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Abstract Magnetic clouds (MCs) are a subset of interplanetary coronal mass ejections
(ICMEs) which exhibit signatures consistent with a magnetic flux rope structure. Techniques
for reconstructing flux rope orientation from single-point in situ observations typically as-
sume the flux rope is locally cylindrical, e.g., minimum variance analysis (MVA) and force-
free flux rope (FFFR) fitting. In this study, we outline a non-cylindrical magnetic flux rope
model, in which the flux rope radius and axial curvature can both vary along the length of
the axis. This model is not necessarily intended to represent the global structure of MCs,
but it can be used to quantify the error in MC reconstruction resulting from the cylindrical
approximation. When the local flux rope axis is approximately perpendicular to the helio-
centric radial direction, which is also the effective spacecraft trajectory through a magnetic
cloud, the error in using cylindrical reconstruction methods is relatively small (≈10◦). How-
ever, as the local axis orientation becomes increasingly aligned with the radial direction, the
spacecraft trajectory may pass close to the axis at two separate locations. This results in

M.J. Owens (�)
Space Environment Physics Group, Department of Meteorology, University of Reading, Earley Gate,
PO Box 243, Reading RG6 6BB, UK
e-mail: m.j.owens@reading.ac.uk

M.J. Owens
Space and Atmospheric Physics, Imperial College London, Prince Consort Road, London SW7 2AZ,
UK

P. Démoulin
Observatoire de Paris, Section de Meudon, 92195 Meudon Cedex, France

N.P. Savani
Solar-Terrestrial Environment Laboratory, Nagoya University, Nagoya, Japan

B. Lavraud · A. Ruffenach
Institut de Recherche en Astrophysique et Planétologie (IRAP), Université de Toulouse (UPS),
Toulouse, France

B. Lavraud · A. Ruffenach
Centre National de la Recherche Scientifique, UMR 5277, Toulouse, France

mailto:m.j.owens@reading.ac.uk


M.J. Owens et al.

a magnetic field time series which deviates significantly from encounters with a force-free
flux rope, and consequently the error in the axis orientation derived from cylindrical re-
constructions can be as much as 90◦. Such two-axis encounters can result in an apparent
‘double flux rope’ signature in the magnetic field time series, sometimes observed in space-
craft data. Analysing each axis encounter independently produces reasonably accurate axis
orientations with MVA, but larger errors with FFFR fitting.

Keywords Magnetic cloud · Magnetic flux rope · Coronal mass ejection · Solar wind

1. Introduction

The interplanetary manifestations of coronal mass ejections, ICMEs (see e.g., Wimmer-
Schweingruber et al., 2006 and references therein), drive the largest disturbances to the
geomagnetic magnetic field (e.g., Gosling, 1993; Cane and Richardson, 2003). The geo-
effectiveness of an ICME is primarily determined by the relative orientation of the ICME
(e.g., Lavraud and Borovsky, 2008) and the terrestrial magnetic fields (Dungey, 1961). This
is the product of an ICME’s intrinsic properties and its orientation and position relative to
the terrestrial system. Aside from space weather concerns, ICME orientation is also a key
parameter for a wide range of solar and heliospheric studies, such as associating ICMEs
with their solar source regions (Wang et al., 2006), the magnetic helicity carried by CMEs
over the solar cycle (Lynch et al., 2005), and their role in open flux transport at the Sun
(Owens et al., 2007; Lavraud, Owens, and Rouillard, 2011).

Magnetic clouds (MCs) are a subset of ICMEs predominantly characterised by a large-
scale, smooth rotation in the magnetic field direction (Burlaga et al., 1981; Klein and
Burlaga, 1982). This signature has been interpreted and modelled as a magnetic flux rope
(Burlaga, 1988; Lepping, Jones, and Burlaga, 1990), enabling reconstruction of the large-
scale properties from single-point in situ observations, which essentially constitute a single
radial cut through an ICME as it passes over a stationary spacecraft. By far the most com-
monly used form of flux rope model is the force-free flux rope (FFFR), which assumes that
the current density is proportional to the magnetic field with a uniform constant and that
locally the flux rope has the geometry of a cylinder with a circular cross section (Burlaga,
1988). Assuming a flux rope topology, minimum variance analysis (MVA; Sonnerup and
Cahill, 1967) is able to quickly determine the axis orientation. This approach has proved im-
mensely useful in interpreting MC observations, particularly the local axis orientation (e.g.,
Bothmer and Schwenn, 1998). However, the circular cross section approximation is un-
likely to be valid (Russell and Mulligan, 2002; Riley et al., 2004; Owens and Cargill, 2004;
Savani et al., 2010). While this may not significantly affect estimates of axis orientation,
particularly when the spacecraft encounters the axis (Owens, 2008), it has led researchers to
incorporate cross-sectional elongation in the non-radial direction into the analytical models
(e.g., Hu and Sonnerup, 2001; Mulligan and Russell, 2001; Hidalgo et al., 2002; Vandas
and Romashets, 2003; Owens, Merkin, and Riley, 2006). Even in these more sophisticated
models, the flux rope is usually still cylindrical (i.e., the field is invariant with translation
along the axis).

Evidence for non-cylindrical flux ropes in MCs stems from a number of sources. Coron-
agraph images of CMEs typically show both a curved leading edge and a curved dark cavity
(Hundhausen, 1993), which has been interpreted as viewing curved flux rope axes lying in
the plane of the sky (Cremades and Bothmer, 2004). In interplanetary space, MVA and FFFR
reconstructions find MC flux ropes with a variety of orientations to the heliocentric radial
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direction. When multiple, well-separated spacecraft observations of the same flux rope are
available, the global structure is generally inferred to be a flux rope with a curved axial mag-
netic field (Burlaga et al., 1981). Finally, counterstreaming suprathermal electrons (CSEs)
are often associated with MCs and interpreted as evidence of ‘closed’ field lines which have
both ends rooted at the photosphere (Gosling et al., 1987). Thus ICME fields must form
loops in the heliosphere, although the flux rope structure may not be present over the whole
length of these loops (Yamamoto, Kataoka, and Inoue, 2010).

Efforts have been made to move away from the cylindrical approximation, most notably
by assuming toroidal or spheromak geometry, wherein the axial field forms a closed ring in
interplanetary space (see e.g., Vandas, Fischer, and Geranios, 1991; Farrugia, Osherovich,
and Burlaga, 1995; Marubashi and Lepping, 2007; Romashets and Vandas, 2009). Space-
craft trajectories through such structures frequently result in two encounters with the axial
field (Vandas et al., 1998), which may explain the ICMEs with a ‘double flux rope’ signature
that are sometimes observed (Rees and Forsyth, 2004). Even though such models cannot be
correct in a global sense, as the magnetic field within such a structure maintains no connec-
tion to the Sun, contrary to suprathermal electron observations (Gosling et al., 1987), they
are extremely useful for estimating the effect of local axial curvature.

We take a similar approach in this study and attempt to further quantify the error in
the estimation of magnetic flux rope orientation which results from assuming cylindrical
symmetry. This is achieved by generating synthetic spacecraft encounters with a curved flux
rope (CFR) model, in which the axial curvature and cross-sectional extent can vary along the
axis, as described in Section 2. Much like spheromak and toroidal models, we acknowledge
that our model may not be a realistic representation of the global structure of MCs, but can
provide a reasonable representation of local flux rope structure, necessary for our testing
purposes. In Section 3, the time series generated with the CFR model is fit with cylindrical
techniques, and the error in the axis orientation is calculated.

2. Curved Flux Rope (CFR) Model

In this section we outline an analytical flux rope model with a curved axial magnetic field.
Currently, there is great uncertainty in the cross-sectional shape and non-radial extent of flux
ropes in MCs (see e.g., Russell and Mulligan, 2002; Hidalgo et al., 2002; Hu and Sonnerup,
2001; Riley and Crooker, 2004), but spacecraft trajectories which pass close to the flux rope
axis are largely unaffected by such different cross-sectional topologies (Riley et al., 2004;
Owens, 2008). For this reason, we assume a circular flux rope cross section, but limit all
spacecraft trajectories to the plane containing the axial field. A suitably curved flux rope
geometry can therefore be achieved by ‘bending’ an FFFR model. For simplicity, in this
paper, we choose to bend the axial field in a similar manner to a Parker spiral magnetic field.
This allows the radius of curvature of the axis and the cross-sectional extent of the flux rope
to vary along the length of the axis. This geometry was recently used to estimate the length
of field lines within MCs (Owens, Crooker, and Horbury, 2009), but here it is developed into
a magnetic flux rope model. By taking various different spacecraft trajectories through the
curved flux rope, we can approximate spacecraft encounters with flux ropes with a range of
axis orientations.

Working in cylindrical polar coordinates (̂R,̂θ,̂Z) in a fixed heliocentric frame with ̂Z
pointing along the solar rotation axis, and assuming that the bulk motion of the MC is radial
at a solar wind speed VSW, a section of the axis which left the Sun at time t previously will
therefore be at position PA(t):

PA(t) = VSWt̂R + �Rt̂θ, (1)
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Figure 1 The curved magnetic
flux rope model used in this
study. While we do not expect
magnetic clouds (MCs) to have
this global configuration,
particularly to have axes aligned
with the Parker spiral, it is a
useful construct to investigate
local morphology. The top panel
shows the three-dimensional
structure, with black, green, blue
and red showing magnetic field
lines at a normalised distance
from the axis of r = 0, 0.3, 0.6
and 0.9, respectively. The bottom
panel shows the projection onto
the solar rotation (i.e., R−θ )
plane. The black dashed lines
indicate the front and rear
boundaries of the flux rope, as
defined by r = 1.

where R is the heliocentric distance, and � is the angular rotation speed of the Sun. This is
shown as the solid black line in Figure 1. Note that we have selected a + sign in front of � in
Equation (1), the opposite sign of the Parker spiral, because we describe here the axis shape
of a flux rope, not the interplanetary magnetic field. The + sign in front of � describes the
eastern leg of a flux rope coming to Earth, while the − sign would describe the western leg.

The axial field direction, along A, is parallel to dPA(t)/dt = VSŴR + R�̂θ , thus

̂A = (VSŴR + R�̂θ)
√

V 2
SW + (R�)2

. (2)

The vector N(t) is taken to be perpendicular to A(t) in the +̂R direction. It is assumed
that the flux rope is expanding isotropically at a constant speed VEX in the directions orthog-
onal to its axis (i.e., in the ̂N-direction). Thus the front and rear positions of the flux rope in
the R−θ plane will be described by PF and PR, respectively, assuming negligible extension
at the Sun (t = 0):

PF(t) = PA(t) + tVEX̂N,

PR(t) = PA(t) − tVEX̂N. (3)

These are shown as dashed black lines in Figure 1. A general position within the flux rope
in the R−θ plane, P, can thus be described by the parameter t , which effectively describes
the distance along the axis, and a parameter r , which is the normalised distance from the
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Figure 2 A sketch of the flux
rope model used in this study. In
curvilinear coordinates, the axial
field is a straight line. Expansion
has been ignored, assuming ds to
be small. β is defined as the
angle the magnetic field makes
with the R−θ plane, equal to the
s−ρ plane.

axis (r = 0) to the flux rope edge (r = 1). More precisely, we set the curvilinear abscissa
s = V t along the flux rope axis (where V could be taken equal to VSW, while we emphasise
again that we are not describing the solar wind field). We also set the cross-sectional radius
ρ = rtVEX of a point at a relative distance r from the axis.

The isotropic expansion of the flux rope cross section with s and the conservation of the
axial flux imply that the axial magnetic field decreases with s as

BA(s) = B0(s = 1)

s2
. (4)

The cross-sectional expansion also implies a component of the magnetic field, Bρ , is
orthogonal to the local axis direction. Since ρ increases linearly with s,

Bρ(s) = BA(s)ρ/s. (5)

Next, the field profile in the cross section is set in a self-similar form:

BA(ρ, s) = f (ρ/s)/s2, (6)

Bρ(ρ, s) = f (ρ/s)ρ/s3, (7)

where f is any smooth function of ρ/s. In the local cylindrical coordinate system (ρ,γ, s),
so neglecting the curvature of the axis, Equations (6) and (7) describe a generic magnetic
field, invariant in γ , and satisfying ∇ · B = 0. Assuming that the axial magnetic field varies
with ρ in the same manner as a linear FFFR, f (ρ/s) = B0(s = 1)V 2J0(αr), where J0 is the
Bessel function of the zeroth order. As αr = 2.408 corresponds to a vanishing axial field,
this is typically taken as the outer edge of the flux rope when modelling MCs. Thus r = 1
corresponds to the outer boundary of the flux rope, and α is fixed at 2.408. In this case,
Equations (6) and (7) can be rewritten as

BA(r, t) = B0(t = 1)J0(αr)/t2, (8)

Bρ(r, t) = B0(t = 1)J0(αr)rVEX/
(

V t2
)

. (9)

The flux rope nature of the field means that the magnetic field at P(ρ, s) makes an angle
β out of the R−θ plane, as shown in Figure 2. This poloidal component of the flux rope
magnetic field can be expressed as

Bγ (r, t) = HB0(t = 1)J1(αr)/t2, (10)

where H is the handedness of the flux rope magnetic field about the axis (either +1 or −1)
and J1 is the Bessel function of the first order. As Bγ is independent of γ , ∇ · B = 0 is still
satisfied if the bending of the axis is ignored.
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Combining Equations (8), (7) and (10) yields the following magnetic field vector in the
R−θ plane:

B(r, t) = B0(t = 1)

t2

[

J0(αr)̂A + HJ1(αr)̂Z + rVEX

V
J0(αr)̂N

]

. (11)

Thus locally (and instantaneously), B corresponds to a linear force-free field with a mod-
erate divergence of the cross section. However, the direction of the axis, ̂A, and the flux rope
radius are both functions of t , which controls the distance along the axis (s = V t ), resulting
in the non-force-free magnetic field configuration shown in Figure 2. Bending an FFFR axis
would result in a stronger field strength on the concave side compared to the convex side.
The expansion of the cross section would result in the creation of a magnetic torque, which
will tend to redistribute the twist along the flux rope. Both effects are not taken into account
in the simple analytical expression of Equation (11). However, as the curvature radius of
the axis, Rc, and the expansion scale length of the cross section, V t , are both assumed to
be large compared to the flux rope radius, VEXt , the non-force-free terms are expected to be
small (of the order of VEXt/Rc and VEX/V , respectively). Thus the non-force-free aspect of
Equation (11) is only expected to introduce a small deviation of B compared to the corre-
sponding force-free field. Indeed, for this study we only need an approximate magnetic field
for a local section of the flux rope, and not a global coherent model of it.

The top panel of Figure 1 shows magnetic field lines corresponding to r = 0, 0.3, 0.6 and
0.9 as black, green, blue and red lines, respectively. The bottom panel shows the projection
onto the R−θ plane, which may be considered equivalent to the ecliptic plane in this study.
As will be demonstrated in Section 3.1, a ‘cut’ through the curved flux rope, approximating
a spacecraft trajectory through the flux rope, will generally not be a line of constant t . Thus
the variation in the ̂A direction will result in a non-zero ̂N component in any stationary
coordinate system.

3. Results

3.1. Model Time Series

Synthetic time series approximating spacecraft encounters with a curved flux rope are gener-
ated by taking radial cuts through the model magnetic field structure. Although this method
ignores the effect of time evolution of the flux rope (most notably expansion) as it passes
over the stationary spacecraft, in most circumstances such effects tend to be small (Owens,
Merkin, and Riley, 2006).

The top panels of Figure 3 show two flux ropes, a force-free structure with a straight
axis (black) and a curved flux rope (red). The diagrams are drawn in the R−θ plane. All
spacecraft encounters are considered in the plane which contains the axial magnetic field,
which can be considered the X−Y (GSE) plane. Note that the spacecraft encountering the
flux rope axis in this way is a special case. However, the errors introduced by the spacecraft
passing some distance from the axis (i.e., a non-zero impact factor) have been considered
elsewhere (e.g., Gulisano et al., 2007). Here, we consider solely the effect of axial curvature
and cross-sectional expansion on MC reconstruction techniques.

Flux rope axes are shown as the solid lines in Figure 3, while the boundaries of the flux
ropes are shown as dashed lines. Both flux ropes have an axial field magnitude at 1 AU of
20 nT and a negative magnetic helicity. The large black arrows show spacecraft trajecto-
ries through the flux ropes. Both straight and curved flux ropes have the same duration and
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Figure 3 Top panels: Axes (solid lines) and boundaries (dashed lines) of straight-axis force-free (black) and
curved (red) flux ropes in the X−Y (GSE) plane. The large black arrows represent spacecraft trajectories
through the structures, which have the same local axis orientation at the point of spacecraft intercept. Middle
panels: Magnetic field vectors in GSE coordinates as simulated along the spacecraft trajectory in function of a
normalised coordinate (0: entrance, 1: exit). Bottom panels: Magnetic field vectors in the flux rope coordinate
system.

local axis orientation, namely [−0.537,−0.844,0] in geocentric solar ecliptic (GSE) coor-
dinates. A ‘time series’ corresponding to this trajectory can be obtained by taking a radial
cut, in this particular case along a line of constant θ . The middle and bottom panels show
the magnetic field vectors in GSE and local flux rope coordinates, respectively. For this en-
counter, the straight and curved flux rope time series are very similar. The BN component
shows the most systematic deviation, with a bipolar signature in the curved flux rope time
series, but this is small in magnitude compared with the BA and BZ components and for real
spacecraft data would probably be lost in the noise.

In order to quantify the ability of cylindrical techniques to reconstruct the properties of a
curved flux rope, we compute ε, the angular error between the true and reconstructed local
flux rope axis orientations. Applying minimum variance analysis (MVA) to the CFR B time
series results in an axis orientation of [−0.544,−0.838,−0.028] in GSE coordinates and
hence an angular error of εMVA = 1.7◦. Fitting a force-free flux rope (FFFR) model to the
CFR B time series gives an axis of [−0.539,−0.842,0.004] and εFFFR = 0.3◦. Thus, in
this instance, the effect of axial curvature and cross-sectional expansion on the ability of
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Figure 4 Effect of φ, the angle between the spacecraft trajectory and axis, on MC reconstruction. The
black arrows in panels a – d show four different spacecraft trajectories through the curved flux rope. Next to
each trajectory is the curved (red) and force-free (black dashed) flux rope time series (in the local flux rope
coordinate system defined by the model with A along the flux rope axis and N normal to it). Panel e shows
the error in the axis estimation from MVA (black) and FFFR fitting (blue) with φ.

cylindrical techniques to reconstruct the local axis orientation is very small (but could be
significant depending on the application, as shown below).

3.2. Local Axis Orientation

In this section, the variation of ε with φ, the angle between the local flux rope axis angle
and the spacecraft trajectory (i.e., the radial direction), is investigated.

Panel c of Figure 4 shows a flux rope encounter which results in a local axis orientation,
the red solid line, perpendicular to the radial direction, the black solid arrow. This results
in the red magnetic field time series shown in the right-hand panels. BN,BA and BZ are the
magnetic field components in the local flux rope coordinates. The black dashed lines show
the equivalent straight-axis flux rope time series, which are very similar to the CFR time
series. In a similar result to the example shown in the previous section, this results in a ≈6◦
(≈5◦) error in the local axis orientation reconstructed using minimum variance analysis
(FFFR fitting).
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Panel e shows how ε, the error in the reconstructed axis orientation varies, with φ, the
angle of the spacecraft trajectory to the axis. For the range ≈35◦ � φ � 140◦, this error is
typically ≈5−20◦ for both MVA and FFFR modelling, although FFFR systematically gives
a slightly more accurate reconstruction. However, outside of this range, ε increases rapidly.
Panels a, b and d clearly show the reason; the curvature of the axis allows the spacecraft
to encounter the axis twice before exiting the flux rope structure. In these circumstances,
FFFR fitting performs much better than MVA, although the error in the axis orientation
can still reach ≈75◦. We note that encounters b and d produce magnetic field time series
which could potentially be interpreted as spacecraft trajectories through two flux ropes of
the same helicity but different orientations. This has been noted and modelled in spacecraft
observations (Rees and Forsyth, 2004). Consequently, an observer might choose to analyse
only part of a time series. The implications of this are investigated in the next section. Also of
interest is encounter (a), in which the spacecraft is approximately along the axis direction.
In this instance, the axis orientation determined by FFFR fitting is surprisingly accurate,
although MVA does not perform well.

3.3. ‘Double Flux Rope’ Encounters

In this section we investigate the error in axis orientation from cylindrical models when
a MC exhibits an apparent ‘double flux rope’ signature. Figure 5 shows an example. In the
leftmost panel, the solid red line shows the axial field of the flux rope, the dashed red lines
show the boundaries of the flux rope, and the black line shows the spacecraft trajectory.
The spacecraft encounters the axis at two points, labelled A and B. The time series, in GSE
coordinates and flux rope coordinates (using the axis orientation at A), are also shown. De-
termination of the boundary between the two flux rope encounters is somewhat subjective.
We use the local maximum in BX GSE (which is equivalent to the local minimum in BA

because BY is small) to set the boundary at 0.65 of the time through the entire structure,
shown as the vertical black dashed lines. Varying the precise position of this boundary does
not qualitatively affect the results below.

At ‘A’, the local axis orientation is [−0.887,−0.462,0.000] in GSE coordinates,
whereas it is [−0.860,0.500,0] at ‘B’. Using the magnetic field time series over the
entire CFR encounter, MVA gives an axis orientation of [−0.721,0.525,−0.453], 67◦
from the orientation at A, and 27.5◦ from the orientation at B. FFFR fitting gives
[−0.823,−0.130,−0.539], 37◦ from the orientation at A and 49◦ from the orientation
at B.

Using only data from the interval designated FRA, MVA gives an axis orientation of
[−0.835,−0.509,0.211], only 13◦ from the true local axis orientation at A. For the interval
FRB, MVA gives [−0.839,0.438,−0.324], 19◦ from the true orientation at B. FFFR fitting
to FRA gives [−0.581,−0.801,−0.141], 28◦ from the true orientation. Similarly, FFFR
fits to FRB give [0.186,0.983,0], 39◦ from the true orientation.

The poor reconstruction of the axis orientation with the FFFR model is the result of un-
equal sampling of the magnetic flux either side of the axis encounters. For example, for the
interval FRA the spacecraft samples magnetic flux which maps to 0 < r < 1 during its ap-
proach to the axis at A, but after crossing the axial field it only sees −0.55 < r < 0 before
entering region FRB, where it begins to approach the axis again. As FFFR models are con-
strained to have an axis encounter (or point of closest approach to the axis) midway through
the time series, it is unsurprising that ε is large. One means to mitigate this effect is to only
fit the ‘core’ field with an FFFR model, so as to sample approximately equal amounts of the
structure either side of the axis encounter. For encounter A, this would require estimating the
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Figure 5 An example of an encounter with a curved flux rope which results in a magnetic field time series
which could be interpreted (and modelled) as a ‘double flux rope’. The three top right panels are in GSE
coordinates, while the three bottom right panels are in flux rope coordinates at A. Choosing the boundary
between the two axis encounters, FRA and FRB, is somewhat subjective.

section of FRA for which −0.55 < r < 0.55, which would translate to roughly 0.25 to 0.65
of the time through the whole structure. It would then be necessary to relax the α = 2.408
assumption, as the edge of this core flux rope would no longer correspond to a completely
poloidal field. In practice, this approach would have a number of limitations, particularly the
lack of systematic means to select the core flux rope from the time series, α as an extra free
parameter of the fit, and the reduction in the amount of data used in the reconstruction. It is
probably simpler and more reliable to use MVA for the purpose of double flux rope analysis.

4. Discussion and Conclusions

This paper describes a flux rope model for magnetic clouds (MCs) in which cylindrical
symmetry is relaxed by allowing a curved axial field. Additionally, it further relaxes some
of the constraints of spheromak and toroidal models by allowing both the axial curvature
and the cross-sectional extent of the flux rope to vary along the length of the axis. While
this model may or may not accurately describe the global structure of MCs, it does allow
us to investigate the effect of axial curvature and cross-sectional expansion on flux rope
reconstruction techniques. Other sources of error to MC reconstruction techniques are not
considered here. In particular, we only consider spacecraft encounters with the axis of the
flux rope (i.e., the impact parameter is set to zero), and the model has a linear force-free
profile without distortion.

Radial cuts through this curved flux rope model approximate stationary spacecraft en-
counters with MCs. Assuming the spacecraft crosses the axis of the flux rope approximately
perpendicularly, the effect of axial curvature typically introduces an error of only ≈5 − 10◦
into estimates of axis orientation from minimum variance analysis (MVA) or force-free flux
rope (FFFR) fitting. In general, FFFR fitting reproduces the axis orientation slightly more
accurately than MVA (for this test model based on a linear force-free profile). However,
when the local magnetic flux rope axis is within ≈45◦ of the radial direction (i.e., the space-
craft trajectory through the flux rope), the error in MVA/FFFR reconstruction of the axis
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orientation can increase to ≈90◦. This is the result of the spacecraft encountering the axis
twice before exiting the flux rope structure, causing the magnetic field time series to deviate
significantly from that of an encounter with a force-free configuration.

We note that in the limiting cases where the spacecraft skirts the trailing edge of the flux
rope before returning to the axis, the magnetic field time series looks much like an encounter
with two flux ropes of the same helicity but different orientations, as is sometimes observed
(Rees and Forsyth, 2004; Marubashi and Lepping, 2007). Consequently, an observer might
choose to fit the two apparent flux ropes independently. Attempting such a procedure, we
found that MVA works reasonably well, determining the local axis orientation within ≈20−
30◦ at both axis intersections. However, FFFR fitting produces errors about twice. This is the
result of uneven sampling of magnetic flux either side of the axis encounters. We suggest a
method to mitigate this effect, but the simplest solution may just be to use MVA for analysis
of double flux ropes.
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