Decameter Radioastronomy: from the Nançay Decameter Array to LOFAR

P. Zarka LESIA, Observatoire de Paris, Meudon philippe.zarka@obspm.fr

Ecole de Goutelas 2007 : Radioastronomie Basses Fréquences, 4-8/6/2007

 Jupiter's radiophysics unveiled by 2 decades of decameter observations in Nancay

 Fast LF radio imaging of Jupiter's magnetosphere with arcsecond resolution

 Long baseline interferometry test on Jupiter with NDA and LOFAR Jupiter's radiophysics unveiled by 2 decades of decameter observations in Nancay

 Fast LF radio imaging of Jupiter's magnetosphere with arcsecond resolution

 Long baseline interferometry test on Jupiter with NDA and LOFAR

- Discovery of Jovian Radio emissions (DAM) using Mills cross array at 22 MHz [Burke & Franklin, 1955], circularly polarized [Franklin & Burke, 1956]

 -> cyclotron emission
- Synchrotron decimeter emission from radiation belts [Sloanaker, 1959]

 magnetic field and magnetosphere

Fro. 2-Phase-switching records showing the appearance of the variable source

• Discovery of Io control [Bigg, 1964]

Fig. 5. The relationship between the position of Io and the orientation of Jupilter for the reception of documetric emission at the Earth

• Jupiter's magnetosphere

• Qualitative interpretation of Io « control »

• We focus here on DAM emission

(there are also NRT studies of the synchrotron radiation)

• No angular resolution (λ /D) \rightarrow spectral studies

 Emission very sporadic, results from many superimposed modulations (seasonal, SW, Io, rotation, short term)
 + propagation effects

 \rightarrow multi-scale dynamic spectral studies

Nested fringes modulations in Jovian DAM radiation

Nested fringes modulations in Jovian DAM radiation (continued)

- 4 epochs and corresponding results
 (1) Early studies (<1990) :
- Voyager launch : 1977
- Voyager @ Jupiter : 1978-79

[Warwick et al., 1979]

• Nançay Decameter Array : 1977+ [Boischot et al., 1980]

→ Nançay Decameter Array

- filled-aperture phased arrays allowing to derive calibrated fluxes
- 144 conical log-spiral antennas (~Clark-Lake) : 72 LHC, 72 RHC, over ~100m×100m field
- 10-120 MHz total band
- Beam of single antenna = 90° half power width
- Phasing scheme : analog beamforming through blocks of 8 antennas phased by 45° steps rotation + delay lines \rightarrow Main beam ~6°×10°

(beamforming optimized over ~1 octave)

- Gain = 25 dB (overall), 15 dB (1 block) , 6 dB (1 antenna)
- $A_e = 24 \lambda^2 \le 4000 \text{ m}^2$
- Computer-controlled electronic pointing, -20°≤δ≤+50°, tracking time= meridian transit ±4h

\rightarrow « Routine » on facsimile

\rightarrow Catalogs and occurrence rates

[Leblanc & al.]

Y. Leblanc et al.

TABLE 1. - Catalogue,

DATE	DOV	TIME UT	CHL 111 1	PHASE	WIDTH	TIME UT	CHL TIL TO	PHASE WIDTH
VY/HH/DD	333	HOUMM - HIMM	11955.01		MHZ	HHNM - HHNM	(1985.0)	MHZ
78/ 1/ 3	344	1938 - 24 8 0 0 - 238 1938 - 24 8	240 - 51 1 51 - 142 1 39 - 202 3	19 - 157 57 - 178 22 - 1	10 - 50 10 - 50 10 - 50	2854 - 2166	299 - 338 131	- 139 (# - 3)
78/ 1/ 6	5	1930 - 24 8	119 - 353 11	66 - 284 84 - 219	10 - 10	1959 - 2924	287 - 329 178	- 199 18 - 21
78/ 1/ 6 78/ 1/ 7 78/ 1/ 7	577	19 8 - 24 8 8 8 - 2 8 19 8 - 24 8	322 - 143 143 - 216 113 - 294 20	5 - 40 48 - 65 09 - 251	10 - 40 10 - 40 10 - 40	22 9 - 24 8 8 8 - 839 1941 - 2013	76 - 143 32 143 - 167 48 137 - 167 215	- 48 18 - 21 - 53 18 - 21 - 219 18 - 31
78/ 1/ 8		8 8 - 855	294 - 328 21	1 - 259 0 - 259	10 - 40	0 0 - 056	294 - 728 251	- 259 18 - 3
78/ 1/18	12	8 8 - 238 1938 - 24 8	238 - 326 21 223 - 26 11	95 - 320 84 - 142	10 - 50 10 - 50	818 - 219 28 6 - 28 8 2835 - 2242	241 - 319 388 244 - 246 189 262 - 329 113	- 318 18 - 21 - 189 18 - 1 - 131 18 - 21
78/ 1/11	11	1920 - 24 0	26 - 116 1	42 - 163 WB - 046	10 - 50	2028 - 2038	152 - 158 348	- 341 18 - 17
78/ 1/12 78/ 1/12 78/ 1/13 78/ 1/13	12211	0 0 - 130 1948 - 24 0 0 0 - 2 0 19 0 - 24 0	$ \begin{array}{r} 176 - 236 \\ 137 - 327 \\ 127 - 48 \\ 11 \end{array} $	6 - 189 45 - 189 69 - 206 51 - 33	10 - 60 10 - 40 10 - 10 10 - 40	2017 - 24 0 0 0 - 095 1933 - 2016 2240 - 23 9	204 - 327 161 327 - 349 199 316 - 343 355 74 - 67 23	- 185 18 - 21 - 194 18 - 21 - 2 12 - 15 - 26 18 - 1
78/ 1/14 78/ 1/14 78/ 1/14 78/ 1/18	14	# # - 1 # 1845 - 24 # # # - 24 # 19 # - 24 #	310 - 154 76 - 260 11 265 - 341 21 237 - 59	15 - 41 92 - 237 37 - 253 16 - 60	18 - 48 18 - 48 18 - 48 18 - 48 18 - 48	2325 - 24 P D D - 057	96 - 110 29 110 - 152 33	
78/ 1/16 78/ 1/16 78/ 1/17 78/ 1/17 78/ 1/17 78/ 1/18	16	8 8 - 1 8 15 8 - 24 8 8 8 - 2 8 1745 - 2163 1745 - 24 8	59 - 95 28 - 289 2 285 - 282 2 133 - 293 204 - 151 2	$ \begin{array}{r} $	10 - 40 10 - 40 10 - 40 10 - 40 10 - 40	1932 - 2163 18 8 - 1911	197 - 283 89 298 - 336 261	- 109 10 - 27 - 292 10 - 21
70/ 1/19	19	1738 - 2255	65 - 262 1	19 - 165	10 - 40	1839 - 2828	187 - 179 129	- 111 10 - 21
78/ 1/28	28	1738 - 21 8	216 - 92 32	HI - 05	18 - 48	18 6 - 1949 2318 - 24 2	238 - 254 328 65 - 92 12	- 334 15 - 24
78/ 1/21	21	1738 - 24 8	7 - 242 11	6 - 222	10 - 40		31 - 100 10	
78/ 1/22 78/ 1/23 78/ 1/23 78/ 1/23 78/ 1/24 78/ 1/24	~~~~	1715 - 74 8 8 8 - 2 9 17 8 - 2 8 8 8 - 2 8 17 8 - 2 8 17 8 - 1918	148 - 33 33 - 186 + 298 - 194 24 184 - 256 26 88 - 159 5	8 - 65 15 - 82 19 - 269 19 - 288 13 - 71	18 - 48 18 - 48 16 - 38 18 - 38 28 - 48	1059 - 22 4 1 5 - 157 2129 - 2134 135 - 149	211 - 325 25 72 - 164 74 92 - 35 247 242 - 258 282	- 49 18 - 34 - 02 15 - 25 - 248 17 - 24 - 284 18 - 21
78/ 1/24 78/ 1/25 78/ 1/25 78/ 1/25	245 25 26	1910 - 24 8 0 8 - 2 8 17 0 - 24 0 8 8 - 2 8	155 - 334 334 - 47 11 231 - 125 26 125 - 197 31	1 - 112 2 - 129 6 - 316 6 - 333	13 - 32 13 - 33 19 - 48	17 1 - 1758	291 - 261 267	- 264 28 - 24
78/ 1/26	26	17 8 - 24 0	21 - 276 14	10 - 159	18 - 18	1935 - 1948 2859 - 2118 2338 - 2239	118 - 129 122 165 - 179 194 262 - 263 156	- 124 15 - 34 - 135 18 - 28 - 155 14 - 11
78/ 1/27	27	17 2 - 24 2	275 - 348 11 172 - 66 34	14 - 176	10 - 40	1827 - 28 8	225 - 236 316	- 330 18 - 23
78/ 1/28	29 28	8 8 - 2 8 17 8 - 24 8	66 - 138 323 - 216 14	3 - 28 7 - 207	10 - 48 10 - 40	2119 - 2138 #29 - #35 2048 - 21 5	329 - 338 248 93 - 87 7 188 - 111 179	- 342 10 - 18 - 8 15 - 25 - 182 15 - 25

FIGURE 6. — The CML and Io-phase diagram for the period of January 1978 to December 1979. a) the observation tracks ; b) the emission tracks.

\rightarrow Radio « arcs » phenomenology :

Diffraction caustics ? [Lecacheux & al., 1981]

Alfvèn waves ? [Gurnett & Goertz, 1982]

→ Interplanetary scintillation studies : Source locations, distributed / f [Genova & Boischot 1981]

\rightarrow Short (« S ») bursts :

Energetic electron bunches? [Genova, Leblanc & al.]

(2) Recent past (1990 - 2000):

- Digital « Routine » (<u>www.obs-nancay.fr</u> \rightarrow decameter array)
- Digital swept-frequency polarimeter
- Acousto-Optical spectrograph

+ Ulysses, Galileo, Cassini

- Jovian Radiosources spectra, locations and beaming
- Multi- λ studies & ground-space complementarity

Planetary radio emissions spectra

→ Gonio-Polarimetry of Jovian high-latitude radiosources

 \rightarrow f=f_{ce} (cyclotron-maser emission)

\rightarrow Main aurora

→ Io-induced emissions → Alfvén waves produced « at » Io, accelerate electrons

JUPITER 1991 Jan1 (Ionospheric conditions : winter - early morning)

\rightarrow Io-induced emissions

→ Radio Arcs shape : Magnetic field topology + beaming

\rightarrow Radio Arcs shape

[Queinnec & Zarka, 1998]

scenario #1

→ Arcs fringes : Alfvèn bouncing torus-ionosphere

[Queinnec & Zarka, 1998]

DECAMETRIC RADIATION SOURCES

JUPITER

FIELD-ALIGNED

PLASMA TORUS

- → 100% elliptical polarization of DAM [Dulk & al., 1992, 1994]
- \rightarrow implies plasma depleted (N_e \leq 5 cm⁻³) source regions [Lecacheux, 1988]

(3) Present :

- Digital DSP/FFT spectrograph (I)

[Rosolen, Lecacheux...]

- Waveform capture (ROBIN)
- Digital DSP/FFT spectrograph (II) = « Reconquête » [Denis...]
- DRAFTA/UTR-2

[Ryabov et al.]

+ theoretical modelling

\rightarrow Potential drops & accelerations along Io flux tube? [Hess & al., 2007a]

\rightarrow Electrons acceleration by Alfvén waves ?

[Ryabov et al., 1985 ; Ergun et al., 2005 ; Arkhipov et al., 2006]

- \rightarrow Waveform analysis on S-burst emission :
- → monochromatic time segments? [Carr & Reyes, 1999]
- → narrow-band amplifier ? [Ryabov et al., 2007]

\rightarrow Power law distributions for S-burst intensities :

→ SOC ? [Queinnec & Zarka, 2001; Cohier, 2003]

\rightarrow Fine structures of other planetary radio emissions

Earth: Cluster [Mutel & al.]

Saturn : Cassini [Kurth & al.]

Io-B (N) and -D (S) arcs, Fixed equatorial observer, $\theta_{LC}(f) \rightarrow 70^{\circ}$, $\delta\theta=1^{\circ}$, CML=351°, $\Lambda^{\circ}_{Io}=105^{\circ}$, $\delta=30^{\circ}$

\rightarrow Physical simulation of radio arcs

\rightarrow Saturn radio arcs

Orbit 33

- \rightarrow Comparison f_{max}(DAM) magnetic field models
- \rightarrow Inconsistency

[Genova & Aubier, 1985]

→ Inconsistency f_{max}(DAM) - magnetic field models [Genova & Aubier, 1985]
 → Solved as 2 radio emission populations, excited by Alfvén waves
 and slow shock / wake reacceleration currents [Zarka, Gerbault & al., 2002]

 \rightarrow Strong constraints on Jovian magnetic field model

 Jupiter's radiophysics unveiled by 2 decades of decameter observations in Nancay

 Fast LF radio imaging of Jupiter's magnetosphere with arcsecond resolution

 Long baseline interferometry test on Jupiter with NDA and LOFAR • LOFAR = future giant LF interferometer (of phased arrays) in construction in The Netherlands

- Diameter ~100 km
- Frequency range = (10)30-80 & 110-240 MHz
- Resolution = 20" at 30 MHz, decreases as λ (3" at 200 MHz)

• Interest of 1" - 2" resolution (at 40 MHz), with high time resolution

 \rightarrow Imaging of electron bunches (and potential drops) along B field lines

40"

• Interest of 1" - 2" resolution (at 40 MHz), with high time resolution

 \rightarrow Mapping of surface magnetic field (f_{ce-max} (Λ))

	H4	VIP 4	Ulysses 17eV	06	04	+90°	Champ magnétique à la surface de Jupiter (modèle O4)			
	1 20102	1.005	1 100	1.242	1010	_				
lipole ^g	4,30103	4,205	4,109	4,242	4,218					
g ₁ ¹	-0,69932	-0,659	-0,679	-0,659	-0,664	qe	and the second			
h_1^1	0,23753	0,250	0,229	0,241	0,264	°0 it				
g ₂ ⁰	-0,16931	-0,051	0,071	-0,022	-0,203	at				
g ¹ ₂	-0,60970	-0,619	-0,644	-0,711	-0,735	-				
g_2^2	0,46864	0,497	0,464	0,487	0,513		a second and a second second second second second			
h ¹ ₂	-0,54471	-0,361	-0,309	-0,403	-0,469	-90°				
h_2^2	0,28911	0,053	0,133	0,072	0,088	-30 00	Longitude	360		
g ⁰ ₃	-0,08512	-0,016	-0,051	0,075	-0,233					
g_3^1	-0,45039	-0,520	-0,157	-0,155	-0,076					
g ²	0,18676	0,244	0,251	0,198	0,168		I Gauss IU 14			
g ₃ ³	0,07755	-0,176	-0,043	-0,180	-0,231					
\mathbf{h}_{3}^{1}	-0,25561	-0,088	-0,150	-0,388	-0,580					
h_3^2	0,59221	0,408	0,457	0,342	0,487					
h_3^3	-0,25877	-0,316	-0,217	-0,224	-0,294	45				
g ⁰	-0,34354	-0,168				40				
g ¹	0,07479	0,222						-		
g ²	0,08283	-0,061				₹ 35		-		
g ³	-0,06446	-0,202						-		
g4	-0,13662	0,066								
h'	0,08630	0,076				25 - · ·		-		
h ² .	0,27332	0,404				w i · · ·		•		
h ³	-0,27452	-0,166				20 E • •				
h4	0,02801	0,039						• =		

• Interest of 1" - 2" resolution (at 40 MHz), with high time resolution

- \rightarrow direct measurement of radio beaming angles
- \rightarrow physics of generation process

scenario #2

• Interest of 1" - 2" resolution (at 40 MHz), with high time resolution → direct detection (& energetics) of Ganymede, Europe, Callisto-Jupiter radio emission

• Interest of 1" - 2" resolution (at 40 MHz), with high time resolution

Jupiter

Europe

 \rightarrow torus $\int Ne$ versus longitude via Faraday rotation

- Interest of 1" 2" resolution (at 40 MHz), with high time resolution
- → probing of inner magnetosphere with « modulation lanes »
 (diffraction by plasma inhomogeneities ?)

[Arkhipov & Rucker, 2007]

+ multi-wavelength correlations (Radio, UV, IR, X)

→ LOFAR fast imaging should provide NEW remote information about Jupiter's magnetospheric structure and dynamics

• Fast radio imaging of Jupiter's magnetosphere at low-frequencies with LOFAR

P. Zarka*

Planetary and Space Science 52 (2004) 1455-1467

• A Science Case for an extended LOFAR

edited by Corina Vogt - ASTRON, Dwingeloo, The Netherlands

September 11, 2006

\rightarrow Instrumental constraints

□ Arcsec (1"-4") resolution imaging of planetary disk environment

(~10', including Io's plasma torus)

- □ Frequency range = 10-40+ MHz (instantaneous)
- □ Spectral resolution = 10-50 kHz
- □ Time integration ~ 1-1000 msec (typical Jovian burst duration)
- □ Full polarization
- \Box Emission intense, with bursts up to 10^{5-6} Jy, dynamic range 20-30 dB
- Observation sequences of minutes to tens of minutes (Jovian radio
- « storm » duration, source tracking), at intervals of days/weeks
- Partial predictability of Jovian radio emission
- RFI mitigation required + quiet ionosphere better

 Jupiter's radiophysics unveiled by 2 decades of decameter observations in Nancay

 Fast LF radio imaging of Jupiter's magnetosphere with arcsecond resolution

 Long baseline interferometry test on Jupiter with NDA and LOFAR There is scientific + strategic interest for 10 × higher resolution
 → Scientific objectives of LF radioastronomy with arcsec
 resolution

→ European extension of LOFAR to ~1000 km baselines

Current discussions: Germany ~12 stations UK ~2-3 stations Italy ~2 stations France ~1 station

Poland ~1 station ?

- But ionosphere → propagation effects on LF radio waves (refraction, scattering scintillation), vary in 1/fⁿ with n=2-4
 → Random time variable phase shifts decorrelated at two distant locations (isoplanetic spot in ionosphere ~ km-10's of km at LF)
 → loss of phase coherency of the wave
- \rightarrow no (phase) interferometry

• Question : which % of the time phase coherency is preserved, as a function of time and frequency ?

- Previous studies since 1965 : down to f=18 MHz, baselines up to 7000 km
- Jupiter @ 34 MHz, baseline 4300 km, δf=3 kHz [Dulk, 1970]
- → iinstantameœus sœurce, iff iincoherent, «4000 km œt Jupitter = 0,1"
 Jupiter @ 18 MHz, baselines 218-6980 km, δf=2.1 kHz
 [Brown et al., 1968; Lynch et al., 1972]

 Radiosources @ 81.5 MHz, baselines ≤ 1500 km
 [Hartas et al., 1983]

 Radiosources @ 20 & 25 MHz, baseline 900 km
 [Megn et al., 1997]

• But few studies, narrowband, heterodyne, analog observations with 1-bit a posteriori digitization & correlation. Here : broadband, baseband, 12-14 bit digitization, today, at LOFAR site
 > VLBI observations between Nançay and LOFAR proposed to ASTRON in
 2004

- Baseline = 700 km
- Target : must be intense (small antennas) and point-like (to get fringes)
- \rightarrow best source = Jupiter, but sporadic and <u>partly</u> predictable

• Instruments

LOFAR-ITS : in Exloo, 30x2 V-dipoles, 5-35 MHz, 12-bit digitization, 80 Msamples/sec (12.5 nsec/sample), storage 1 Gb = 6.7 sec

offline digital beamforming (per time blocks of 0.2 msec with Hamming windowing, FT, phase gradient & reconstruction)

Time reference : crystal + Internet time server

• Instruments

Nançay Decameter Array : 2x72 spiral antennas (RH & LH), 10-100 MHz, 14 bit digitization, 80 Msamples/sec, continuous storage.

analog real-time beamforming

Time reference : GPS + broadband noise generator On 5 msec / sec (+ UTC Radio France)

P P	• •	Q		1
	🛱 🖨		🗰 🏨	-
	. 🛱 🖗			
	-0 0	-0 0		1
00	🔁 🖨	O		1
00	0 0	00		1
-	-	-		
				-
🖸 🖸		🖨 🛱		
4		🔁 🤁		-
-0 0	-0 0	-		

- Observations
 - → Triggering for simultaneous waveform capture + offline correlation
 → Remote control of ITS from Nançay (real-time display) via the
 internet for 6.7 sec snapshots
 - \rightarrow HF Jovian emissions (>32 MHz) occurrence probability ~100%
 - → First successful observation 30/11

PROBABILITE JUPITER A NANCAY

• Excerpt of an observation with Nançay Decameter Array

• Simultaneous Jovian S-bursts identified on dynamic spectra

- Faraday fringes on ITS (linear polarization) data
- \rightarrow bands fitted (correlation better performed in/near band peak)

Synchronization of data (absolute timing no much better than 1 sec):
 → use S-bursts via cross correlation of dynamic spectral structures
 → δf x δt ~1 → increase of time resolution at expense of spectral resolution
 → ITS-NDA synchronization at ~microsecond level : t_{Nancay}-t_{ITS}=0.072379 sec

- Waveform cross-correlation
- → in Fourier space (Wiener-Khintchine)
- \rightarrow filtering (Hanning), reconstruction of waveform (with 50% overlap),
- FT (Hannning), cross product by conjugate

$$C = FT^{-1}[FT(W_N) \times FT(W_I)^*]/(\sigma_{W_N} \cdot \sigma_{W_I})$$

- Constraints on filtering : Jupiter bursts = wave packets of ~0.1 msec duration
- \rightarrow band \leq Faraday fringe width (100-150 kHz)
- \rightarrow δt >> wave packets ~40 $\mu sec,$ δf >> natural bandwidth of ~30 kHz

• Test on random data sample \rightarrow correlation > 0.3

- Fringe integration method ($\Sigma C_0 + C_{\pi/2}$) with integration over ~1000 correlation results on 1 msec time intervals
- \rightarrow ~90 sigmas correlation peak

Full Time-Series Signal Cross Correlation

• Systematic study \rightarrow C up to 0.5-0.7 where S/N high

Significant correlation up to >100 msec time window

Sec

\rightarrow Origin ?

- relative motion NDA / ITS (-177 ms⁻¹ / -139 ms⁻¹) \rightarrow 2.8 Hz spectral shift (\leq 100 nsec/sec)

- S burst source motion (20000 km/s //B at Jupiter \rightarrow -370 nsec/sec)
- Earth rotation : +125 nsec/sec
- ionospheric & IPS effects <<
- Test stability time base Nançay : 79999998 ±0.5 sps ; 1σ error = pixel/sec (10⁻⁸)
- Poor stability of ITS time base (crystal drift at 10⁻⁴ level)
- \rightarrow causes dynamic spectral shift by ~191 Hz (~10 $\mu sec/sec)$

Conclusions

→ Correlation fringes at ~22 MHz, confirm earlier results (presently in 2 cases / 2 = 100% ;-), with direct baseband digitization, broadband, 12-14 bits..., stable over 100's msec

 \rightarrow Supports long baselines

 \rightarrow No significant time variation of correlation found over 6.7 sec (2 files)

consistently ≈ 1

 \rightarrow unresolved source as expected (~4" resol at 700 km and 20 MHz)

 VLBI observations of Jupiter with the Initial Test Station of LOFAR and the Nançay Decametric Array

A. Nigl¹, P. Zarka², J. Kuijpers¹, H. Falcke³, L. Bähren³, and L. Denis² A&A, in press

• Nançay contribution to (u,v) plane coverage

Figure 4 : simulation de couverture du plan u-v de LOFAR incluant les stations prévues en Allemagne et au Royaume-Uni. En rouge l'apport de la station de Nançay. Par intégration sur plusieurs heures, et grâce à la rotation terrestre la synthèse améliore encore la couverture du plan. Couverture instantanée pour H.A.=0 (limitée à une élévation de 45°) pour une déclinaison de 20° à 150 MHz.

Figure 5 : Couverture du plan u-v pour une déclinaison de 80°, utilisant la rotation de la Terre pour une intégration pendant 8 heures.

• Further steps

\rightarrow More observations with CS-1 (since april) to have duty-cycle statistics

 \rightarrow Observe weaker, permanent radiosources (Cas A or Tau A with core source size of resp. 3" and 1.5")

- S-1 operational since 2007 with "final" prototype hardware
- 96 dual-dipole antennas:
 - grouped in 4 clusters
 - with 6 sub-stations
 - of 4 dipoles each
 - distributed over up to 1 km
- Emulate LOFAR with 24 microstations at reduced bandwidth or single station at full BW