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Abstract

Residual wavefront errors in optical elements limit the performance of coronagraphs. To improve their efficiency, different types
of devices have been proposed to correct or calibrate these errors. In this article, we study one of these techniques proposed by
Baudoz et al. (2006), and called Self-Coherent Camera (SCC). The principle of this instrument is based on the lack of coherence
between the stellar light and the planet that is searched for. After recalling the principle of the SCC, we simulate its performance
under realistic conditions and compare it with the performance of differential imaging. To cite this article: R. Galicher, P. Baudoz,
C. R. Physique 8 (2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Étude des performances d’une Self-Coherent Camera. La qualité de surface des optiques limite les performances des corono-
graphes. La correction ou l’étalonnage de ces défauts optiques permet d’en améliorer l’efficacité. Nous étudions dans cet article une
technique, proposée par Baudoz et al. (2006), qui permet d’étalonner les tavelures créées au plan focal par les défauts de surface
d’onde. Le principe de cet instrument, appelé Self-Coherent Camera (SCC), est basé sur l’absence de cohérence entre l’étoile et la
planète. Après un rappel du principe de la SCC, nous présentons une comparaison de ses performances avec celles de l’imagerie
différentielle. Pour citer cet article : R. Galicher, P. Baudoz, C. R. Physique 8 (2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
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1. Introduction

Radial velocimetry has enabled the indirect detection of more than 200 exoplanets over the past decade [1]. The
study of their physical parameters involves the measure of their spectra and a straightforward solution is their direct
detection. However, even the brightest planets [2] are 107 to 109 times fainter than their host and often located within
a fraction of an arcsecond of the star. A large number of coronagraphs have been proposed to suppress the host
star’s overwhelming flux [3], but all of them are limited by the imperfections of the wavefront. Using high-order
Adaptive Optics (AO) or spatial observatory, the performance of coronagraphs is still limited by the aberrations in the
coronagraphic optics and the residual errors from the AO (for ground-based observation). Thus, when attempting to
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detect a faint companion on long exposure images, residual speckle patterns can be a dominant source of error [4].
Since these speckle patterns are slowly drifting, it is mandatory to find a way to discriminate the speckles of the star
from a faint companion during the exposure. This is the purpose of differential imaging techniques. Several criteria
have been proposed so far to discriminate the speckles from the planets: spectrophotometry [4,5], polarimetry [6,7],
and coherence [8–11]. While both concepts based on spectrophotometry and polarimetry depends on the physical
properties of the planets, the coherence is a robust criterion when no physical information is available from the planets
that could be observed. Here, we study the way to calibrate the speckles using coherence as proposed by Baudoz et
al. [11]. First, we recall the concept of the technique, called Self Coherent Camera (SCC). Then, we compare the
detectability of a companion using the SCC with classical techniques of differential imaging.

2. Principle

The concept of the SCC has already been presented [11] but the main features are recalled here. The purpose of that
device is to discriminate, in a field of view, a companion image from the speckles created by wavefront defects. While
both features look almost the same on the detector, only the speckles are coherent with the stellar beam. A Fizeau
recombination is used to encode the field of view with a coherent fringe pattern that affects only the stellar speckles.
The principle and a possible set-up are described in Fig. 1. The light coming from the telescope is split into two beams.
One of the beams is spatially filtered using a pinhole or an optical fiber. The typical size of the pinhole is about the
size of the Point Spread Function core (≈λ/D) for two reasons: (i) Since high frequency pupil defects are diluted in
the focal plane, the pinhole cleans the wavefront of the reference beam [12]; (ii) The companion is not transmitted
whenever its distance to the star is larger than the size of the pinhole. The two beams are recombined in the focal
plane in a Fizeau scheme. To do so, the two pupil beams are optically brought at the same plane immediately before
a focusing lens. Because of the Fizeau interferences, the intensity distribution of the stellar flux is fringed. Because
of the spatial filtering, the pupil illumination of the reference beam is no longer uniform. Thus, the fringe contrast
will not be 100%. The contrast will also be diminished by differential aberrations between the reference and the main
beam. However, Sections 3 and 4 show that it does not limit the SCC performance. Since the flux of the companion is
removed from the reference beam by spatial filtering, the intensity of the companion will be unaltered by the reference
beam and the image of the companion will not be fringed (Fig. 1).

Fig. 1. Left: Possible set-up for the SCC. Right: Principle of the SCC. The electromagnetic field distribution in the SCC pupil is indicated for
the star and its reference beam (black) and a companion (grey). At bottom right, the numerical Fourier Transform of the detected image shows
autocorrelations and intercorrelations between the reference beam and the stellar beam.
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3. Formalism

The electromagnetic field in the entrance pupil plane is described by Ψ (ξ) = Â(ξ). The term A(x) is the complex
amplitude in the focal plane and Â(ξ) denotes the Fourier Transform of A(x). Coordinates ξ and x are used for the
pupil plane and the focal plane respectively. The field of both the star and its companion in the pupil plane can be
written:

Ψ∗(ξ) + ΨC(ξ) = Â∗(ξ) + ÂC(ξ)

The coherent pupil of the reference beam can be described in the pupil plane by: ΨR(ξ) = ÂR(ξ).
Assuming that the vector ξ0 describes the distance between the coherent pupil and the corrugated pupil (supposed

to be centred on zero), the field at the SCC pupil output plane is given by:

ΨSCC(ξ) = Ψ∗(ξ) + ΨC(ξ) + ΨR(ξ) ∗ δ(ξ − ξ0) (1)

where ∗ is the convolution symbol. For a given complex amplitude A(x), we write the intensity detected at the focal
plane as I (x) = |A(x)|2. Assuming the optical path difference of the interferometer is kept at zero, the image recorded
at the focal plane is:

I (x) = ∣∣̂ΨSCC
∣∣2 = I∗(x) + IC(x) + IR(x) + 2 Real

{
A∗(x)A∗

R(x)
} · cos(2πxξ0) (2)

The image looks like a classical Fizeau image with fringes pinning the intensity distribution of the main star.
However, the image of the companion does not show any fringes because it is not coherent with the reference beam.
Since the intensity of the main star is coded with fringes while the image of the companion is not, it looks clear that
one can discriminate the image of the companion from the stellar flux. The simplest approach is to use the FFT of the
image to separate the three areas limited by the autocorrelation of the pupil function. The centred area is the sum of
the autocorrelations of the three images IR , I∗ and IC . The correlation between the fields Ψ∗ and ΨR appears in lateral
areas (Fig. 1). The separation between the two images of the pupil ξ0 is large enough so that the different terms are
not superimposed and can be numerically separated.

Assuming that we describe the centred area by Î1 = Î∗ + ÎC + ÎR and the two other areas by Î− = ̂A∗
R.A∗ and

Î+ = (Î−)∗, we can write the intensity of the companion using the following formula:

IC = I1 − IR − I+.I−
IR

To detect the companion IC , one needs to record separately IR . It can be done because IR is a spatially filtered
beam that can be very stable over time. In fact, the stability of IR is a possible limitation of the SCC. A laboratory
experiment is under development to analyze the impact of IR instability. Assuming we record IR , which is an estimate
of IR , the final IC estimator, called SCC, is given by:

SCC = I1 − IR − I+.I−
IR

(3)

This equation is valid only for an exposure shorter than the coherent time of the atmospheric speckles and for
monochromatic beam [11]. However, using a chromatic corrector as proposed by Wynne [13], the bandwidth could be
increased up to a reasonable value (R = 5). Eq. (3) is true for any aberration or illumination of I∗ or IR . Thus, neither
the non-uniform illumination of IR because of spatial filtering nor any differential aberration between the reference
and the main beam should limit the detection of a companion with the SCC.

4. Numerical simulations

To confirm that result, we developed a numerical code that simulates the SCC. In this section, we describe the
hypothesis we assumed and detail the data processing of the simulation. The main physical hypothesis and parameters
are listed below:

– The telescope is 8-meter diameter;
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– The star considered is a 5th visible magnitude G star observed at 0.8 µm with R = λ
�λ

= 8 assuming a perfect
Wynne corrector is used [13];

– The quantum efficiency of the camera is set to 0.4. The exposure time must be shorter than the coherence time, so
we chose an exposure time of 6 ms. As shown by Sarazin and Tokovinin’s study [14], the atmospheric coherence
time at the wavelength of 0.8 µm is longer than 6 ms more than 50% of the time at Paranal;

– We used the approach proposed by Rigaut et al. [15,16] to generate the atmospheric phase screens of the Paranal
site. A Shack–Hartmann wavefront sensor with 80 actuators across the telescope diameter and a 1 ms AO closed
loop temporal have been assumed. The seeing has been set to 0.6 arcsec at 0.8 µm. A global AO Power Spec-
tral Density (PSD) taking into account servo-lag, aliasing and fitting errors has been computed. From this DSP,
independent phase screens realizations are created;

– Following Cavarroc et al. [17], we introduced common δC and non-common δNC static aberrations. For the
simulated SCC (or differential imaging) device, δC are static aberrations in the instrument upstream of the
SCC (or differential imaging instrument). δNC are the differential static phase aberrations between the corru-
gated and the reference beams for both techniques. δC is set to 10 nm rms and δNC to 5 nm or 1 nm rms and both
are created from a PSD following a f −2 law [18];

– Photon noise, but no read-out-noise, is taken into consideration;
– Images are 512 × 512 pixels and the entrance pupil diameter is D = 80 pixels. The simulation is monochromatic.

4.1. Self-Coherent Camera

To simulate the SCC we split the telescope AO beam into two beams (see Section 2) which are both corrugated by
the AO corrected aberrations and δC . The reference beam is filtered by a λ

D
diameter pinhole in a focal plane. Then, an

entrance pupil size diaphragm is used to stop the diffracted light into the following pupil plane. Finally, that reference
pupil is corrugated by a non-common static phase aberrations, δNC . Then, the two beams, separated by 2.15D, are
recombined in a Fizeau scheme assuming a zero optical path difference. The resulting focal plane intensity is recorded
in a numerical image.

The SCC data processing is done in three steps. The first one is a Fast Fourier Transform of the interferometric
image. Then, the three autocorrelation areas, Î1, Î+ and Î−, are separated using masks and an inverse Fast Fourier
Transform gives I1, I+ and I−. Finally, the SCC residual image is given by Eq. (3), where IR is a long exposure
recording of the reference image. However, the division by IR leads to undefined values where IR equals zero. Thus,
the image SCC.IR is computed instead of the SCC one. Afterwards, we divide the resulting image by IR using
a 10−2 threshold.

4.2. Differential imaging device

Both beams of that device are corrugated by the AO corrected aberrations and δC . One of the beams, called here
the reference beam for SCC comparison, is also corrugated by δNC . The differential image is the subtraction of the
reference image to the other one. The simulation of differential imaging is optimistic because both beams are supposed
observed at the same wavelength and at the same polarization. Moreover, the companion is introduced in only one
image and completely removed from the other beam.

4.3. Detectability

The goal of the two previous simulated devices is to detect a faint companion. Calling C the companion energy
contrast, the image maximum intensity is CI∗max, where I∗max is the host star image maximum intensity. To determine
which contrast can be detected by the considered device, we define D, the detectability at 5σ , as D = 5 N

I∗max
, where N

is the residual noise into the final image when no companion is present. In this article, N is computed as the square
root of the azimuthal spatial variance of the final image.
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Fig. 2. SCC (solid line) and differential imaging (dot-dashed line) detectabilities versus angular separation. Theoretical photon noise (dotted line)
and 5 nm rms non-common static aberrations (dashed line) are also plotted. The SCC reference image exposure time is 18 s. Left: One single image
of 6 ms. Right: 10 000 images of 6 ms.

5. Results of the simulation

5.1. Detectability versus angular separation

Fig. 2 shows SCC (solid line) and differential imaging (dot-dashed line) detectabilities at 5σ versus the angular
separation to the host star. For the SCC, the IR exposure time is 18 s to minimize the photon noise. Using a single
image (Fig. 2, left), the theoretical photon noise (dotted line) is greater than the 5 nm rms non-common static aberra-
tions (dashed line). The SCC and differential imaging detectabilities roughly follow the theoretical photon noise limit.
However, the SCC profile shows spikes and an amplification for angular separation greater than 8 λ

D
. These spikes

and amplification are due to the IR division where IR is smaller than one photon. For a sum of 10 000 images, the
theoretical photon noise is decreased by a factor 100 (Fig. 2, right). Thus, the non-common static aberrations start to
dominate in the differential image as predicted by Cavarroc et al. [17]. The SCC noise almost follows the photon noise
limitation and is not limited by static aberrations where the reference image IR is greater than one photon. However,
spikes are greater than on the single image profile (Fig. 2, left). Other data processing are under study to minimize
these spikes.

5.2. Detectability versus number of used images

To check that the SCC noise decreases as the square root of the number of images recorded (following the photon
noise), we plotted on Fig. 3 the SCC detectability (plus and diamonds) at 1.9 λ

D
versus the number of used images. In

comparison, we added the same plot for the differential imaging detectability (crosses and triangles). We also plotted
theoretical photon noise (solid line) and non-common static aberrations noises (dotted and dashed lines for 1 nm
and 5 nm rms, respectively). As seen in Fig. 2, the differential imaging, unlike the SCC, is limited by non common
static aberrations. Furthermore, where IR is greater than one photon, the SCC image is limited by photon noise and
decreases as the square root of the number of images used. However, there is a minimum detectability that the Self-
Coherent Camera can reach. Indeed, even if the photon noise is minimized on IR using an 18 s exposure time, it is still
present and limits the SCC detectability (flat evolution after 5000 images). The exact impact of the reference beam
noise is still under study.
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Fig. 3. SCC (plus and diamonds) and differential imaging (crosses and triangles) detectabilities at 5σ at 1.9 λ
D

versus the number of used images

for 1 nm and 5 nm rms non-common static aberrations (dotted and dashed lines, respectively). Photon noise (solid line) at 1.9 λ
D

is also plotted.
A log-log scale is used. The SCC reference image exposure time is 18 s.

5.3. Resulting images

From Fig. 4, it looks as if 400 SCC images (corresponding to only 2.4 s) are sufficient to detect a 10−4 companion
at an angular separation of 1.9 λ

D
from the host star. This is true, whatever the static aberration amplitude. On the other

hand, the differential imaging technique is limited by non-common static aberrations. We simulated a companion-
star system and observed the corresponding images (Fig. 4). As expected, the companion is not detected on the final
images using a single image for both techniques that are photon noise limited (top of the figure). Using 400 images,
the companion is lost in non-common static speckles on the final differential image whereas it is well detected on the
final SCC image.

6. Conclusion

In this article, we have recalled the principle of the Self-Coherent Camera (SCC). We have described the numerical
simulation we developed to evaluate the performance of the SCC. We found that, as opposed to standard differential
imaging, the SCC is not limited by the aberrations in the optical elements. The detection limit with the SCC roughly
follow the photon noise limitation (cf. Figs. 2 and 3). Thus, to detect a faint companion very close to its host star (10−4

at 1.9 λ
D

) only a short observation time is mandatory (about 2.4 s for a magnitude 5 star on an 8-meter telescope). To
detect a fainter companion as a 10−10 exoplanet, the coupling of coronagraphs and the SCC will be necessary. This
coupling is under study. We are also analyzing different data processing technique to minimize the impact of the
division by the reference image IR . A laboratory experiment is also under development to compare the expected
capabilities presented in this article with the effective performance.
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Fig. 4. Final Self-Coherent Camera (left) and differential (right) images using a single (top) and 400 images (bottom). The companion, 1.9 λ
D

sepa-

rated, is 104 less bright than the host star. The SCC reference image exposure time is 18 s. An algorithm based on cosmic removal is used to correct
the SCC images from spikes due to the division by IR . The power scale is the same for the four images.
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