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ABSTRACT

Context. For magnetically driven events, the magnetic energy of the system is the prime energy reservoir that fuels the dynamical
evolution. In the solar context, the free energy (i.e., the energy in excess of the potential field energy) is one of the main indicators
used in space weather forecasts to predict the eruptivity of active regions. A trustworthy estimation of the magnetic energy is therefore
needed in three-dimensional (3D) models of the solar atmosphere,e.g., in coronal fields reconstructions or numerical simulations.
Aims. The expression of the energy of a system as the sum of its potential energy and its free energy (Thomson’s theorem) is
strictly valid when the magnetic field is exactly solenoidal. For numerical realizations on a discrete grid, this property may be only
approximately fulfilled. We show that the imperfect solenoidality induces terms in the energy that can lead to misinterpreting the
amount of free energy present in a magnetic configuration.
Methods. We consider a decomposition of the energy in solenoidal and nonsolenoidal parts which allows the unambiguous estimation
of the nonsolenoidal contribution to the energy. We apply this decompositionto six typical cases broadly used in solar physics. We
quantify to what extent the Thomson theorem is not satisfied when approximately solenoidal fields are used.
Results. The quantified errors on energy vary from negligible to significant errors, depending on the extent of the nonsolenoidal
component of the field. We identify the main source of errors and analyze the implications of adding a variable amount of divergence
to various solenoidal fields. Finally, we present pathological unphysical situations where the estimated free energy would appear to
be negative, as found in some previous works, and we identify the source of this error to be the presence of a finite divergence.
Conclusions. We provide a method of quantifying the effect of a finite divergence in numerical fields, together with detailed diag-
nostics of its sources. We also compare the efficiency of two divergence-cleaning techniques. These results are applicable to a broad
range of numerical realizations of magnetic fields.
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1. Introduction

Many astrophysical phenomena, such as stellar and solar jets,
flares, and coronal mass ejections, are driven magnetically(e.g.,
Tajima & Shibata 2002; Schrijver & Zwaan 2008, and ref-
erences therein). Magnetically dominated plasmas are sys-
tems where the long-range, magnetic interaction dominatesother
forces,e.g., plasma pressure and gravitational forces. A typical
example is the low-corona (e.g., Priest 2003; Golub & Pasachoff
2009). There, the amount of energy associated with the magnetic
field is much larger than other energy sources, and the dynam-
ics of the coronal configuration is determined by the evolution
of its magnetic field (e.g., Forbes 2000). This includes solar
flares, where large currents develop in relatively small volumes
(e.g., Shibata & Magara 2011; Aulanier et al. 2012), and coro-
nal mass ejections (CMEs), which are powerful expulsions of
coronal material that change the local configuration of the mag-
netic field drastically (e.g., Forbes 2000; Amari et al. 2003; Fan
2010). In the coronal plasma, the magnetic energy is therefore
the prime energy reservoir that fuels the dynamical evolution of
these events.

However, not all the magnetic energy is available for conver-
sion into other forms of energy. Without changing the field sig-
nificantly at the boundaries of the considered volume, the energy
that can be converted into kinetic and thermal energies is given

by the free energy,i.e., by the difference between the total mag-
netic energy and the energy of the corresponding current-free
(potential) field. This very general result is known as Thomson’s
theorem, and it is based on the decomposition of the field into
the sum of a current-carrying and a potential part. It does not de-
pend on the presence of other forces, and is valid at any instant
in time.

The separation in the potential and free energies of Thom-
son’s theorem is especially relevant for systems like the low-
coronal field, that have different evolution time scales, as fol-
lows. The time scale of the coronal potential field is determined
by the underlying photosphere, which is an inertia-dominated
plasma, unlike the corona. This implies that the magnetic field at
the photosphere has an evolution time scale that is much longer
than the coronal one and that it is relatively insensitive tocoro-
nal changes. Since the magnetic field at the photosphere largely
determines the coronal field’s current-free component, thelat-
ter also evolves on the long photospheric time scale. As a con-
sequence of Thomson’s theorem, relatively fast events, such as
flares and CMEs, can only be powered by converting part of the
magnetic free energy (e.g. Aulanier et al. 2010; Karpen et al.
2012).

In other words, the magnetic free energy is a sufficient condi-
tion for triggering active events, and it is considered in the fore-
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cast of eruptions in the space weather context (see,e.g., Forbes
et al. 2006; Chen 2011). Therefore, in this and similar appli-
cations, an accurate estimation of the free energy is paramount
for understanding the observed magnetic field dynamics and the
maximum energy that can be released in a flare or in a CME
(Emslie et al. 2012; Aulanier et al. 2013, and references therein).

On the other hand, the free energy only provides an upper
limit to the energy available for coronal dynamics. For instance,
in the case of a flare/eruption, the post-event magnetic field con-
figuration does not need to be potential (see,e.g., Berger 1985;
Taylor 1986; Low 2001). Indeed, flare (reconnected) loops are
frequently observed to be sheared after a flare/eruption (seee.g.,
Asai et al. 2003; Lin et al. 2010; Savage et al. 2012, and ref-
erences therein), a feature that is also reproduced in numerical
simulations (Aulanier et al. 2012). This is an indication that
post-event configurations have finite free energy, and the actual
energy removed by the event is given by the difference between
the free energy of the pre- and post-event configurations. An
assessment of the true energy budget related to a flare/eruptive
event requires an accurate and reliable estimation of the mag-
netic energy.

Another motivation of this study is to address the occurrence
of unphysical magnetic configurations. This is the case in some
nonlinear force-free field (NLFFF) extrapolations when nonpre-
processed, observed vector magnetograms are used as boundary
conditions. The most obvious evidence of the nonphysical na-
ture of some solutions is when the energy of the extrapolated
field is lower than the potential field energy. This happens, for
instance, in some of the solutions given in Table 3 of Metcalf
et al. (2008) and Table 1 of Schrijver et al. (2008) for three of
the considered extrapolation methods, including one used in the
present manuscript (Valori et al. 2010). More generally, for all
methods, the estimated coronal energy depends on the manipu-
lations performed on the observed data prior to their use in the
actual extrapolation. (This step is called preprocessing,Wiegel-
mann et al. 2006, Fuhrmann et al. 2007.) A significant part of
the energy difference can eventually result from the details of the
undergone preprocessing.

As a result, the understanding of basic physical processes
in the solar atmosphere requires an accurate estimations ofthe
magnetic free energy. On the other hand, coronal models like
NLFFF extrapolations, have shown that such accurate estima-
tions are not easily obtained. In such cases, Thomson’s theorem
can be exploited to address the accuracy of (free) energy estima-
tions. The fundamental assumption in Thomson’s theorem is that
the magnetic field is solenoidal. Such a property is only approxi-
mately fulfilled in numerical simulations and, more generally, in
magnetic fields that are discretized on a mesh. A quantitative es-
timation of the effects caused by nonvanishing field divergence
is complicated by its nonlocal nature.

The main aim of this article is to quantify the effect of the
presence of a nonsolenoidal component on the energy of a dis-
cretized magnetic field. This is studied using six different test
magnetic fields that are a sample of the typical and character-
istic examples used in the context of coronal solar physics.In
the first part of the article, the energy of each test field is de-
composed and interpreted using an extension of Thomson’s the-
orem that can be applied to nonsolenoidal fields. In the second
part we study how the energy changes, starting from a solenoidal
version of each test field and adding a parametric divergent com-
ponent. The method and results of this study are of interest when
working with any discretization of magnetic fields,e.g., for 3D
coronal magnetic field extrapolations, as well as for magneto-
hydrodynamic (MHD) simulations.

In Sect. 2 the Thomson theorem for the energy of a magnetic
field is summarized. The extension to nonsolenoidal, discretized
fields is presented in Sect. 3. Section 4 introduces the six dis-
cretized fields together with their corresponding solenoidal ver-
sions that are used as test cases for applying our analysis, whose
results are given in Sect. 5. Possible source of errors in our
analysis are sort out in Sect. 6. Then, in Sect. 7 we present
the parametric study of the energy dependence on the amount
of divergence added to solenoidal magnetic fields. An analysis
specific to numerical fields obtained by NLFFF extrapolations
of observed vector magnetograms is presented in Sect. 8, and
conclusions are finally given in Sect. 9.

2. Magnetic energy of solenoidal fields

We first consider the decomposition of the magnetic energy for
perfectly solenoidal fields. By decomposing the fieldB as the
sum of a potential,Bp = ∇φ, and a current carrying contribution,
BJ,

B = Bp + BJ ,

the total magnetic energyE in CGS-Gaussian units in a volume
V is given by

E ≡
1
8π

∫

V

dV B2

= Ep + EJ +
1
4π

∫

∂V

(φBJ) · dS −
1
4π

∫

V

φ(∇ · BJ) dV , (1)

where

Ep ≡
1
8π

∫

V

B2
p dV , EJ ≡

1
8π

∫

V

B2
J dV ,

∂V represents the boundary ofV, dS = n̂ dS , andn̂ is the ex-
ternal normal to the bounding surface.

Two conditions are classically considered:

[a] n̂ · (B − Bp)|∂V = 0, i.e., the potential fieldBp is computed
from the same distribution of normal field ofB on the bound-
ary ofV. This condition implies that̂n · BJ|∂V = 0 and the
surface integral vanishes in Eq. (1);

[b] ∇ · BJ = 0, in which case also the rightmost volume integral
in Eq. (1) vanishes.

If these two conditions hold, then

E = Ep + EJ, (2)

and the energy of a magnetic field is bounded from below by the
energy of the corresponding potential field that has the samedis-
tribution of the normal component on the boundary of the con-
sidered volume. When applied to discretized fields, the above
result holds under the implicit assumption that fields are numer-
ically well resolved, yielding, in particular, continuousderiva-
tives.

The mathematical equivalent of Eq. (2) is known as Thom-
son’s (or Dirichlet’s) theorem, seee.g., Lawrence (1998).

To satisfy the above requirement [a], the scalar potential
φ(x, y, z) is computed as the solution of the Laplace equation
{

∆φ = 0
(∂φ/∂n̂)|∂V = (n̂ · B)|∂V

. (3)

In practical applications, Eq. (3) can be solved numerically using
standard methods. In the applications presented in this paper,
the Poisson solver included in the IntelR© Mathematical Kernel
Library was used.
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3. Magnetic energy of nonsolenoidal fields

In this section we provide expressions for evaluating errors in the
energy that stem from an imperfect fulfillment of the solenoidal
property, as is the case for discretized magnetic fields. In deriv-
ing Eq. (1) the divergence theorem,i.e.,
∫

V

∇ · u dV =
∫

∂V

u · dS , (4)

is used, which may not be fulfilled by the techniques employed
in constructing the numerical representations of magneticfields
or in their analysis. Moreover, if the numerically computedpo-
tential fieldBp and current-carrying fieldBJ have a finite diver-
gence, additional contributions can appear in the corresponding
energy terms,Ep andEJ.

We, therefore, seek a formulation of Eq. (1) for applica-
tions to numerical, nonsolenoidal fields that includes all possi-
ble sources of errors separately, that satisfies the requirement
[a], and that includes only volume integrals (thus avoidingusing
the divergence theorem). To obtain that, we first introduce the
method of computing the potential and current-carrying parts.

3.1. Helmholtz decomposition of the potential part of the field

The accuracy in the numerical solution of Eq. (3) is limited,
which may result in a finite divergence of the potential field.To
quantify its effect, we can write

Bp = Bp,s + ∇ζ , where

{

∆ζ = ∇ · Bp
(∂ζ/∂n̂)|∂V = 0 , (5)

which separates inBp the solenoidal part,Bp,s ≡ Bp −Bp,ns from
the nonsolenoidal one,Bp,ns ≡ ∇ζ. This is equivalent to adopting
the Helmholtz decomposition for the vectorBp, together with the
choice that all the nonsolenoidal component ofBp is contained
in ∇ζ. Finally, the boundary condition forζ(x, y, z) in Eq. (5) is
chosen such thatBp,s satisfies the same boundary condition as
Bp; i.e., they both fulfill requirement [a].

In practical applications, we first solve Eq. (3) numerically
to determineφ, then we computeBp = ∇φ, and finally we over-
write the values of the normal components ofBp on each bound-
ary according to Eq. (3). Since the latter operation enforces the
requirement [a], then any residual inaccuracy in the solution of
Eq. (3), close to the boundary, implies a jump in the field,i.e.,
a finite divergence that adds to the divergence of the potential
field discussed above. Second, we solve Eq. (5) to compute the
residual nonsolenoidal component inBp.

3.2. Helmholtz decomposition of the current-carrying part of
the field

Using the Helmholtz decomposition onBJ we define a solenoidal
component,BJ,s, and a nonsolenoidal one,BJ,ns, such that

BJ ≡ BJ,s + ∇ψ , where

{

∆ψ = ∇ · BJ
(∂ψ/∂n̂)|∂V = 0 , (6)

the nonsolenoidal part ofBJ being: BJ,ns ≡ ∇ψ. The boundary
condition forψ in Eq. (6) is chosen to have the same boundary
condition forBJ,s andBJ, i.e., to fulfill the requirement [a]. As
for the potential field, the required values ofBJ,s at the bound-
aries (i.e., zero in this case) are overwritten onto the solution of
Eq. (6) which is obtained numerically, so that any error in match-
ing these values byψ(x, y, z) reduces to a finite jump close to the
boundaries.

Finally, we notice that this method is often used to remove
the divergence of a vector field (Brackbill & Barnes 1980, some-
times referred to as “projection method”), and it has the property
of conserving the current,i.e., ∇ × BJ = ∇ × BJ,s.

3.3. Gauge-invariant decomposition of the magnetic energy

We now summarize the procedure for the decomposition of the
magnetic field. For a given numerical magnetic fieldB, we solve
Eq. (3) numerically and compute the corresponding potential
componentBp and current-carrying componentBJ = B − Bp.
Next, we compute the solenoidal componentBp,s = Bp −∇ζ and
the nonsolenoidal componentBp,ns = ∇ζ of the potential field by
solving Eq. (5) numerically. Similarly, the numerical solution of
Eq. (6) provides the solenoidal componentBJ,s = BJ − ∇ψ and
the nonsolenoidal componentBJ,ns = ∇ψ of the current-carrying
part ofB. The values of the different components at the bound-
ary are such that the condition [a] is satisfied (Sect. 2). Finally,
by substituting the field decomposition inE =

∫

V
B2dV/8π and

grouping it again as in Eq. (1), we obtain

E = Ep,s + EJ,s + Ep,ns+ EJ,ns+ Emix, (7)

with

Ep,s =
1
8π

∫

V

B2
p,sdV , Ep,ns =

1
8π

∫

V

|∇ζ |2dV

EJ,s =
1
8π

∫

V

B2
J,sdV , EJ,ns =

1
8π

∫

V

|∇ψ|2dV

Emix =
1
4π

(∫

V

Bp,s · ∇ζ dV +
∫

V

BJ,s · ∇ψ dV+
∫

V

Bp,s · ∇ψ dV +
∫

V

BJ,s · ∇ζ dV +

∫

V

∇ζ · ∇ψ dV +
∫

V

Bp,s · BJ,s dV

)

. (8)

All terms in Eq. (7) are positively defined, except forEmix. For
a perfectly solenoidal field, it isEp,s = Ep, EJ,s = EJ, Ep,ns =

EJ,ns = Emix = 0, and Eq. (7) reduces to Eq. (2).
Finally, Eq. (7) is normalized such that

1 = Ẽp,s + ẼJ,s + Ẽp,ns+ ẼJ,ns+ Ẽmix , (9)

where the tilde indicates that the corresponding definitionin
Eq. (8) is divided byE.

Using the divergence theorem, Eq. (4), and the condition [a],
several terms in the above expressions could be simplified. How-
ever, since practical test fields may be obtained with methods
that do not insure that the divergence theorem holds numerically,
we have kept all the terms in Eq. (8). Indeed, the simplifica-
tion obtained by using the divergence theorem results in mixing
other numerical issues with the issue of the finite divergence,
producing cumbersome results, up to the point where Eq. (7) is
not satisfied numerically. Moreover, the direct appearancein the
integrals of the scalar potentials, rather then their gradients, in-
troduces an undesired gauge-dependence.

3.4. Sources of the violation of the Thomson theorem

We summarize which are the source of errors that we consider
in Eq. (7). First, the energy is affected by the finite divergence of
the current-carrying part of the magnetic field, which enters the
EJ,ns andEmix terms. Additionally, the potential field may have a
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finite divergence, owing to the limited numerical accuracy of the
solution of Eq. (3), both in the volume and close to its boundary.
These effects are contained in theEp,ns andEmix terms.

As long as these are the only source of errors, then the sum
of the terms on the righthand side of Eq. (7) must be equal to the
total energyE computed usingB directly, and Eq. (7) must hold
numerically even for nondivergence-free fields. Equivalently but
using normalized quantities, the sum on the righthand side of
Eq. (9) must be equal to one. We show in Sect. 5 that the to-
tal energy is indeed retrieved by the decomposition we adopted,
allowing us to identify the source and extent of the eventualvio-
lation of Thomson’s theorem, Eq. (2).

3.5. Accuracy of the decomposition of the energy equation

A further step is the assessment of the accuracy of the decompo-
sition, Eq. (7). First, we address how effective the decomposition
in the solenoidal and nonsolenoidal parts is in concrete numeri-
cal applications in Sect. 6.1.

Second, the continuity condition, implicit in the derivation
of Eq. (7), implies that numerical derivatives can be computed
precisely enough in the employed discretization. This may not
be the case in some numerical applications,e.g., when observed
values are used as boundary conditions for computing magnetic
fields. The continuity of the fields in relation to small scales is
discussed in Sect. 8.

Finally, our decomposition employs the numerical solution
of Laplace and Poisson equations. We briefly recall the condi-
tions for uniqueness of the general Poisson equation
{

∆u = f
(∂u/∂n̂)|∂V = g , (10)

wheref (x, y, z) is a source term inV, andg is the boundary value
on ∂V. The use of Neumann boundary conditions implies that
the solutionu(x, y, z) is only unique up to an additive constant.
For Eqs. (3), (5) and (6), the freedom in the additive constant
is equivalent to a gauge freedom for the scalar potentialsφ, ζ,
andψ, respectively. This gauge dependence is, however, irrele-
vant for Eq. (7), since the energy decomposition is intentionally
derived in a way such that the scalar potentials only appear in
conjunction with the gradient operator.

Integrating Eq. (10) inV and using the divergence theorem,
Eq. (4), we find that source and boundary values must satisfy
∫

∂V

g =
∫

V

f , (11)

which is a necessary condition for the uniqueness of the solution
u. This implies that, for Eq. (3) wheref = 0 andg = n̂ ·B|∂V, the
flux of B through∂Vmust vanish. For Eq. (5), wheref = ∇ ·Bp
andg = 0, it implies that the volume integral of∇ ·Bp must van-
ish. Similarly, for Eq. (6), wheref = ∇·BJ andg = 0, the volume
integral of∇ · BJ must vanish. When such conditions cannot be
insured, the uniqueness of the solution is not guaranteed. The
effect of the violation of Eq. (11) is studied in Sect. 6.2.

4. Test fields

To explore the effects of a finite divergence in a representative
sample of practical situations, we consider six test fieldsBtest
obtained from analytical models, numerical simulations, and
NLFFF extrapolations. Their magnetic configuration is outlined
in the field-line plots in Fig. 1. Furthermore, we consider six
additional test casesBtest,s, which are obtained from each of the
Btest by removing the nonsolenoidal part of the field.

4.1. Discretized analytical test fields

The first test field that we consider is the potential fieldBtest =

BDD generated by a pair of vertical magnetic dipoles, located at
(0,±yDD, zDD), see,e.g., Eq. (7) in Török & Kliem (2003) for
the analytical expression of the field. We setyDD = 2 andzDD =

−1.5, and the field is normalized such that thez-component has
a maximum value equal to unity at the bottom boundary (z = 0).
The only currents and finite divergence errors present inBDD are
generated by truncation errors in its discretization.

The second employed test field,Btest = BTD, is the model
of the magnetic field of an active region derived in Titov & Dé-
moulin (1999), given by a section of a current ring surrounded
by a stabilizing potential field. The employed configurationis
the same as in Valori et al. (2012), to which we refer the reader
for further details. In this case, the test field has an explicit
current-carrying component sustained by a flux rope. The an-
alytical formulae defining the test field are approximate, which
together with the rather coarse resolution employed here, yield
relatively large finite-divergence errors.

For both test fieldsBDD andBTD the discretized volume is
V = [−12,12] × [−19,19] × [0,16], with uniform resolution
∆ = 0.12 in all directions.

4.2. Numerical tests fields

The next test field that we consider,Btest = BMHD , is a snap-
shot of a magneto-hydrodynamic numerical simulation of mag-
netic reconnection in a null-point topology (Masson et al. 2012).
To use our present-stage diagnostic, we interpolated the origi-
nal snapshot onto a uniform and homogeneous grid, whereas the
original simulation was performed using a nonuniform one. Be-
cause the divergence values are slightly increased by the inter-
polation, they are not representative of the quality of the simula-
tions presented in Masson et al. (2012). However, they stillserve
our purpose of providing a typical situation arising from the
numerical evolution of magneto-hydrodynamic equations. The
considered volume isV = [−20,0] × [−20,10] × [0,12] with
uniform resolution∆ = 0.05 in all directions, and the field is
normalized such that the vertical component is unity at its maxi-
mum.

Next, we consider three NLFFF extrapolations ofHin-
ode/SOT vector magnetograms, obtained with the magneto-
frictional method in Valori et al. (2010). The original resolu-
tion of the vector magnetograms is 0.3′′, and they can be pre-
processed (Fuhrmann et al. 2011) to improve their compatibility
with the force-free assumption on which the extrapolation code
is based.

Our fourth test field,Btest = BEx1, is the nonlinear extrapo-
lation of a vector magnetogram of AR 11158, measured on 14
February 2011. The vector magnetogram was binned to the res-
olution ∆ = 1.1′′ prior to extrapolation, and no preprocessing
was applied in this case. The analyzed coronal model volume
in arcsec isV = [−21,68]× [−273,−171]× [0,123]. TheHin-
ode/SOT field of view of the measurements employed for this
extrapolation cuts through the external sunspots of a quadrupo-
lar field distribution, resulting in high field values at the lateral
edges of the magnetogram. Even computing the potential field
is problematic in this case, therefore we limited the considered
volume to the bipolar core of the extrapolated field.

The fifth test field,Btest= BEx2PP, is the extrapolated coronal
field model above AR 11024 on 4 July 2009. In this case, the full
resolution ofHinode/SOT is used, and the vector magnetogram
is preprocessed before extrapolation. The extrapolation covers a
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a) BDD b) BTD c) BMHD

d) BEx1 e) BEx2PP f) BEx2

Fig. 1. Selected field lines of the six test cases: (a) the potential field of a double dipole, BDD; (b) the TD model,BTD; (c) the MHD model,
BMHD ; (d) the NLFFF model of the nonpreprocessed magnetogram of AR 11158,BEx1; (e) the NLFFF model of the preprocessed magnetogram of
AR 11024,BEx2PP; (f) the NLFFF model of the nonpreprocessed magnetogram of AR 11024,BEx2. The vertical component of the magnetic field
at the bottom boundary is shown on a gray scale, with the positive (respectively, negative) polarity in white (respectively, black). The different line
colors outline different types of connectivities.

volume ofV = [−41,42] × [−141,−16] × [0,98] arcsec, with
uniform resolution∆ = 0.3′′. This model of the coronal field
of AR 11024 is discussed in detail in Valori et al. (2011), where
more details about extrapolation of vector magnetograms can be
found.

Finally, the sixth test field,Btest = BEx2, is the same case as
BEx2PP except that the vector magnetogram is not preprocessed
prior to extrapolation. More details on the numerical implemen-
tation are given in Appendix A.

4.3. Cleaned test fields

Since a small divergence ofB is one major condition for the
Thomson theorem, Eq. (2), for each test fieldBtest we consider a
corresponding solenoidal version of it,Btest,s, which is computed
from Btest employing the divergence cleaner described in Ap-
pendix B. In Cartesian coordinates, such a solenoidal field has
the samex- andy-components asBtest, whereas thez-component
is changed everywhere in the volume, except for the top bound-
ary. Therefore,Btest andBtest,s have the same distribution of nor-
mal field on all boundaries except for the bottom one, where
Btest,s differs fromBtest by an amount that is related to the com-
bined effect of∇·Btest in the whole volume. Since the divergence
cleaner changes the value of the normal field component on one
boundary, the potential fields computed from the boundary val-
ues ofBtest and of the corresponding solenoidalBtest,s are not the
same. Additionally, the divergence cleaner alters the current of
the field, as prescribed by Eq. (B.5), of an amount that is pro-
portional to the divergence ofBtest. Therefore, the field that is
obtained by applying the cleaner may have drastically different
properties than the original field. Finally, let us notice that dif-
ferent solenoidal fields can be derived fromBtest using different
methods. The divergence-cleaned versions of the test fieldsBtest,s
are used here as illustrative examples.

5. Numerical tests of Thomson’s theorem

In this section we apply Eq. (9) to the test cases described in
Sect. 4. Table 1 summarizes the values of the divergence metric
〈 | fi| 〉 defined in Appendix C and the contribution of each term
to Eq. (9), for all test fields. The divergence metric spans values
from 10−21 to 10−3. In all cases, the rightmost column, corre-
sponding to the sum of the righthand side of Eq. (9), is equal
to unity, despite the large difference in the divergence values.
Therefore, we conclude that Eq. (9) completely accounts forall
relevant contributions to the energy, in all test cases. We then
consider the different contributions to Eq. (9) case by case.

5.1. Results with the test fields

The top part of Table 1 refers to the test fieldsBtest. In general,
the energiesE of the different test fields go from the purely po-
tential case ofBDD, whereẼp,s = 1, to high-free-energy cases
(BTD andBEx1, with Ẽp,s ≃ 0.8), where the field is strongly non-
potential. The main source of violation of Thomson’s theorem,
Eq. (2), in all cases is the mixed current-potential termẼmix, ex-
cept for theBEx2PPcase wherẽEJ,ns is slightly higher in absolute
value thanẼmix.

More precisely,BDD is nearly perfectly potential, with non-
solenoidal spurious fluctuations contributing to the totalenergy
for few parts per thousand at most (iñEmix). BTD has a 16%-
energy contribution from the current-carrying part of the field
ẼJ,s, with a 2% contribution from the nonsolenoidal field related
to the current-carrying structure (iñEmix but not in ẼJ,ns). This
is the effect of the approximate nature in the matching between
current-carrying and external potential fields in the equilibrium
that defines theBTD field. BMHD , which has 6% free energy
ẼJ,s, has an even lower nonsolenoidal contribution (-0.1%). In
all three cases, there is very small (BTD) or no significant (BDD,
BMHD) violation of Thomson’s theorem.

We now move to the NLFFF extrapolations. These show
values of 〈 | fi| 〉, which are two-to-three orders of magnitude
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Table 1. Numerical tests of Thomson’s theorem.

Btest 〈 | fi(B)| 〉 E Ẽp,s ẼJ,s Ẽp,ns ẼJ,ns Ẽmix Sum
BDD 2× 10−6 1.45 1.00 0.00 4× 10−5 7× 10−6 −4× 10−3 1.00
BTD 3× 10−6 3.90 0.81 0.16 3× 10−5 6× 10−4 0.02 1.00
BMHD 2× 10−5 1.94 0.94 0.06 1× 10−6 1× 10−4 −1× 10−3 1.00
BEx1 4× 10−3 4.21 0.79 0.38 5× 10−4 0.29 −0.46 1.00
BEx2PP 9× 10−4 1.51 0.88 0.11 2× 10−4 0.14 −0.12 1.00
BEx2 2× 10−3 0.72 2.29 0.14 3× 10−4 0.94 −2.38 1.00
Btest,s

BDD,s 1× 10−18 1.44 1.00 0.00 4× 10−5 5× 10−5 7× 10−4 1.00
BTD,s 4× 10−21 3.95 0.84 0.16 3× 10−5 4× 10−5 −3× 10−4 1.00
BMHD,s 3× 10−21 1.94 0.94 0.06 1× 10−6 1× 10−6 −1× 10−5 1.00
BEx1,s 6× 10−18 5.98 0.43 0.57 2× 10−4 5× 10−3 −6× 10−3 1.00
BEx2PP,s 2× 10−17 3.15 0.42 0.58 1× 10−4 2× 10−3 −3× 10−3 1.00
BEx2,s 8× 10−18 0.99 0.61 0.39 2× 10−4 1× 10−3 −2× 10−3 1.00

Notes. The employed test fields, defined in Sect. 4, are named in the leftmost column. Second column,〈 | fi| 〉: the divergence metric of the fields
(see Eq. (C.2)). Third column,E: energy of the test fields in units of 1032 erg. TheBDD, BTD, BMHD fields (and their corresponding solenoidal fields
BDD,s, BTD,s, BMHD,s) were rescaled assuming a maximum value of the photospheric vertical field equal to 300 G and a typical distance between the
sunspot’s centers of (50, 50, 120) Mm, respectively. The successive five columns are the different contributions to Eq. (9), and “Sum" corresponds
to their sum. All terms from “̃Ep,s" to “Sum" are normalized byE. Ẽp,s is the magnetic energy of the potential fieldBp,s, ẼJ,s that of the solenoidal
component of the current-carrying oneBJ,s, Ẽp,ns andẼJ,ns are the contributions associated to the divergence ofBp andBJ , respectively,Ẽmix is a
mixed potential-current carrying term (see Eq. (8) for their definitions).

greater than in the first three cases. The contribution of thenon-
solenoidal part of the potential field to the total energy,Ẽp,ns, is
always negligible with respect to the other terms. In theBEx2PP
case, the free energy associated with the solenoidal part ofthe
current-carrying fieldẼJ,s is about 11%, and the potential field
energy is 88% of the total energy. The sum of the potential
and current-carrying solenoidal parts accounts for 99% of the to-
tal energy, apparently verifying Thomson’s theorem accurately.
However,ẼJ,ns is 14% andẼmix is -12%;i.e., the errors related to
the divergence of the current-carrying part of the field havecom-
parable magnitudes and compensate for each other. These are
the dominant sources of error, almost three orders of magnitude
more thanẼp,ns.

The test case with the highest value of〈 | fi| 〉 is BEx1. With
respect to theBEx2PP case,BEx1 is characterized by three times
higher free energỹEJ,s, twice the error on current̃EJ,ns, and al-
most a four times larger error oñEmix. Again, the last two are
largely compensating each other. We conclude that the interpo-
lation to one third of the resolution used forBEx1 is less efficient
than preprocessing (used forBEx2PP) in eliminating the source of
violation of Thomson’s theorem.

This situation is even more extreme in the case of the extrap-
olation of the nonpreprocessed, noninterpolated magnetogram
BEx2. Although this case has a value of the mean divergence
〈 | fi| 〉 that is only a factor two higher than forBEx2PP, and not
even the highest one, it shows the most pathological behavior:
The potential field has an energy 2.29 times the energy of the
test field, which is downright unphysical according to Eq. (2).
Such a high value is compensated for by an equally high value
of Ẽmix (-2.38). On the other hand, the current-carrying part of
the fieldẼJ,s accounts for 14% of the energy, but the associated
error ẼJ,ns is more than six times larger. Such large errors are
related to the high values of the divergence—in particular atthe
bottom boundary—and their actual values are very sensitive to
the numerical details of the computation. Additional analysis of
BEx2 andBEx2PP is discussed in Sect. 8.1

We finally notice that in the preprocessed caseBEx2PP, the
error from ẼJ,ns or Ẽmix might be considered as still tolerable if
compared with the total energy (errors on vector magnetograms
are similar, after all), but it seriously compromises the reliabil-
ity of the free energy estimation, each one being as high asẼJ,s
itself.

5.2. Results with the cleaned test fields

We now consider the bottom part of Table 1 for the solenoidal
fields. The values of the divergence are drastically reducedin
all cases to 10−17 or less, which shows that the cleaner in Ap-
pendix B is an effective—and fast—way of removing the non-
solenoidal component of a discretized magnetic field. For the
purpose of this article, we can then consider allBtest,s to numer-
ically be perfectly solenoidal. All error terms,i.e., Ẽp,ns, ẼJ,ns,
and Ẽmix, are smaller than 1%, and we recover Eq. (2) in a nu-
merical sense.

More precisely, theBDD,s and BMHD,s cases are practically
identical to their corresponding test fields, as far as the energy
metricsE, Ẽp,s, andẼJ,s are concerned. On the other hand,BTD,s
shows an increase of about 1.3% of the total energy,E, as a re-
sult of the removal of the error iñEmix of BTD. The error removal
affects the potential field energyEp more, which raises about 5%
with respect to the energy of the potential field inBTD (in non-
normalized values), as a consequence of the cleaner’s modifica-
tion of the bottom boundary. In contrast, the relative contribu-
tion of the current-carrying part̃EJ,s is unaffected by the cleaner.
It is true that〈 | fi| 〉 differs by 15 orders of magnitude between
BTD andBTD,s, but it is significant anyway that the removal of
a 2%-error inẼmix changes the nonnormalized values of the to-
tal energyE and potential field energyEp,s of 1% and 5%, re-
spectively. We conclude that, even in relatively divergence-free
fields, residual nonsolenoidal effects can be energetically signif-
icant.
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Table 2. Contributions toẼmix in Eqs. (8,9).

Btest Ẽp,s/p,ns ẼJ,s/J,ns Ẽp,s/J,ns ẼJ,s/p,ns Ẽp,ns/J,ns Ẽp,s/J,s Ẽmix

BDD -0.01 0.00 0.00 -0.00 -0.00 0.00-0.00
BTD -0.01 0.00 0.03 0.00 -0.00 -0.000.02
BMHD -0.00 0.00 -0.00 -0.00 -0.00 -0.00-0.00
BEx1 -0.01 -0.08 -0.43 0.00 0.00 0.05-0.46
BEx2PP 0.00 -0.03 -0.10 0.00 0.00 0.01-0.12
BEx2 0.00 -0.28 -2.46 0.00 -0.00 0.36-2.38

Notes. Ẽp,s/p,ns =
1
E

∫

V
Bp,s · ∇ζ dV, ẼJ,s/J,ns =

1
E

∫

V
BJ,s · ∇ψ dV,

Ẽp,s/J,ns =
1
E

∫

V
Bp,s · ∇ψ dV, ẼJ,s/p,ns =

1
E

∫

V
BJ,s · ∇ζ dV,

Ẽp,ns/J,ns =
1
E

∫

V
∇ζ · ∇ψ dV, Ẽp,s/J,s =

1
E

∫

V
Bp,s · BJ,s dV,

Ẽmix = Ẽp,s/p,ns+ ẼJ,s/J,ns+ Ẽp,s/J,ns+ ẼJ,s/p,ns+ Ẽp,ns/J,ns+ Ẽp,s/J,s.

In the extrapolated cases, the removal of the larger diver-
gence has far stronger consequences. In the first place, the non-
normalized field energyE of the cleaned fieldsBEx1,s, BEx2PP,s,
and BEx2,s is increased of 42%, 109%, and 38%, respectively,
with respect to those of the corresponding test fields. As a con-
sequence of the higher values ofE, the importance of potential
fields relative to the total energỹEp,s is decreased (to 78%, 95%,
and 40% of their test-field values, respectively). In contrast, the
energy contribution related to the current-carrying part of the
field ẼJ,s is strongly increased, as expected, since the cleaner
introduces currents that are related to the cumulated divergence
that is removed (see Appendix B).

We conclude that the cleaned fields that are obtained from
the test ones using the method in Appendix B all comply with
Thomson’s theorem accurately. However, three of them, namely
BEx1,s, BEx2PP,s, andBEx2,s, are energetically very different from
the original fieldsBEx1, BEx2PP, andBEx2, respectively. Inciden-
tally, we notice that the removal of the finite divergence does
not conserve the approximate force-freeness of the extrapolated
fields.

5.3. Contributions to Ẽmix for the test fields

In many of the test fields in Table 1,̃Emix is the largest source
of error. Table 2 shows the six contributions toẼmix in the order
in which they appear in Eq. (8) and their sum̃Emix for the six
test casesBtest. We do not consider the solenoidal fieldsBtest,s
since all terms are mostly zero and never bigger than 0.7% The
following conclusions can be drawn. First, the main contribu-
tion to Ẽmix is Ẽp,s/J,ns ≡

1
E

∫

V
Bp,s · ∇ψ dV in all cases. The

main source of violation of Thomson’s theorem is then the diver-
gence of the current-carrying part of the field. More often than
not, this term has a similar magnitude and opposite sign ofẼJ,ns,
which is positive-definite. However, there is no obvious reason
for Ẽp,s/J,ns to be always—or predominantly–negative, and we
regard this as a coincidence.

Second, the terms with residual divergence of the potential
field (i.e., any term containing∇ζ in Eq. (8)) are always neg-
ligible. Therefore, also in view of the always low̃Ep,ns values
in Table 1, we can conclude that the divergence of the potential
field always gives a negligible contribution to the energy.

Third, the integralẼJ,s/J,ns =
1
E

∫

V
BJ,s · ∇ψ dV, and the in-

tegralẼp,s/J,s =
1
E

∫

V
Bp,s · BJ,s dV have finite values for the ex-

trapolations in Table 2. Analytically, they should be vanishing.
Using the divergence theorem, Eq. (4), the surface integralvan-

Table 3. Values of log10(〈 | fi| 〉), for the fields decomposition in Eqs. (3),
(5), and (6) (see Eq. (C.2) for the definition of〈 | fi| 〉).

Btest B Bp Bp,s Bp,ns BJ BJ,s BJ,ns

BDD -5.61 -4.98 -5.60 -2.43 -2.35 -2.93 -2.46
BTD -5.54 -4.84 -5.40 -2.29 -4.22 -4.71 -3.20
BMHD -4.78 -5.76 -6.23 -2.55 -3.96 -4.54 -2.45
BEx1 -2.40 -2.60 -2.66 -1.42 -2.08 -2.36 -2.04
BEx2PP -3.05 -4.02 -4.09 -2.28 -2.62 -2.90 -2.62
BEx2 -2.66 -3.87 -3.96 -2.12 -2.69 -2.86 -2.80
Btest,s

BDD,s -18.0 -4.98 -5.60 -2.44 -0.83 -2.62 -1.91
BTD,s -20.4 -4.84 -5.40 -2.31 -3.41 -4.09 -2.15
BMHD,s -20.5 -5.42 -5.79 -2.39 -4.39 -4.70 -2.31
BEx1,s -17.2 -2.65 -2.71 -1.47 -1.72 -2.11 -1.83
BEx2PP,s -16.8 -3.78 -3.93 -2.26 -0.44 -2.76 -2.25
BEx2,s -17.1 -3.63 -3.79 -1.99 -1.51 -2.71 -2.19

Notes. ColumnB here is the logarithm of the column〈 | fi(B)| 〉 in Ta-
ble 1. More negative values correspond to more solenoidal fields.

ishes becauseBJ,s|∂V = 0, and the volume integral vanishes be-
cause∇·BJ,s = 0. The first condition is enforced at the boundary,
but the second is only approximately true numerically (see also
Sect. 6.1). This is not enough to insure thatẼJ,s/J,ns and Ẽp,s/J,s
vanish numerically. This is why we adopted the decomposition
of the energy of Sect. 3.3 that only contains volume integrals.

6. Source of errors in the decomposition

6.1. Values of 〈 | fi| 〉 for the field decomposition in Eqs. (3-6)

In this section we quantify how accurate the decomposition in
solenoidal and nonsolenoidal contributions is. Table 3 reports
the values of the logarithm of〈 | fi| 〉, defined by Eq. (C.2), for the
field decomposition used in Eq. (7). Since〈 | fi| 〉 is not additive
in the field, its value for, say,B is different from the sum of its
values for the potentialBp and current-carryingBJ components.

We next consider the decomposition of the potential field
given by Eq. (5) for the test fieldsBtest (upper half of Table 3).
Values of〈 | fi| 〉 for the solenoidal part of the potential fieldBp,s
are better (i.e., more negative) than those forBp,ns, so that the
Bp,s is indeed more solenoidal thanBp,ns. However, it is only
in the first three cases,BDD, BTD, andBMHD , that log10(〈 | fi| 〉)
has a noticeably more negative value forBp,s than forBp. In the
other cases, the values are relatively close to each other, andBp,s
is only marginally more solenoidal thanBp. On the other hand,
Bp,ns is always much less solenoidal thanBp. This is partly the
effect of the nonadditivity of the metric〈 | fi| 〉, and partly because
Bp,ns is, on average, much smaller thanBp,s, as the correspond-
ing energy metrics in Table 1 show. (In particular,Ẽp,ns, i.e., the
energy associated withBp,ns, is always extremely small.)

Similar conclusions can be drawn looking at the decomposi-
tion of the current-carrying part,BJ, where this time the energy
associated with the solenoidal error (seeẼJ,ns in Table 1) is more
significant. In this case, values of〈 | fi| 〉 for all three contribu-
tions BJ, BJ,s, and BJ,ns are of similar magnitude. Again, the
nonsolenoidal part,BJ,ns, has a higher divergence value than the
solenoidal one,BJ,s, but only marginally so forBDD and extrap-
olated fields.
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Table 4. Removal of flux imbalance.

Btest 〈 | fi(Bbal
test)| 〉 Φ∂V(Btest) Φ∂V(Bbal

test) ẼΦ ẼΦ,mix

BDD -5.61 -6.83 -26.4 -17.3 -11.2
BTD -5.54 -7.79 -26.0 -19.1 -11.8
BMHD -4.78 -4.36 -22.8 -12.2 -6.29
BEx1 -2.40 -1.33 -18.7 -5.18 -3.30
BEx2PP -2.60 -2.00 -20.9 -7.49 -4.52
BEx2 -2.63 -1.86 -20.0 -6.77 -4.35

Notes. For all quantities, the log10 of the absolute value is shown.〈 | fi| 〉

is the divergence metric defined in Eq. (C.2);Φ∂V is the normalized
magnetic flux through all boundaries, Eq. (12);ẼΦ and ẼΦ,mix are nor-
malized to the energyE of Bbal

test, which is the flux balanced field associ-
ated toBtest, see Eq. (13).

We consider the solenoidal test fieldsBtest,s (bottom half of
Table 3). Values of〈 | fi| 〉 for a given field component belonging
to Btest and to the correspondingBtest,s are very similar. For in-
stance, the value of log10(〈 | fi| 〉) for BJ,s in, say, the test fieldBEx1
is−2.36, whereas for the corresponding contribution forBEx1,s it
is −2.11. Therefore, the above discussion of the contributions to
Btest holds for those ofBtest,s as well. In contrast, the total diver-
gence of the field is very different in the two cases,i.e., -2.4 and
-17.2, respectively. This is a clear indication that the accuracy
of the field decomposition is determined by the accuracy in the
solution of Eqs. (3-6) rather than by the divergence of the total
field.

In conclusion, the Poisson solver provides a decomposition
of the magnetic field where the solenoidal parts have a smaller
divergence than the original field, as required. The limit inthe
accuracy of the decomposition comes from the accuracy of the
solver, and not from the level of solenoidality of the initial field.
One possible source of inaccuracy for the solver is the incom-
patibility of the boundary conditions used in Eqs. (3-6), which is
discussed in the next section.

6.2. Compatibility of boundary conditions in Eqs. (3-6).

We here consider the normalized flux of the field,Φ∂V, com-
puted as the surface flux through all six boundaries, normalized
to the mean flux entering and exiting from the lower boundary:

Φ∂V(B) =

∫

∂V

B · dS /Φnorm , (12)

with Φnorm =
1
2

∫

z=z1

|B · dS| .

The values of log10 |Φ∂V(Btest)| in Table 4 show that the test fields
of the extrapolation casesBEx1, BEx2PP, andBEx2 are not flux-
balanced. Therefore, the decomposition of Eq. (7) based on the
solutions of Eqs. (3-6) may be inconsistent (see Eq. (11) and
related text). The purpose here is to determine whether the un-
balanced flux affects the accuracy of any of the terms in Eq. (7).

A flux-balanced field,Bbal
test, can be computed from a flux-

unbalanced one,Btest, by splitting the original field as

Bbal
test= Btest+ BΦ , (13)

and assumingBΦ = ∇Θ to be generated by an uniformly dis-
tributed, constant divergence;i.e., ∆Θ = constant. We choose
the simple solutionΘ ∝ r2, and fix the constant such that the

flux of BΦ equals the flux ofBtest, yielding

BΦ =
(

1
3V

∫

∂V

Btest · dS
)

r.

Table 4 shows that the above modifications toBtest is effec-
tive, drastically reducing the net flux of the original field to very
low values (compare log10 |Φ∂V(Btest)| with log10 |Φ∂V(Bbal

test)|).
On the other hand, the effect on the field ofBΦ is very small.
Both energy terms related to that (i.e., ẼΦ ≡ 1

2E

∫

V
B2
Φ

dV and

ẼΦ,mix ≡
1
E

∫

V
Btest · BΦdV) are negligible (with a contribution

below 0.01% of the total energyE computed forBbal
test).

Repeating the same analysis of Sects. 5 and 6.1 for the flux-
balanced part of the field only,Bbal

test, yields no significant change:
all values in Tables 1, 2, and 3 are identical. Inaccuracies of
the Poisson solver in solving Eq. (3) are therefore related to the
solver itself, not to the incompatibility of the boundary condi-
tions.

In a similar way, the test field can be modified to have vanish-
ing volume divergence, which is the requirement for consistency
in solving Eqs. (5,6), using

BΦ =
(

1
3V

∫

V

∇ · BtestdV

)

r .

The result is likewise clear: no significant change is found in the
values of Tables 1, 2, and 3.

Therefore, an imperfect consistency of source and bound-
ary conditions play no role in the accuracy of the solution of
the Laplace and Poisson equations employed in the decomposi-
tion, Eq. (7), for any of the test cases. Recalling the results of
Sect. 6.1, we conclude that the accuracy limitation of our anal-
ysis comes from the solver itself. In this respect, we note that,
when the method used in Eqs. (5) and (6) is viewed as an al-
gorithm for removing the divergence (Projection method), it is
far less efficient than our divergence cleaner described in Ap-
pendix B. On the other hand, the projection method has other
advantages; for instance, it change neither the current in the vol-
ume nor the normal component of the original field at the bound-
aries.

7. Parametric study

In this section we study how the relative energy of the field de-
pends on its divergence in progressively going from a solenoidal
to nonsolenoidal realizations. The purpose is to offer a practi-
cal method of fixing the level of solenoidal errors that can be
tolerated in a given numerical realization, based on their conse-
quences on the energy of the field.

7.1. Parametric models of finite-divergence fields.

For a given test magnetic fieldBtest, the corresponding solenoidal
field Btest,s is considered. A parametric, nonsolenoidal fieldBδ

is obtained by adding a nonsolenoidal componentBdiv to Btest,s,
using a control parameterδ, as

Bδ = Btest,s + δ Bdiv . (14)

We consider here two models ofBdiv, namely

Bdiv =































−ẑ
∫ z2

z
(∇ · Btest)dz′ Model 1,

− 1
3

(

x̂
∫ x2

x
dx′ + ŷ

∫ y2

y
dy′+

+ẑ
∫ z2

z
dz′

)

∇ · Btest Model 2.

(15)
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Adding the first divergence model forδ = 1 is the inverse op-
eration of the cleaner in Section B, sinceBδ(δ = 1) = Btest.
For otherδ values, the resulting fieldBδ only differs from the
solenoidal fieldBtest,s in thez-component. The second model for
the divergence is more general, because it changes all threecom-
ponents ofBtest,s in the volume, although not on all boundaries.

Both divergence models in Eq. (15) are based on the com-
puted∇ · Btest. In this way, we relate the divergence models to
the source of error that is specific to the considered test field.
For instance, we expect that errors in the test caseBDD, which
are only generated by truncation errors, have a different distri-
bution in space than those coming from the approximate nature
of theBTD equilibrium, or from a numerically constructed field
like BEx2PP.

The influence of a finite divergence ofBδ on the energy value
can be written as

E = δ2Ediv + 2δEs,div + Etest,s , (16)

whereE, Ediv, and Etest,s are defined as usual as proportional
to the volume integrals ofB2

δ
, B2

div, andB2
test,s, respectively, and

Es,div ≡
∫

V
(Btest,s · Bdiv) dV/8π.

Below, the energy dependence onδ is studied for the test
fields described in Sect. 4. Since the separation in solenoidal and
nonsolenoidal components is known by construction, we sim-
plify the presentation by analyzing the energies of the total fields
according to Eq. (16), and we do not separate the error sources as
in Sect. 5. For each value ofδ, we considerBδ as the test field to
analyze and compute the corresponding potential field according
to Eq. (3).

7.2. Parametric dependence of the energy

Figure 2 shows the energy for the two divergence models in
Eq. (15), as a function of the control parameterδ in a wide
range of values. Due to the large difference in∇ · Btest between
the six models, the top- and bottom-rows have different scales.
The orange lines show the energy normalized with the energy
of Btest, which is not dependent onδ: They follow the expected
parabolic profile of Eq. (16), only scaled by the normalization
factor. Model 1 (continuous orange lines) yields a smaller varia-
tion of the energy withδ (corresponding to lower values ofEdiv)
with respect to Model 2 (dashed orange lines), and is centered
farther away fromδ = 0 (i.e., Model 1 has higher values of
Es,div/Ediv).

The orange curves in the top row of Figure 2 show that it
takes very high values ofδ in order to have a variation of order
one of the energy in theBDD, BTD, andBMHD cases (e.g., for the
Model 2 applied toBTD atδ = 15). On the other hand, the energy
of the extrapolated fields shows a much steeper increase withδ,
related to the much higher value of∇ · Btest, and particularly so
for Model 2.

The location of the minimum of each of the orange curves is
at δmin = −Emix/Ediv, therefore its location depends on the av-
erage orientation and amplitude of the divergence fieldBdiv with
respect to the solenoidal fieldBs. The orientation and amplitude
of Bdiv also determines the height of the minimum (since the
energy of the test field is fixed). With both divergence models,
there are no general rules;i.e., the energy can increase or de-
crease withδ, and the location of the minimum depends on the
case.

7.3. Comparison with the potential field energy

The physically meaningful quantity is represented by the energy
normalized to the energy of the corresponding potential field,
represented in Figure 2 by black lines. For differentδ values,
the normal component of the fieldBdiv at the boundary changes
according to Eq. (15), hence also the energy of corresponding
potential field depends—quadratically—onδ. Due to the addi-
tional δ-dependence, the shape of the black lines is not always
parabolic in the six cases, and the actual profiles depend on the
details of the spatial distribution of divergence in the test field.

To show that, we first notice that the two divergence models
behave very differently, except forBDD where the range inδ is
too narrow to show significant differences. For instance,E/Ep
of Model 1 (continuous black lines) is an increasing function of
δ in the range (-15, 15) in theBTD case. Model 2, on the other
hand, has a parabolic energy profile with minimum atδ ≈ −4.
For both models, the energy variation is relatively large (1.8 and
above 2 for Models 1 and 2, respectively), whereas the variation
in the same range ofδ is smaller for theBDD andBMHD cases.

The extrapolated cases yield not only much larger variations
(note again the difference in scales between the top and bottom
rows of Figure 2), but also a stronger dependence onδ. In partic-
ular, Model 2 yields a relative energy that sharply increases with
δ, for instance, to one order of magnitude increase forδ going
from the value 0 to 1 in theBEx2PPcase. A saturation at high val-
ues ofδ is clearly visible in the dashed black line (Model 2) of
theBEx1 case, and is hinted at in theBEx2PPcase. Such saturation
is actually present in all three extrapolated cases, yielding values
that are higher than those shown in the corresponding plots.The
saturation happens when the quadratic dependence onδ of the
energy of potential field compensates the quadratic termδ2Ediv.

On the other hand, Model 1 shows a more complex depen-
dence onδ, which is shown in magnified scale by the black lines
in Figure 3. Counterintuitively, the largest variation in the rela-
tive energyE/Ep as a function ofδ is found forBEx2PP, i.e., for
the extrapolation case, which satisfies Thomson’s theorem bet-
ter, see Table 1. The continuous black lines in Figure 3d,f show
the presence of one maximum and one minimum in the consid-
ered range of values ofδ (for the BEx2PP case, these lie outside
the considered range), implying that, at high values, the potential
field energy grows faster than the total energy. The locationof
the extrema is different in the threeBEx1, BEx2PP, andBEx2 cases,
and in none of the cases are the extrema found for the solenoidal
(δ = 0) or the test (δ = 1) configurations. In general, the maxi-
mum and minimum energy configurations depend on the spatial
distribution of the divergence of the test field, throughEs,div.

7.4. Unphysical cases.

The black dash-dotted line atE/Ep = 1 in Figure 3 is the value
below which unphysical fields are obtained. We find that only
Model 1 can produce unphysical solutions, and only for specific
range ofδ values in theBDD, BTD, BEx2 cases. The latter case is
known from the value ofEp/E in Table 1, and is considered to be
an extreme case because of the large divergence that it involves.
However, the possibility of also creating unphysical solutions in
the far more solenoidal fieldBDD andBTD (for values of|δ| > 5)
is unexpected. It confirms that not just the value of the diver-
gence is important, but also its detailed spatial distribution with
respect to the solenoidal component, as evident fromEs,div. It is
the alignment betweenBdiv andBs, and not just the magnitude
of Bdiv, which determines how strongly the energy depends onδ.
Moreover, whileE > Ep is always satisfied forBEx1 andBEx2PP,
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a) BDD b) BTD c) BMHD

d) BEx1 e) BEx2PP f) BEx2

Fig. 2. Magnetic energy, Eq. (16), normalized to the energy of the potential fieldhaving the same distribution of normal field on the boundaries
(black lines) or to the energy of the reference field (orange lines), as afunction of the amplitudeδ of the nonsolenoidal term, Eq. (14). Two models
for the divergence are shown according to Eq. (15). Each panel shows the results of a test field: (a) the potential field of a double dipole,BDD; (b)
the TD model,BTD; (c) the MHD model,BMHD ; (d) the NLFFF model of the nonpreprocessed magnetogram of AR 11158,BEx1; (e) the NLFFF
model of the preprocessed magnetogram of AR 11024,BEx2PP; (f) the NLFFF model of the nonpreprocessed magnetogram of AR 11024,BEx2.
An important change of scale of both axes is present between the top andthe bottom rows.

the minimum value ofE is close toEp (see Figure 3d,e), showing
that unphysical fields may be found relatively easily in NLFFF
extrapolations.

From Table 2 and the related discussion of Sect. 5.3 we
showed that the main source of violation of Thomson’s theo-
rem is the termEp,s/J,ns in Emix. The dependence onδ of this
term, normalized to the energy of the test field, is shown by the
red curves in Figure 3 for both models of divergence (Eq. (15)).
The contribution to the total energy is negligible in theBDD and
BMHD cases, and can be a few percent for largeδ in theBTD case.

In the extrapolated cases, the dependence ofEp,s/J,ns on δ
is linear for Model 1 and parabolic for Model 2. In Model 1,
the steepness of the linear curve increases, going toBEx2PP to
BEx1 andBEx2, as expected (see Table 1 and related text). The
amplitude of the error is two to three orders of magnitude larger
than in theBDD, BTD, andBMHD cases. In theBEx2PP case the
error is smaller, but it is still about a factor 20 larger thanin BTD
for δ = 5.

If we consider the black curves in Figure 3 forδ = 0, we can
identify the energy of the solenoidal field as a natural reference
value for the free energy. Starting from this reference value, for
increasing|δ|, the linear contribution ofEp,s/J,ns, together with
the quadratic change in the potential field energy, creates the
maximum and minimum values ofE/Ep. If the linear contri-
bution is large enough, the minimum lies below the threshold
E/Ep = 1, and there is a range of values where the solution is

unphysical. For even higher values of|δ|, the quadratic depen-
dence of the potential field energy dominatesE. From this point
onward,Ep,s/J,ns is not the main source of error in Eq. (7).

More generally, a parametric study like the one in Figs. 2 and
3 can be used to identify what is the level of divergence (i.e., the
level of Emixor Ep,s/J,ns) that can be tolerated and which is the
threshold above which the solution becomes entirely unphysical
(i.e., with E/Ep < 1).

In conclusion, the parametric study shows that the energy
may be severely influenced by the solenoidal property of the
field. The effect depends not only on the amplitude of the
nonsolenoidal component, but also on the specific average ori-
entation of the nonsolenoidal component with respect to the
solenoidal one (directly affecting Es,div in Eq. (16)). As a re-
sult, a single-number divergence metric, such as〈 | fi| 〉, is insuf-
ficient to deduce what errors should be expected in the energy.
A more proper indication is found by the numerical verification
of Thomson’s theorem (Sect. 5) and by a parametric study as
presented in this section.

8. Source of divergence in NLFFF extrapolations

We now investigate in more detail some of the test fields dis-
cussed in Sect. 5, with emphasis on the reason for the large di-
vergence that leads to violating Thomson’s theorem. The main
source of error comes, in almost all the cases, from the mixed
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a) BDD b) BTD c) BMHD

d) BEx1 e) BEx2PP f) BEx2

Fig. 3. Magnetic energy, Eq. (16), normalized to the energy of the corresponding potential field (black lines, zoom of Figure 2), and energy
associated to the nonsolenoidal part ofBJ , normalized to the energy ofBtest (red lines, equal toEJ,ns/E in the notation of Eq. (8)), as a function
of the amplitudeδ of the nonsolenoidal term, Eq. (14). Two models for the divergence are shown according to Eq. (15). Each panel shows the
results of a test field: (a) the potential field of a double dipole,BDD; (b) the TD model,BTD; (c) the MHD model,BMHD ; (d) the NLFFF model
of the nonpreprocessed magnetogram of AR 11158,BEx1; (e) the NLFFF model of the preprocessed magnetogram of AR 11024, BEx2PP; (f) the
NLFFF model of the nonpreprocessed magnetogram of AR 11024,BEx2. The black dash-dotted line atE/Ep = 1 marks the value below which the
solution is unphysical. A large change of scale of both axes is present between the top and the bottom rows.

term Emix, and is associated with the nonsolenoidal component
of the current-carrying part of the field. Also, there are markedly
larger errors in the extrapolated test fields,BEx1, BEx2PP, BEx2,
than inBDD, BTD, andBMHD . Finally, the preprocessing of the
vector magnetogram before extrapolation yields more solenoidal
fields, whereas a simple averaging does not seem to be enough
for removing errors, and yields a more severe violation of Thom-
son’s theorem (Eq. (2)).

8.1. Analysis of small scales

One main difference among theBtest cases in the upper half
of Table 1 is the length scale of the magnetic field: While the
first three cases are smooth fields with a magnetic field variation
spanning several times the spatial resolution, the extrapolated
cases have large variations on the pixel scale, especially at the
bottom boundary,i.e., on the vector magnetogram that is used as
a boundary condition for extrapolations. This is true to a differ-
ent degree for the three cases: ForBEx1 the vector magnetogram
was interpolated (with a flux-conserving average) at a resolution
of about one third that ofBEx2 andBEx2PP. Such an interpolation
smooths part of the small scale away, yielding results that are
closer to theBEx2PP case rather than to theBEx2 one. BEx2PP is
not interpolated, but it is preprocessed, an operation thatincludes
an explicit smoothing of smaller scales, especially on the trans-

verse components. Finally,BEx2 has neither interpolation nor
preprocessing, and it retains all the small scales that are present
at the full resolution of theHinode/SOT vector magnetograms.

As an example, Fig. 4 shows the power spectrum of thex-
and z-components of the fieldsBTD, BEx2PP, andBEx2, at two
different heights as a function of the normalized wave number
kx. The lefthand panel of the figure shows that, at the bottom
boundary,BTD has power spectra that decrease rapidly withkx,
in both components. In contrast, the power spectra ofBEx2PP
andBEx2 have higher values on all scales, which are particularly
strong in the vertical component.

Ten pixels above the bottom boundary (right panel in Fig. 4),
the BTD power spectrum is essentially the same as atz = 0 be-
cause both planes cut through the flux rope, so a similar magnetic
structure is present. In contrast,BEx2PP on the upper plane has
a much more peaked spectrum, except for the distribution tail
on the smallest scales which is basically as strong as at the bot-
tom boundary. Such a component on the shortest scales comes
from the force-free condition that is enforced by the extrapola-
tion code, which propagates into the volume the small scalesthat
are present at the bottom boundary.

We now consider the difference between preprocessed case
BEx2PP and the non-preprocessed oneBEx2. The difference in
〈 | fi| 〉 between the two is about a factor 2, and it is large in the
other energy metrics in Table 1. The comparison between the
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Fig. 4. Power spectra of the two-dimensional
fields Bx (continuous line) andBz (dashed
line), summed over all wave numbersky, for
the three casesBTD (orange),BEx2PP(red), and
BEx2 (black). Left: at the bottom boundary.
Right: at the tenth pixel in height. Spectra are
normalized to their maximum value, and the
spatial resolution is taken to be 1 in both direc-
tions (i.e., the wave numberkx has the dimen-
sion of pixel−1 and is normalized to the total
number of modes).

normalized spectra ofBEx2PPandBEx2 in Fig. 4 shows that there
are comparable (relative) energies on small scales in both cases.
Actually, by locally changing the magnetic field at the bottom
boundary to enforce force-free compatibility, preprocessing in-
creases the small scales. The smoothing term that is present
in preprocessing only has a limiting effect on such an increase.
Therefore, the two casesBEx2PPandBEx2 do not differ strongly
as far as the presence of small scales is concerned, while Thom-
son’s theorem is much better satisfied forBEx2PP than forBEx2
(see Sect. 5.1).

The cleaned test fieldsBtest,s are numerically solenoidal, and
there is no violation of Thomson’s theorem. However, in these
cases, too, small scales are increased (not shown), since the di-
vergence cleaner introduces extra electric currents that are re-
lated to derivatives of the divergence of the original field,see
Eq. (B.5). This is an additional confirmation that the presence of
small scales as such is notdirectly at the origin of the violation
of Thomson’s theorem.

8.2. Role of small scales and preprocessing

Valori et al. (2010) show that the NLFFF extrapolation of the
BTD vector magnetogram yields a very accurate reconstruction
of the whole test field, which is also solenoidal to a very high
degree. On the other hand, there is a large difference in the scale
distribution between smooth fields like theBTD and the extrapo-
lated fields.

The presence of small scales inside the volume, which are
induced by the small scales at the boundary, may not be cor-
rectly approximated by the discretization employed in extrapo-
lation code, yielding local violation of the solenoidal constrain.
However, when the extrapolation from a preprocessed magne-
togram is considered, the extent of the violation of Thomson’s
theorem is greatly reduced, even though small scales are actu-
ally increased. By partially enforcing force-free compatibility
on the bottom boundary, the preprocessing provides the extrap-
olation code with a boundary condition that is more compatible
with the force-free equations. Since extrapolation codes attempt
to construct a solution of the force-free equations that is simul-
taneously force- and divergence-free, the more compatiblethe
boundary, the more consistent (i.e., force- and divergence-free)
the obtained solution. Conversely, when the boundary condition
is incompatible with the force-free equation, the reduction of the
Lorentz forces is at the expense of the solenoidal condition. In
such cases, the divergence of the solution is higher, and Thom-
son’s theorem is more severely violated. We thus conclude that
the incompatibility of the boundary condition with the force-free

condition is at the origin of the difference in the errorsEJ,ns and
Emix betweenBEx2PPandBEx2.

We notice that preprocessing is a parametric method that can
produce progressively more force-free-compatible vectormag-
netograms for higher values of the employed parameters, at the
price of larger modifications of observed values. The energy
values and their relative errors therefore vary continuously as a
function of the preprocessing parameters, quite independently
of the particular extrapolation method that is employed (see,
e.g., Schrijver et al. 2008; Metcalf et al. 2008). No unequivocal
method is available in order for determining the best parame-
ters to use (see,e.g., Wiegelmann et al. 2006; Fuhrmann et al.
2011; Wiegelmann et al. 2012), which leaves energy estimations
subjected to uncomfortable arbitrariness.

9. Conclusions

Thomson’s theorem states that the energy of a magnetic field
is given by the sum of the energy of the current-carrying part
of the field plus the energy of the potential field that has the
same distribution of the normal component on the boundary of
the considered volume. The field must be perfectly solenoidal
for the theorem to be valid. Such a condition is often only ap-
proximately satisfied in numerical simulations, such as in MHD
simulations and NLFFF extrapolations. However, it is a non-
trivial task to identify a quantitative estimation of solenoidal er-
rors that can be applied to different discretizations of magnetic
fields, essentially due to the non-local consequences that such
errors produce. Our goal has been to develop physically mean-
ingful metrics and practical methods that can be used to judge
whether the solenoidal property is fulfilled with sufficient accu-
racy.

To this aim, we introduced a decomposition of the energy
of a discretized field into solenoidal and nonsolenoidal contribu-
tions that allowed an unambiguous and numerically well-defined
estimation of the effect of the divergence in terms of associated
energies. Moreover, we introduced a method of parametriz-
ing the divergence that allows for an exploration of the non-
solenoidal effects.

In this way, the numerical verification of Thomson’s theorem
offers an operational and quantitative way of checking the reli-
ability of energy estimations in numerical computations. Since
the violation of Thomson’s theorem is solely determined by the
presence of magnetic charges, it is at the same time a quantitative
estimation of the importance of solenoidal errors.

We applied our method to six different test cases, covering
a representative sample of numerical realizations. Of the six
test cases considered here, two of them (the dipolar fieldBDD
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and a snapshot of an MHD simulation of null-point reconnec-
tion BMHD) presented negligible violations, and one (a force-free
current ringBTD) offered only a moderate one that, however, has
finite effects on the energy. In the case of an NLFFF extrapola-
tion of a preprocessed vector magnetogram (BEx2PP), the sum of
the potential energyEp and free energyEJ,s is very close to the
total energyE, and one could draw the conclusion that almost no
violation of Thomson’s theorem occurs. However, by separating
all contributions in Eq. (7), our analysis showed compensating
energy contributions (EJ,ns andEmix) that are close toEJ,s. If the
most conservative view is adopted by considering errors in ab-
solute values, then the opposite conclusion must be drawn: The
violation is large enough to compromise the estimation of the
free energy, since bothEJ,ns andEmix are on the order of the free
energy valueEJ,s. The last two cases we studied, also NLFFF
extrapolations but of nonpreprocessed magnetograms (BEx1 and
BEx2), represent cases with very large errors.

The energy of the potential fieldEp,s is the reference value
for the free energy. In our applications, the inaccuracy in its de-
termination,Ep,ns, is practically never significant. The current-
carrying part of the field is responsible for the largest errors in-
stead.

The parametric study shows that the amplitude of the non-
solenoidal component is not the only factor that generates er-
rors in the energy. The average orientation of the nonsolenoidal
component with respect to the solenoidal one (affecting directly
Es,div in Eq. (16)) plays an even more important role. Indeed,
even using a relatively solenoidal discretized magnetic field (like
BTD), it is possible to create configurations where the energy of
the field is lower than that of the corresponding potential field.
Such unphysical solutions have also been found in some cases
of NLFFF extrapolations.

More generally, in NLFFF extrapolations the energy of the
reconstructed field was found to vary according to the extent
of the modification that was enforced on the vector magne-
togram that is used as boundary condition (by preprocessing, i.e.,
by smoothing and/or by enforcing force-freeness compatibility).
Our study shows quantitatively the effect of such practices on
the energy, and makes it clear that the origin of the variability
(and errors) in energy estimations based on NLFFF extrapola-
tions is the presence of a large divergence, which is eventually
caused by the lack of compatibility between the equations solved
(solenoidal force-free field) and the photospheric boundary con-
ditions, rather than by noise or the small scales present in the
vector magnetogram.

Finally, the parametric study is based on a numerically
solenoidal field that is obtained from a given, nonsolenoidal
one. We introduced a method for the complete removal of the
nonsolenoidal component of a discretized field. At the priceof
changing boundary values and the current density, this method
provides a field that is solenoidal to numerical precision. When
the solenoidal versions of the test fields are considered, the
Thomson theorem is found to be fulfilled with more than 99%
accuracy.

We concluded that testing Thomson’s theorem in numerical
realizations of magnetic fields is a powerful method quantify-
ing the amount of nonsolenoidal contributions to a numerical
magnetic field. In particular, it allows assessing the reliability
of free magnetic energy estimations, a crucial quantity in phe-
nomena such as flares and coronal mass ejections. To this pur-
pose, we proposed a set of analytical and numerical tools that al-
lowed us to fully test the reliability of numerical magneticfields.
Such a set includes a method for removing the divergence from
a given discretized field, to numerical precision. The effect of

larger and larger divergence contributions is studied by paramet-
rically adding a known divergence to the numerically solenoidal
field. In this way, it is possible to monitor the effect of the non-
solenoidal part of the magnetic field and to quantify its effect in
terms of magnetic energy. Our method can be applied to any
discretization of magnetic fields,e.g., in MHD simulations and
in NLFFF extrapolations, to constrain quantitatively errors due
to violation of the solenoidal property.
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Appendix A: Details of the numerical
implementation

In the applications presented in this paper we have considered
uniform Cartesian grids of resolution∆ in all directions, dis-
cretizing a rectangular volumeV (see Sect. 4 for the actual val-
ues of∆ andV in each case). We compute derivatives using the
standard second-order, central-difference operator, and we em-
ploy the relevant one-sided (i.e., forward or backward), second-
order differences at the boundaries ofV. The only exception is
the computation of the divergence ofBtest, since all test fields are
known in a volume that is larger than the selectedV (on lateral
and top boundaries). In this case,∇ · Btest is computed using
the central differences also at the location of the lateral and top
boundaries ofV.

In the computation of volume integrals, the cell volume∆3

is assigned to each internal node of the grid, whereas the cell
volume is reduce to half, one fourth, and one eighth for nodes
on the lateral surfaces, edges, and corners ofV, respectively.
Similarly, in the computation of surface integrals, the cell sur-
face∆2 is assigned to each node inside each side ofV, whereas
the cell surface is reduced to half and one fourth on edges and
corners of each side, respectively. Despite the accurate computa-
tion of integrals, the divergence theorem, Eq. (4), is not insured
to hold numerically, a property that requires special techniques,
like finite-volume discretizations, to be fulfilled.

Appendix B: Divergence cleaner

To construct a numerically solenoidal field [Bs] from a field [B]
let us define

Bs = ∇ × A , (B.1)

whereA is the vector potential computed fromB in the volume
V = [x1, x2] × [y1, y2] × [z1, z2]. The vector potentialA can
be derived as in Valori et al. (2012) using the gaugeẑ · A = 0,
yielding the expression

A = b + ẑ×
∫ z2

z
B dz′ , (B.2)

whereb ≡ (Ax(x, y, z = z2), Ay(x, y, z = z2),0) is any solution of

0 = ∂xby − ∂ybx − Bns,z(x, y, z = z2) . (B.3)

A direct substitution of Eq. (B.2) into Eq. (B.1) shows that

Bs ≡ ∇ × A = B + ẑ
∫ z2

z
(∇ · B) dz′ , (B.4)

with the property that∇ · Bs = 0. In other words, Eq. (B.4) nat-
urally separatesB into a solenoidal partBs and a nonsolenoidal
one, thus defining a divergence cleaner forB. Thez-component
of B is changed throughout the volume except on the top bound-
ary, whereas thex− andy-components are unchanged. The am-
plitude of the modification toB at a given heightz is given by
the cumulative effect of “magnetic charges” above that altitude.

Since only thez-component of the field is changed, the diver-
gence cleaner changes thex- andy-components of the current,
but not thez-component,

Js = J + (∂y,−∂x,0)
∫ z2

z
(∇ · B) dz′ , (B.5)

therefore the cleaner changes the injected magnetic flux butnot
the injected electric current through the bottom layer. On the

other hand, since most of the test fields considered in this article
have the highest values of divergence close to the bottom bound-
ary, only the lower part of the field is changed significantly by
the cleaner.

ComputationBs requires numerical computation of an inte-
gral of the typeG(z) =

∫ z2

z
f (t) dt, as in Eq. (B.4) forf = ∇ · B.

To achieve numerical accuracy in the solenoidal property ofBs,
G(z) must satisfy∂zG(z) = − f (z) numerically, i.e., must sat-
isfy the numerical formulation of the fundamental theorem of
integral calculus in the employed discretization. For the second-
order central differences that are used in the analysis, this can be
obtained by the recurrence formulae

G(nz − 1) ≡ 0 ,

G(k) = G(k + 2)+ 2∆ f (k + 1) , 0 ≤ k ≤ nz − 3, (B.6)

whereG(z) = G(z1 + k∆) ≡ G(k) with k = 0,1,2, · · · , (nz − 1),
and∆ is the uniform spatial resolution inz.

The constraint∂zG(z) = − f (z) in the second-order, central-
difference discretization does not fix the value ofG(nz − 2). To
do that, we require that the divergence of Eq. (B.4) also vanishes
at the bottom boundary,i.e., (∇ · Bs)|z=z1 = 0. Here the second-
order divergence operator is computed by using a second-order,
forward derivative in thez-direction, i.e., defining the operator
∇os ≡ ∇x,y + ẑ∂os

z , where∇x,y ≡ x̂∂x + ŷ∂y and (∂os
z f )(0) =

(−3 f (0) + 4 f (1) − f (2))/2∆. By using the recurrence formula
Eq. (B.6), the condition on the bottom boundary is transformed
into the condition forG(nz − 2), yielding

G(nz − 2) = ∆
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where fos = ∇os · B. Such a numerical trick is only possible if
the volume is discretized by an even number of points in thez-
direction, therefore the analysis volumes employed in the article
were chosen to satisfy such a requirement.

Appendix C: Measures of ∇ · B

The total divergence of a fieldB can be conveniently expressed
by a single number using the average〈 | fi| 〉 over the grid nodes
of the fractional flux

fi ≡

∫

v
dv (∇ · B)i
∫

∂v
dS |Bi|

, (C.1)

through the surface∂v of a small volumev including the nodei
(Wheatland et al. 2000). Taking a cubic voxel of side equal to∆
as the small volumev centered on each node, the divergence in
the discretized volumeV of uniform and homogeneous resolu-
tion ∆ is then given by

〈 | fi| 〉 =
∆

6N

∑

i

|∇ · Bi|

|Bi|
, (C.2)

wherei runs over allN nodes inV. This metric depends on the
considered volume, so that values are strictly comparable only if
computed on equal volumes.
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