TP d'observation M1 Telescopic observations with CCD detectors

Stéphane Erard

v. 14/1/2024

Some references

Howell S. B. (2000) Handbook of CCD astronomy (Cambridge)
Martinez P. et Klotz A. (1994) Le guide pratique de l'astronomie CCD (Adagio)
Chromey, F.R. (2016) To measure the sky (Cambridge, 2nd edition)

Léna P. et al (1996) = Observational Astrophysics (Springer)

Méthodes physiques de l'observation (CNRS-Interéditions, 3rd ed)
 Gallaway M. (2020) An Introduction to Observational Astrophysics (Springer)
 Glass I.S. (1999) Handbook of infrared astronomy (Cambridge)

Other docs from Master degree:

http://media4.obspm.fr/portail/ http://ufe.obspm.fr/Ressources-multimedia <u>http://media4.obspm.fr/</u> (may require registration)

+ see M1 lectures (instrumentation module) + See Meudon library

Docs and tuto applets (from suppliers)

E.g. http://www.hamamatsu.com/us/en/technology/innovation/index.html https://lot-qd.de/en/products/imaging/ https://www.princetoninstruments.com/learn/camera-fundamentals

Other docs related to the present lecture:

maybe somewhere under http://moodle.psl.eu

References of images used here:

http://www.astrosurf.com/cidadao/ + other sites in astrosurf https://hantsastro.org.uk/gallery/showcat.php?cat=spectroscopy http://www.cis.rit.edu/~ejipci/Reports/mcc_DIP_workshop.pdf http://astrophoto.fr/obstruction_fr.html http://users.polytech.unice.fr/~leroux/ M1/M2 lectures on instrumentation / image formation (M1 by S. Lacour) Cours Optique et télescopes, on various web sites (Riaud et al) LHIRES doc: https://www.shelyak.com/produit/lhires-iii/ Spectro: http://www.astrosurf.com/buil/us/spe2/hresol4.htm

Optical : T1m / Meudon T80 & T120 / OHP T1m & TBL / OMP AMIE / Smart-1, etc... Infrared: NACO / VLT SofI / NTT TBL / OMP VIRTIS / Rosetta

Acquisition process in astronomy imaging

Camera & filters

Computer

Detectors in UV-Optical-NIR range

Modern systems

Electric charges accumulate in each photosite, as a function of incident light flux

• Arrays of detectors, with readout and controling electronics Sizes = 256 x 256 to 2048 x 2048 (up to 10000 x 10000 in 2020)

⇒ CCD or CMOS in the optical range, equivalent systems (HgCdTe) in the IR range (with different readout circuits)

Properties

- Efficient (50-90 % photons detected vs ~5 % for photographic plates)
- Quick readout (no chemical processing)
- Wide spectral range (UV $-> 1 \mu m$ for CCD, $1 -> 6 \mu m$ for IR arrays)
- Good linearity (nb of charges ∞ nb of incident photons)

Kodak Full Frame CCDs: KAF-0402ME, KAF-1603ME, KAF-3200ME and KAF-6303E

Magnified View of a CCD Array

Photosites

Basic structure of CCD

Divided into small elements called pixels (picture elements).

© 2002 Chester F. Carlson Center for Imaging Science, All Rights Reserved

Reading process in CCD

Readout

Control electronics => shift by line/row, then column Tension on output pin is measured Charges are evacuated and the array is reset simultaneously Typical readout time ~ 1 s, which is long

Special modes

Windowing (read only a part of the array)

Binning (read several pixels simultaneously, before digital conversion)

Matrice CCD, éclairée

Registre horizontal, masqué

Acquisition de l'image

Décalage en lignes

Detection

Incident photons generate electrons in the substrate, which are maintained in place during exposure

Readout

Charges are shifted by changing the potentials under the rows, in sync (=> clocking system)

Rows are shifted, then the output register alone is shifted pixel/pixel

Output current is measured on a pixel basis (analog readout)

Digitization (French: numérisation!)

The ouput current is amplified and measured, then digitized with an Analog-to-Digital Converter (ADC) Usual ramp resolution = 8-16 bits

With astronomy cameras, the digitized signal is then transferred to a computer and stored as a file (usually in FITS format) 1 image pixel <=> 1 detector pixel

The digitization process results in rounding errors, which can be represented as a noise (function of number of bits used)

Visualization of astronomy images

Correspondence between detector photosite ⇔ screen pixel

Anything else implies resampling and loss of display quality

(but may be required to see the complete image)

Basic tools to read/display/analyse FITS images:

- DS9/SAOimage
- Aladin
- ATV under IDL
- astropy under python etc...

Special readout modes

Binning: several pixels read simultaneously, *before* measurement of output current and digital conversion – intended to lower readout noise, & faster

Pixel grossi 🔲	Matrice CCD
Binning 3×3	
Binning 2×2	
Binning 1×1 (pl	eine résolution)

Windowing: only the region of interest is read => faster readout and acquisition, e.g. to follow evolving phenomena (occultations...)

Camera

Anatomy of a CCD camera: 1- Adapter (M42); 2- Optical window; 3- Mechanical shutter; 4- CCD detector; 5- Amplifier; 6- Power connection; 7- Dissipator; 8- Peltier (cooling); 9- Housing.

Acquisition process in astronomy imaging

Electronic characteristics

Electronic characteristics

Well capacity / saturation

Well capacity is finite (~20 000 to 350 000 e⁻/pixel)

=> When full, accumulated charges spill over to neighbouring sites (blooming/smearing)

Electronic characteristics

Sensitivity / detectivity

Equivalent Quantum Efficiency (QE): nb of electrons produced per incident photon \Rightarrow Function of wavelength ~ 0.4-0.95 μ m for standard CCD

Back-illuminated, thinned CCD have expanded spectral range and sensitivity

CCD Cameras - *Bias (offset)*

Base level imposed during Analog / Digital conversion: fixed & reproducible (does not correspond to any charge)

Visible at minimum exposure time

Provides more or less regular patterns, often along column direction

Offset

CCD Cameras - Dark current

DARK FRAME = BIAS FRAME + THERMAL FRAME

A.Cidadão

CCD Cameras - Dark current

Charges are created spontaneously in absence of light Not necessarily large wrt offset

This process follows a Poisson distribution

Intermission: the Poisson distribution

Assumptions: - events are random and independent - event frequency is constant (λ)

Examples: photon emission; creation of thermal charges

Probability mass function (to have k events during interval t):

$$P(k) = e^{-\lambda t} \frac{(\lambda t)^k}{k!}$$

Tends towards a Gaussian distribution when λt is large (central limit theorem)

With $N = \lambda t$: Mean = N (nb of photons received during t) => Predictible

Standard deviation: $\sigma = \sqrt{N}$ (mean variation around this value, between successive measurements) => Random: *this* is noise

Darks current: variations

CCD Cameras - *Flat-field*

Image calibration / reduction

Exp. time t Filter F

Filter F Normalised at 1s

(linear approx.)

Calibrated = (Raw - Bias - Thermal) / Flat = (Raw - Dark) / Flat

Only calibrates in a relative sense. Absolute flux are derived from comparison with reference sources

Image calibration / reduction

Calibrating = recovering the light flux from the output signal

You want to use the linear part of the response function

=> Linear function for each pixel

Integrated light flux, or exposure time

Only calibrates in a relative sense. + need to divide by exposure time Absolute flux are derived from comparison with reference sources

Electronic artifacts

Electroluminescence

The amp heats a part of the array => dark current increases locally (together with noise)

Electronic artifacts

Dead / cold / hot pixels

Some pixels have non standard behavior: little or no detection, fast saturation... Often grouped in "clusters" or regular patterns

Quadrants: 4 independent readout circuits used in // on the same detector

Column defects (related to electrical circuitry)

Electronic artifacts: effects of saturation + cosmic rays

Electronic artifacts: spread of charges

Even in absence of saturation, charges may spread along columns during exposure => reduces contrast and increases noise

Electronic artifacts

1 / f noise: ponctual events / granulosity

~hots pixels, but nb increases with exposure time. Random pattern, noticeable for t \gtrsim 5 min

Electronic artifacts

Various frames / patterns in dark current & low level images

Depends on readout circuitry: odd/even interlacing, blocks, quadrants, oblique patterns... Non-linear behavior in general (noticeable at low flux)

Electronic artifacts

Gradients

Last lines read have higher dark current (and more noise) and are subject to more transfer error (~10⁻⁵ : noticeable for large arrays)

Analyse your images!

Display / profiles

- Level / variations?
- Structures / artifacts?
- Dead / hot pixels?

=> Adjust contrast, ranges, colour scales

Dark current issues

You always want to minimize it, because:

- It restrains dynamics by N (parasite signal, less space for target signal before saturation)
- It is associated with a noise $\sigma = \sqrt{N}$

=> Decrease exposure time? (but this would also reduce the signal and S/N!)

=> Decrease temperature (very efficient)

Special issue in IR range ($\gtrsim 4 \mu m$) :

- Background sky is bright and varies rapidly
- Dark current also includes thermal emission from the instrument (thermal charges in CCD + photons *emitted* by the instrument)

Playtime

Are histograms helpful?

- Same image, saturated

But saturation and offset are readily noticeable

Acquisition process in astronomy imaging

Camera & filters

Computer

Coordinates for observation: horizontal coordinates

Simple: azimuth (a) and elevation (h) [wrt horizon] Problems:

- Depend on time and place => not fit to catalog objects with positions
- Stars move around the poles => both coordinates change overnight

(French = coordonnées azimutales)

Horizontal coordinates

Coordinates for observation: equatorial coordinates (1)

Declination (δ) [wrt Equator] and hour angle (H) [wrt meridian]

- Pole distance is constant => only one coordinate changes overnight
- **H referred to local S direction** (= meridian), practical on the telescope (French = coordonnées horaires the English word is ambiguous)

https://www.universalis.fr/encyclopedie/coordonnees-horaires/

Equatorial coordinates

Coordinates for observation: Equatorial mount

- One axis parallel to Earth polar axis
- To follow one object overnight: just need to rotate at the same speed, declination remains constant

Fun and educational question

How long does it take for the Earth to revolve around herself?

Answer : depends on "relative to what"

24h = time required for the Sun to return to the same position in the sky
= mean solar day (averaged over the year - depends on Earth-Sun distance)

23h 56' 04" = time required for a star to return to the same position in the sky = sidereal day (period in an ~ inertial frame)

Coordinates for observation: equatorial coordinates (2)

Declination (δ) [wrt Equator] **and right ascension (** α) [wrt vernal point]

- Allows cataloguing of objects (absolute, on short time scales)
- 2nd fixed coordinate defined by correcting observer's location (right ascension α - requires a reference point to be defined on the sky)

(French = coordonnées équatoriales)

https://cral.univ-lyon1.fr

Vernal equinox and sidereal time

Direction of Sun at N spring / March equinox Υ (stands for Aries) or γ = a reference direction in the Equator plane (French: point vernal)

Local sidereal time Θ = hour angle of the vernal point (fct of time and longitude)

Right ascension of an object α (fixed): Sidereal time - hour angle

 $\Theta = \mathbf{H} + \alpha$

In practice: you know α from a catalogue, you need H to point the telescope manually: => Use a computing applet (inputs: date, time, location, α)

Solar and sidereal times / subtleties

Local sidereal time Θ = hour angle of vernal point (fct of time and longitude) = right ascension of objects at local meridian (always)

The **true solar time** depends on the shape of the Earth orbit and axis inclination **Equation of time** = difference between mean (usual) and true solar times, an oscillating function of solar time over the year

• Additionally: the vernal point drifts with Earth precession (period 26 000 yr, ~ 50"/yr)

=> Equatorial coordinates are provided for restrained periods (J1950, J2000) or current date

Solar and sidereal times

Typical astronomical clock providing Mean solar time & Sidereal time: the Esclangon clock (Paris Observatory, bât Perrault) Pointing display at OHP's T120 – *figure it out!* Pointing ~ meridian – α / δ provide the pointing direction Image time (UTC+2) = 27/3, 00:39 Longitude: 5° 44' E (TS = sidereal time)

Filter imaging

Incident light observed through filters

Various types

- Broadband: U, B, V, R, etc (as many photometric systems as providers)

=> Isolate a part of the visible spectrum standard colour images = RGB composites

- Narrow: Hα (656,3 nm): H, dark red OIII (500,7 nm): O²⁺, turquoise

=> Isolate atomic transitions

Same wavelength scale

Filter imaging

 \Rightarrow Flux reduction

- Also needs to multiply this by detector spectral response (a function of wavelength)
- => Exposure time to be adjusted depending on both filter and source

Narrow filters are used e.g. to measure emissions of hot gas

M42 / Orion

Filter imaging

Orion constellation: RVB

Filter imaging: difficulties

Balance is difficult to get right (need reference stars)
Internal deformations
Different PFS /resolution in each filter ⇒ colored haloes
Often frustrating

RGB composites have limited scientific interest ;(

Ceres in front of M100, T120/OHP BVr composite, 27/3/2023

Signal and noise

Every measurement is subject to uncertainty

- Readout noise (~10 to 100 e⁻ / pixel)
 - Charge transfer efficiency
 - Accuracy of analog amplification
 - Usually dominates
- Thermal (Johnson) noise
 - Uncertainty on accumulated thermal <u>charges</u>
 - Poisson distribution => $\sigma_{therm} = \sqrt{N_{therm}}$
- Photon noise
 - Intrinsic variability of source

- Poisson distribution =>
$$\sigma_{source} = \sqrt{N_{source}}$$

Various noises combine in quadratic sum

(because they are assumed independent)

Signal-to-noise ratio = Average corrected signal / Overall noise

 \Rightarrow S/N increases with longer exposures

 \Rightarrow S/N increases with

- longer exposures
- lower temperatures
- \Rightarrow S/N increases with
- longer exposures
- averaging

Signal and noise

Measured signal : $S_{tot} = S_{source} \times Flat + Dark$

(Overall noise)²:
$$\sigma_{tot}^2 = \sigma_{source}^2 + \sigma_{dark}^2 + \sigma_{lecture}^2 + \sigma_{numer}^2$$

Total noise = Root mean square of various noises

(i.e.: combine in quadratic sum — because they are assumed independent)

The Poisson distribution

Assumptions: - events are random and independent - event frequency is constant (λ)

Examples: photon emission; creation of thermal charges

Probability mass function (to have k event during interval t):

$$P(k) = e^{-\lambda t} \frac{(\lambda t)^k}{k!}$$

Demonstration: see MPA site http://media4.obspm.fr/public/AAM/pages_proba/poisson.html

Tends towards a Gaussian distribution when λt is large (central limit theorem)

With $N = \lambda t$: Mean = N (nb of photons received during t) => Predictible

Standard deviation: $\sigma = \sqrt{N}$ (mean variation around this value, between successive measurements) => Random: *this* is noise

The Poisson distribution

Signal and noise

Reducing noise by summing

• Successive exposures => image stacks centred / aligned on object

Reducing noise by summing

- Images must correspond in X/Y plane
 => centring, rotation, scaling
- Summing, average or median over Z (i.e., pixel by pixel)

n images

- S : average signal (over Z)
- $\boldsymbol{\sigma}$: individual noise

Summing vs readout noise

	Total signal (average)	Readout noise (std-deviation)	Signal-to-noise ratio
1-sec exposure	Signal	σ_{lect}	R = Signal / σ_{lect}
Sum of 10 1-sec exposures	10 . Signal	sqrt(10) . σ _{lect}	sqrt(10) . R
1 exposure of 10 sec	10 . Signal	σ_{lect}	10 . R

Signal-to-noise ratio when readout noise is the main source of uncertainty (usual case)

> => Always better to use longer exposure when feasible Same thing applies to binning modes

Noise reduction techniques

Summing successive frames

- Signals add linearly (n x S)
- Readout noises add quadratically (sqrt(n) x B)
- Signal to noise ratio increases slowly always OK for dark frames or flat-fields

Longer Exposure

- Signals add (n x S)
- Readout noise is unchanged (B)
- Signal to noise ratio increases rapidly if and only if readout noise dominates!
- Signal to noise ratio increases slowly whenever photon noise dominates

=> Optimize exposure time and binning size during acquisition!

- Efficient only if done at readout time (reduces relative readout noise)
- Less efficient if done after acquisition (by software)

Median of successive frames

- Very efficient to filter outliers (cosmic rays, parasites...)
- Does not actually reduce noise (but roughly equivalent with 30+ images)

Sigma-clipping

• **Binning**

- Iterative average & rejection of outliers: eliminates peaks and increases S/N ratio

Digitization (reminder)

Hear the noise! https://www.audiolabs-erlangen.de/resources/MIR/FMP/C2/C2S2 DigitalSignalOuantization.html

Digitization (reminder)

Mariner 9 / Mars (digitized from analog measurements)

=> Details are lost in visual noise, lesser dynamics affects spatial resolution

CCD used in astronomy typically encode on 12-16 bits

Warning: claimed depth is not always reached (<= irregular ramps)

Nb of bits required? N bits => 2^{N} levels (DN) Complete possible dynamics encoded on 2^{N} ; noise encoded on (at least) ~ 1 DN

Digitization (reminder)

Same thing in colours

2 bits

4 bits

8 bits

(Nb of bits in each colour plane)

=> Colours disappear

Details are lost in visual noise, lesser dynamics affects spatial resolution

Basic optics (reminder)

Basic optics (reminder)

starizona.com

Don't forget to focus!

Image formation (reminder)

Image formation (reminder)

See your optics / instrumentation lectures

In the best possible conditions, the image of a point is an extended pattern

- Entrance pupil illuminated by a distant source => Image intensity = (FT of pupil)²
- Rectangular pupil, spectrometer slit => Intensity in sinc² (French: sinus cardinal)

Figure1 : Image d'une étoile

The non-Fourierist spider

Allo, Monsieur l'astronome?... Tout s'explique!...C'est une araignée qui se promenait sur l'objectif !...Elle est partie, à présent...

Tintin and the non-Fourierist spider

Source at infinity (direct space)

Image formation (reminder)

Modulation Transfer Function (MTF) ~ FT of PSF, normalized

Finite pupil => MTF with bounded support <=> filters high spatial frequencies The larger the pupil/mirror, the more details you get (as long as there is no other diaphragm) => We're losing details because of the limited field of view (pupil = low-pass filter for spatial frequencies)

Dependences of PSF?

• **Telescope** (diametre D) :

Angular resolution ~ 1,22 λ / D (distance of first zero of Airy pattern = half-width of central peak, in radians) Improves at shorter wavelengths and with larger mirror

• Atmosphere :

Turbulence reduces angular resolution

Turbulence cells => ~ 50 cm telescope (= Fried parametre) Improves at longer wavelengths (IR), short exposures, and in zenithal direction

Seeing:

Estimate of resolution at time of observations 2" is very good, 0.5" is exceptional (= diffraction limit with $D \sim 1m$)

How can we improve this?

- remove atmosphere (orbital telescope)
- limit/correct turbulence (short exposures, speckle interferometry, Adaptive Optics)


```
Figure1 : Image d'une étoile
```

Dependences of PSF? Field width

P. Riaud et al

Dependences of PSF? Optics and wavelength

Dependences of PSF? Turbulence

Best atmospheric image from VLT

VLT+NAOS image at 2.2 μ m 1,22 x 2.2 μ m / 8 m ~ 0,31.10⁻⁶ rad ~ 0,07"

S. Lacour

Angular resolution

Continuous field

Atmospheric image, object \otimes turbulence

AO corrected image, object \otimes instrument

~60 km ~30 arcsec

NACO / VLT

Angular resolution

Continuous field

HST (no turbulence, D = 2,4m)

Sampling of the image plane (reminder)

- Smallest resolved object = Θ_{min} (PSF size)
- Size of Θ_{\min} in focal plane = f x Θ_{\min}
- Shannon theorem: 2 measurement points / resolved element (ie: inside PSF)
- \Rightarrow size of detector pixels = 0,61 f λ / D (for instrumental limitation, best possible case)

Camera & filters

Computer

Vade-mecum

To be optimized during acquisition

- Estimate seeing (qualifies turbulence)
- **Binning** (minimizes readout noise, if no loss of resolution)
- Exposure time (max signal, no saturation)
- Don't forget to focus!
- Maintain observation log / take notes (events, doubts, questions...)

After the fact (by software)

- Stacks + summing / median <= center on object
- Calibration
- Further processing

Other things you can do with a telescope

Spectroscopy

- Disperse light in wavelength
- \Rightarrow Estimate objects temperature
- \Rightarrow Study of composition (emission or absorption lines)
- \Rightarrow With high resolution: pressure, temperatures... (line profiles)

Spectroscopy (reminder)

Prism

Index n, function of wavelength

Refraction in different directions = > dispersion of light

Spectroscopy (reminder)

Constructives interferences in given directions θ_{m} for a given λ

 \Rightarrow Max luminosity at

$$n_1 \sin \theta_m = n_1 \sin \theta_i - m \frac{\lambda}{d}$$

d = grating line distance

m = integer number => several spectra (successive grating orders) Order 0 is not diffracted, but reflected

wikipedia

Diffraction grating

Monochromatic source (laser)

Images C. Buil

Spectrometre

- Light from target is diffracted along a spectral direction
- \Rightarrow Light beam is blocked in this direction to isolate objects
- \Rightarrow Entry slit in orthogonal direction
- \Rightarrow On the CCD: one spectral dimension, the other spatial
- Grating to be illuminated by a collimated beam
- \Rightarrow Extra lens behind the telescope (collimator)
- Need to form an image after the grating
- \Rightarrow Extra lens behind the grating (objective)
- If high dispersion:
 ⇒ Rotate the grating to scan the complete spectral range

Littrow mount: A setup using 2 coinciding lenses (collimator = objective)

https://www.shelyak-instruments.com 20061111_Olivier-Garde-Spectro.pdf

Image of the slit at various wavelengths

- Slit must be aligned on CCD array
- Spectral axis must be calibrated
- ⇒ Reference sources with known spectral lines: Ne

LHIRES

LHIRES

Settings:

- Install eyepiece instead of camera, focus
- Identify/note 3 fixed vernier positions to observe 3 overlapping parts of spectrum (red, green, blue) use the internal source and ambient light
- Calibrate X-axis with internal source (Neon) on these 3 vernier positions:
 - Install and align camera (slit image must be // to Y-axis)
 - Focus (camera in lens focal plane => narrow lines; different from eyepiece)
 - Expose images for the 3 vernier positions
- At the telescope:
- With eyepiece or webcam:
 - Acquire target on slit and focus (slit in telescope focal plane, with webcam)
 - Toggle input mirror when done
- With camera:
 - Expose images for the 3 vernier positions