

The Impact of LOFAR Super Station on Station Hardware and Software

Gijs Schoonderbeek

LOFAR Super Station (LSS) workshop Thursday 17 & Friday 18 January, 2008, APC, Paris

Station

> Which points have to be addressed when...

The LBA is an antenna array of N elements

The coax cable length is more than 100m

The Antennas operate at lower frequency

- Garray calibration
- Antennas further apart, different calibration strategy?
- Increase in LCU processing

Beamforming

- Beam control has to drive the analog LBA beamformer (increase in LCU processing)
- Current maximal update rate of weights is 1 s
- Control of low band antenna array

Control Within LOFAR Station

Low Band Array control can be done via modem on RCU, like HBA control.

- Array calibration
- Antennas further apart, different calibration strategy?
- Increase in LCU processing
- > Beamforming
 - Beam control has to drive the analog LBA beamformer (increase in LCU processing)
 - Current maximal update rate of weights is 1 s
 - Control of low band antenna array
- Increase in power consumption per RCU input

48V power supply 6 x 1.6kW Digital Boards 550W/subrack -> 3.3kW full station RCU 160W/subrack -> 1kW full station for antenna(-array) 50W / antenna (dual pol.)

Subrack Power Unit (SPU)

☞8V max. power 220W

- RCU (8V) 44W
- for antenna(-array) 11W/antenna (dual pol.) current antenna ~3W

DC cable loss

COAX9					
R inner	19	Ω/km			
R outer	12	Ω/km			
I ant	200	mA	V ant	8	V

DC cable loss (V)

	Cable Length
# ant pol.	115m
1	0.713
2	1.426
4	2.852
8	5.704
16	11.408
20	14.26

LBA min 5.3V

> 48 V supply instead of 8 V

> External power supply for the antenna array

> More expensive coax cable with less DC loss

> Beamformer near the receiver

Central, near the receiver
No DC cable loss
Sensitive to cable tolerances

> Local, near the antennas

Cabling easier, only 2 cables needed (or 3 for separate power cable)

Sensitive to environment (rain, temperature)

- Array calibration
- Antennas further apart, different calibration strategy?
- Increase in LCU processing
- > Beamforming
 - Beam control has to drive the analog LBA beamformer (increase in LCU processing)
 - Current maximal update rate of weights is 1 s
 - Control of low band antenna array
- Increase in power consumption per RCU input
- Longer cable to antennas

- Sensitivity reduced (RCU noise is dominant due to cable loss)
- F cable loss (9dB/100m @250MHz, 4dB/100m @ 50MHz)
- > Attenuator on RCU possible up to 15dB
- Length compensation in RSP max. ~125m (max. ~100 samples = 500ns, cable ~3.9ns/m)
- DC loss increase

DC cable loss

COAX9					
R inner	19	Ω/km			
R outer	12	Ω/km			
l ant	200	mA	V ant	8	V

DC cable loss (V)

	Cable length					
# ant pol	50m	80m	115m	200m	300m	400m
1	0.31	0.496	0.713	1.24	1.86	2.48
2	0.62	0.992	1.426	2.48	3.72	4.96
4	1.24	1.984	2.852	4.96	7.44	9.92
8	2.48	3.968	5.704	9.92	14.88	19.84
16	4.96	7.936	11.408	19.84	29.76	39.68
20	6.2	9.92	14.26	24.8	37.2	49.6

LBA min 5.3V

- Array calibration
- Antennas further apart, different calibration strategy?
- Increase in LCU processing
- > Beamforming
 - Beam control has to drive the analog LBA beamformer (increase in LCU processing)
- > Current maximal update rate of weights is 1 s
- Control of low band antenna array
- Increase in power consumption per RCU input
- Longer cable to antennas
- > Optimized for low frequencies (~20MHz)

Both low band inputs can use both the 30 MHz HPF and 10 MHz HPF

Increase in RFI level

There are a series of the seri

- Current design optimized for 30-80 MHz
- ➢ Antenna structure increased → longer true time delays and longer cabling

Mickey Mouse Station splitter (output bandwidth 2x)

Plans for additional digital processing hardware
NWO proposal for a expandable X-correlation box
Radionet proposal for a multi-purpose scaleable computing platform

RCU Block diagram

