modelling of entire prominences with their multiple fine structures : the 3D Whole-prominence fine structure model

    Stan Gunár (Astronomical Institute of the Czech Academy of Sciences, République tchèque)

    We present the 3D whole-prominence fine structure (WPFS) model (Gunár & Mackay 2015) that combines a 3D magnetic field configuration of an entire prominence obtained from non-linear force-free field simulations, with a detailed description of the prominence plasma. The plasma is located in magnetic dips in hydrostatic equilibrium and is distributed along hundreds of fine structures within the 3D magnetic model. The prominence plasma has realistic density and temperature distributions including the prominence-corona transition region. Thanks to this the 3D WPFS model provides us with a representation of a prominence with complexity that approaches the real prominences.

    This fact was demonstrated by H-alpha visualization of the simulated prominence done by Gunár & Mackay (2015, 2016). To produce the high-resolution synthetic H-alpha images of the WPFS model we use the fast approximate radiative transfer visualization technique developed by Heinzel et al. (2015). This technique allows us for the first time to produce images of simulated prominences in emission on the solar limb and filaments in absorption against the solar disk using a single model. By employing such a visualization we can study connections between the local configuration of the prominence magnetic field and the observable structure of the prominence/filament plasma. In addition, we are able to consistently study the influence of the varying photospheric flux distribution on the prominence magnetic field configuration and its effect on the observable prominence plasma during prominence evolution.

    In addition to the H-alpha line, we have also developed and used a novel technique for synthesis of the emergent radiation at the millimeter/sub-millimeter wavelengths which are employed by the Atacama Large Millimeter/sub-millimeter Array (ALMA) - see Gunár et al. 2016, 2018.


  • Mardi 30 janvier 2018 à 14h00 (Salle de confĂ©rence du bâtiment 17)

    La spectroscopie de Fourier en astronomie : de ses origines Ă  nos jours

    Jean-Pierre Maillard (IAP)

    Les principes de la spectroscopie dite « par transformation de Fourier » ont Ă©tĂ© Ă©tablis en France au dĂ©but des annĂ©es 60 (thèse de Jeanine Connes). Ils s’inscrivent en prolongement direct des travaux d’Albert Michelson Ă  la fin du 19e siècle et l’interfĂ©romètre qui porte son nom.

    Mais cette mĂ©thode de spectroscopie non conventionnelle car non dispersive, n’a Ă©tĂ© redĂ©couverte et pris son essor que trois-quarts de siècle plus tard, grâce aux dĂ©veloppements concomitants des dĂ©tecteurs photo-Ă©lectriques, des moyens d’enregistrements des donnĂ©es, des ordinateurs et au rĂ´le de quelques pionniers. Ce nouveau type de spectromètre, dĂ©veloppĂ© avant tout dans le domaine infrarouge, a pu ĂŞtre considĂ©rĂ© dans les annĂ©es 70 comme le spectromètre idĂ©al. Les applications en astronomie, avec plusieurs rĂ©sultats marquants, de la composition de l’atmosphère des planètes au rayonnement du fond cosmologique, ont largement contribuĂ© Ă  sa gĂ©nĂ©ralisation. Mais aujourd’hui, avec le dĂ©veloppement des mosaĂŻques de dĂ©tecteurs de grand format dans tous les domaines spectraux, particulièrement en astronomie, les spectromètres Ă  rĂ©seau ont pris l’avantage. La mĂ©thode de Fourier conserve toutefois quelques niches spĂ©cifiques, comme dans le domaine de l’infrarouge lointain spatial ou pour la spectroscopie intĂ©grale de grands champs. Le sĂ©minaire rendra compte de cette aventure scientifique dĂ©butĂ©e il y a plus de 130 ans et qui se poursuit de nos jours.


  • Vendredi 26 janvier 2018 à 11h00 (Salle de confĂ©rence du bâtiment 17)

    Alpha du Centaure, trois Ă©toiles pour une mission interstellaire

    Pierre Kervella (LESIA)

    Alpha Centauri AB et Proxima sont nos plus proches voisines, Ă  environ 270 000 unitĂ©s astronomiques. Les deux composantes principales sont similaires au Soleil (A et B), alors que Proxima est une naine rouge de très faible masse (1/8ème de la masse du Soleil, et 1/6ème de son rayon) autour de laquelle orbite une planète tellurique dans sa zone habitable (Proxima b). Je prĂ©senterai un rĂ©sumĂ© ce que nous savons de ces trois Ă©toiles. Outre leur importance en physique stellaire, Alpha Cen pourrait ĂŞtre la première cible d’une sonde balistique interstellaire miniaturisĂ©e. La faisabilitĂ© d’une telle mission est actuellement Ă©tudiĂ©e par le projet Breakthrough Starshot, dont je dĂ©crirai brièvement les objectifs.


  • Vendredi 19 janvier 2018 à 14h00 (Salle de confĂ©rence du bâtiment 17)

    Adaptive Optics Facility : un peu d’histoire, pas mal de technologie, beaucoup de rĂ©sultats !

    Pierre-Yves Madec (ESO)

    L’Adaptive Optics Facility (AOF) est un projet mené et réalisé par l’ESO qui a permis de transformer Yepun (UT4) en un télescope adaptatif assisté par lasers, et d’associer à HAWK-I (imageur infrarouge grand champ) et MUSE (spectrographe 3D dans le visible) deux modules d’analyse de surface d’onde. Cette association permet d’améliorer la qualité d’image pour chacun de ces instruments en éliminant la contribution des basses couches turbulentes (Ground Layer Adaptive Optics) et même d’offrir un mode Laser Tomography (LTAO) dans le visible pour le Narrow Field Mode de MUSE. Initié en 2015, ce projet aura permis en particulier d’améliorer la technologie des miroirs secondaires déformables et de développer une nouvelle filière de lasers Sodium industriels répondant complètement aux besoins de l’astronomie. Les premiers éléments de l’AOF ont été installés sur Yepun en Mai 2015. L’intégration sur le télescope des 4 unités lasers a été achevée en Avril 2016. Le nouveau miroir secondaire déformable est en opération depuis Janvier 2017. La Science Verification du Wide Field Mode de MUSE associé à l’AOF a eu lieu en Septembre 2017. Celle de HAWK-I couplé à l’AOF s’est tenue début Janvier 2018.

    Au cours de ma présentation, je rappellerai les principaux éléments techniques de la conception de l’AOF en me focalisant sur le 4 Laser Guide Star Facility (4LGSF), le Deformable Secondary Mirror (DSM) ainsi que sur GRAAL et GALACSI, les deux modules d’analyse de surface d’onde associés respectivement à HAWK-I (imageur infrarouge grand champ) et MUSE (spectrographe 3D dans le visible). Je décrirai ensuite la stratégie de contrôle du DSM et son interaction avec l’optique active du télescope. Je présenterai finalement le processus d’intégration de l’AOF sur Yepun et les premiers résultats obtenus au cours des missions techniques de vérification des performances.


  • Jeudi 11 janvier 2018 à 11h00 (Salle de confĂ©rence du bâtiment 17)

    New insights on stellar rotation thanks to asteroseismology

    Rhita-Maria Ouazzani (LESIA)

    Helioseismology and asteroseismology of red giant stars have shown that distribution of angular momentum in stellar interiors, and its evolution with time remains an open issue in stellar physics. Owing to the unprecedented quality and long baseline of Kepler photometry, we are able to seismically infer internal rotation rates in Γ Doradus stars, which provide the main-sequence counterpart to the red-giants puzzle. Here, we confront these internal rotation rates to stellar evolution models which account for rotationally induced transport of angular momentum, in order to test angular momentum transport mechanisms.

    On the one hand, we used a stellar model-independent method developed by Christophe et al. in order to obtain accurate, seismically inferred, buoyancy radii and near-core rotation for 37 Γ Doradus stars observed by Kepler. We show that the stellar buoyancy radius can be used as a reliable evolution indicator for field stars on the main sequence. On the other hand, we computed rotating evolutionary models of intermediate-mass stars including internal transport of angular momentum in radiative zones, following the formalism developed by Zahn and Maeder, with the cestam code. This code calculates the rotational history of stars from the birth line to the tip of the RGB. The initial angular momentum content has to be set initially, which is done here by fitting rotation periods in young stellar clusters.

    We show a clear disagreement between the near-core rotation rates measured in the sample and the rotation rates obtained from the evolutionary models including rotationally induced transport of angular momentum following Zahn, 1992. These results show a disagreement similar to that of the Sun and red giant stars in the considered mass range. This suggests the existence of missing mechanisms responsible for the braking of the core before and along the main sequence. The efficiency of the missing mechanisms is investigated.

    The transport of angular momentum as formalized by Zahn and Maeder cannot explain the measurements of near-core rotation in main-sequence intermediate-mass stars we have at hand.


  • Lundi 8 janvier 2018 à 11h00 (Salle de confĂ©rence du bâtiment 17)

    A Wide-Field Coronal EUV Imager-Spectrometer

    Leon Golub (Harvard-Smithsonian Center for Astrophysics, USA)

    We have designed a novel wide field, dual-use EUV imager to observe the dynamics of solar coronal streamers and other large-scale structures from the solar surface out to at least 3 R_sol. The COSIE instrument is proposed for implementation on the ISS, with the objectives of : 1.) understanding the dynamics of the Transition Corona, the region of the upper corona in which the plasma beta changes from low to high and the atmosphere transitions from being dominated by magnetically confined closed structures to high beta with generally open radially-directed regions with outflowing solar wind streams, and 2.) providing new tools for space weather forecasting via early detection of coronal mass ejections (CMEs), tracking of CMEs during their main acceleration phase and early path changes, and modeling of the CME magnetic configuration at event initiation. The imaging channel has 500X greater sensitivity than existing EUV imagers and is capable of detecting streamers out to at least 2.5 R_sol and CMEs to substantially greater distances. A novel feature of COSIE is that the observing mode is switchable between ultra-high sensitivity direct EUV imaging and a global spectroscopic imaging mode. The overlapped spectra can be unfolded to provide spectral resolution of 20,000 over the 185-206Ă… passband covering a wide coronal temperature range, as well as providing full-Sun density images every 10 seconds. The sensitivity and field of view of the design are flexible and many observing locations are feasible, including L1, L4 and L5.