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ABSTRACT

Context. Magnetic clouds (MCs) are formed by magnetic flux ropes thatgected from the Sun as coronal mass ejections. These
structures generally have low plasma beta and travel thrtheginterplanetary medium interacting with the surrongdiolar wind.
Thus, the dynamical evolution of the internal magneticdtrre of a MC is a consequence of both the conditions of it¥@mment
and of its own dynamical laws, which are mainly dominated tagrretic forces.

Aims. With in-situ observations the magnetic field is only measured along #jectory of the spacecraft across the MC. Therefore,
a magnetic model is needed to reconstruct the magnetic coafign of the encountered MC. The main aim of the presenk veio
extend the widely used cylindrical model to arbitrary cresstion shapes.

Methods. The flux rope boundary is parametrized to account for a braade of shapes. Then, the internal structure of the flux rope
is computed by expressing the magnetic field as a series ofésnafch linear force-free field.

Results. We analyze the magnetic field profile along straight cutsu@ihathe flux rope, in order to simulate the spacecraft crgssin
through a MC. We find that the magnetic field orientation isyaméakly dfected by the shape of the MC boundary. Therefore, the
MC axis can approximately be found by the typical methodsiptesly used (e.g., minimum variance). The boundary shéjeeta

the magnetic field strength most. The measurement of how itingcfield strength peaks along the crossing provides an &sstim

of the aspect ratio of the flux-rope cross-section. The asgtrymof the field strength between the front and the back ofMiiz
after correcting for the time evolution (i.e., its aging itigrthe observation of the MC), provides an estimation ofdiess-section
global bending. A flat gand bent cross-section requires a large anisotropy of takpressure imposed at the MC boundary by the
surrounding medium.

Conclusions. The new theoretical model developed here relaxes the eidaldsymmetry hypothesis. It is designed to estimate the
cross-section shape of the flux rope usingitieitu data of one spacecraft. This allows a more accurate detatimmnof the global
quantities, such as magnetic fluxes and helicity. Thesetijieggrare especially important for both linking an obserC to its solar
source and for understanding the corresponding evolution.
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1. Introduction contained in these structures, such as magnetic helicftyxas
(see, e.g., Démoulin 2008, and references therein).

Magnetic clouds (MCs) are magnetized plasma structures A key property of MCs is the small plasn@ while the
ejected from the Sun as coronal mass ejections. They are chésma velocity in the frame moving with the MC is typically
acterized by a strongly enhanced magnetic field strength Witell below the Alfven velocity, therefore the magnetic ign-
respect to typical solar wind (SW) values, a smooth and larggtion of MCs is force-free to a first approximation. The mag-
coherent rotation of the magnetic field vector, and a low@Tot petic field in MCs can be relatively well modeled by a linear
temperature (e.g., Burlaga et al. 1981; Klein & Burlaga )98%orce-free field (Burlaga 1988). The simplest solution itairbed
Moreover, after decades of researches, there is preseodiy-a with a cylindrical boundary; this is the so-called Lunddquis
sensus that MCs are formed by twisted magnetic flux tubggodel (Lundquist 1950). It was, and is still, widely used to fi
called flux ropes (e.g., Burlaga 1995). the magnetic field observed in MCs and to derive global quan-

Thein situ measurements are limited to the spacecraft trtities such as the magnetic flux and helicity (e.g., Burlag@8t
jectory crossing the arriving MC. Therefore, one needs tp relLepping et al. 1990; Dasso et al. 2003; Lynch et al. 2003; ®ass
on modeling to derive the global magnetic structure from tte$ al. 2005b; Mandrini et al. 2005; Dasso et al. 2006; Leitner
local measurements. The determination of the proper magnett al. 2007). An extension of this model to an elliptical bdun
configuration for MCs is important in order to provide gooti-es ary was realized by Vandas & Romashets (2003). They derived
mations of the global magneto-hydrodynamic (MHD) invatsan analytical solutions for any value of the aspect ratio ¢rafithe
ellipse sizes).

Alternatively, non-linear force-free field models with a-ci
Send offrint requests to: P. Démoulin cular cross-section (Gold & Hoyle 1960) have been used to
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model the magnetic configuration of interplanetary flux pdorce is rather expected to react strongly to the SW deforma-
(e.g., Farrugia et al. 1999; Dasso et al. 2005b). Tfiece of tion. Let us suppose that the SW is able to deform the extefior
plasma pressure has been considered for both circularlgtd el the flux rope (e.g. with an asymmetric ram pressure), how then
cal cross-sections (Mulligan et al. 1999; Cid et al. 2002idfjo does the force free field inside the flux rope react? Is the mag-
2003). These models include a relatively large number & fraetic field strength and orientation significantlyexted? How
codficients which are determined by a least square fit tarthe strong should the variation of the total pressure aroundltixe
situ data. rope be to flattefbend the flux rope cross-section? Are the ef-
The magnetic structure of MCs has also been analyzed fiegts of a flat antr bended flux rope easily detected from the
solving the equations as a Cauchy problem (e.g., Hu & Sopnemagnetic field present along a linear cut of the flux rope (as ob
2002; Hu et al. 2005). It was found that the amount of distorti served by spacecraft)? In order to answer these questians, w
from a circular cross-section is variable in the MCs analyzedevelop a technique that can solve the internal equilibriom
The limitation of such an approach is that a Cauchy problemvarious boundary shapes.
ill-posed, so that the result of the integration is very gess The paper is organized as follow. In Sect. 2 we define the
to modifications of the boundary conditions. It implies tiize  internal and the boundary equations for a force-free fluxerop
results can be significantlyffected by the temporal resolution,Next, we present the numerical method used to solve this-prob
by the range of the data used, as well as by the method usemi. In Sect. 3 we analyze the magnetic field of flux ropes with
to stabilize the integration (e.g. by a smoothing proced(tiee various cross-section shapes. In particular, we deriverthg-
method was recently tested successfully with MCs crossed mgtic pressure along the flux rope boundary, as well as thé tot
two spacecraft (Liu et al. 2008; Mostl et al. 2009). magnetic flux and helicity. In Sect. 4 we investigate theiinfa-
Many of the above modelechniques have been comparetion contained in the magnetic field profile taken along adine
by applying them to a flux rope obtained from an MHD simueut through the flux rope, as obtained from spacecraft observ
lation. Significant diferences have been found for cases corréions. The aim is to identify the most appropriate functiohs
sponding to large distances between the spacecraft patthandhe observed field to estimate each parameter of the model. We
MC axis (Riley et al. 2004). summarize our results and conclude in Sect. 5.
For many of the above methods which use analytical mod-
els, the free parameters of a given model are determinedipy mi
imizing a function which defines theftitrence of the model to 2. Method

the data. On one handz the selected model should have enoggihis section we present the equations of the flux-rope fnode
freedom to provide a fit close enough to the data for a brogd \yell as the numerical method used to solve them.
range of MCs. On the other hand, it should not have too many

free parameters, since finding the absolute minimum of the di

ference function becomes rapidly a very time consuming tagkl. Force-free field evolution

once the parameter space has a larger number of dimensi

Moreover, the probability of finding a local minimum assdeth it

g o e e e o e ParBiriaga & Behannon 1962).Moreover, e plasis low
C ' ; Wics (typically 8 ~ 0.1, with values ranging from less than

solution is a consequence of both its low number of free param

eters and of the inclusion of the basic physics (flux rope) ~ 10 to a few times 0L, e.g., Lepping et al. 2003; Feng et al.
Previous studies have shown that the core of MCS0% 2007; Wu & Lepping 2007, and references therein). Otheg®rc

S . . - h ravity are also negligible with r he miggn
of their size) is generally more symmetric than the remaynuééc as gravity are also negligible with respect to the €

. ; essure gradient, therefore the magnetic field evolutiombe
part (Dasso et al. 2005a). Moreover, using combined obser scribed, to first a approximation, by a sequence of faree-f
tions of several spacecraft, some recent analyses havahQWuilibriaij % B ~ 0), e.9., as propésed by Démoulin & Dasso
that the core of the MCs is significantly more circular thagirth (2009) e
oblate outer part (Liu et al. 2008; Kilpua et al. 2009; Mdatal. '
2009). Still, the Lundquist solution is known to havéhdulties
in fitting the magnetic field strength, in particular it wasifwl
that it frequently overestimates the axial component offitsld
near the flux-rope axis (e.g., Gulisano et al. 2005). Thetelli

tthe frame moving with the mean MC speed, the plasma veloc-
is typically smaller than the Alfvén velocity (a few 16@n/s,

An MC typically has an elongated flux rope structure with
a cross-section size much smaller than the curvature radius
its axis, so locally the flux rope is approximately straigive
also assume that the magnetic field can be regarded as locally

cal model of Vandas & Romashets (2003) provides a better fit@/;rlear;taﬁg] ,?htehf/lguf):arr?]%ev?;;hséz\éerdﬂﬁgtgg(og z;r:so;gggonal
observed MCs having a field strength more uniform than in trfﬁ ! ’ o

. . S ) e local MC axisx s in the direction of the mean MC velocity
Lundquist solution. This indicates the existence of sondléla : ; ot )
ropes (Vandas et al. 2005). projected orthogonally to the MC axis, and thdirection com

| MHD simulati he . | pletes the right-handed orthogonal frame. The equatid= 0
n some simulations, the flux rope is strongly comz,q the jnvariance o in z implies that one can write the field

pressed in the propagation direction, such that it becorles feom _ _

. . ponents asBy, = dA/dy andBy = —dA/dx, whereA(x,y)
atively flat (e.g., Vandas et al. 2002), and it can gven_d(p/eI% the magnetic-flux function. The projection of field linesa
a bending of the lateral sides towards the front directiofit as;|;a orthogonal to theaxis is given by isocontours @¥(x, y)
moves away from the Sun (e.g., Riley et al. 2003; Manches%ie force-free condition implies LY).
et al. 2004). Owens et al. (2006) proposed a kinematic mode

of this evolution with an initial Lundquist solution passly de- dBZ/2 _
formed by a given velocity flow. However, inside MCs the magaA + A - 0, with By(A). (1)
netic pressure dominates both the plasma and the ram ihterna
pressure (both a low plasngand, in the frame moving with For an elliptical partial dferential equation, such as Eq. (1),
the MC, a plasma velocity lower than the Alfvén velocity ara boundary condition is generally required all around tiggore
typically found in MCs). With such dominance, the magnetiwhere the solution is searched for (otherwise the probleith is
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posed, and, in particular, the solution is typically vernwsie 2.3. Linear force-free field
iv mall modifications of th I ndary val . . - . .
tive to small modifications of the selected boundary valiesi J_he Lundquist solution was, and still is, widely used fori-est

boundary of the flux rope is defined by the set of field lines hay- . . ; .
ing a given value ofA\(x, y). Without loss of generality, the origin mating the magnetic corjflgur_atlon of MCs _crossed by a space-
of A can be set at the boundary, therefore qraft (Sect. 1). We continue in the same line, by supposing a
linear force-free magnetic field, i.e. witB,(A) being a linear
A(Xp, ¥b) = O @) function of A. The axial componen8,, is typically low at the
’ ’ boundary of MCs, so we restriB,(A) to an dfine function ofA.

wherexy, Yy are the coordinates of the boundary (they are mofd'erefore, Eq. (1) is simplified to
precisely defined in Sect. 2.2). The maximal valueAdx, y) BAA) = cA, (5)
within the flux rope defines both the maximum amount of AZea L W2A = 0 6)
imuthal magnetic flux and the positior, {) of the flux rope -
center. Below we simply set this maximum as Equation (6) is linear im, therefore we can expregsas
a linear combination of solutions. Since the Lundquist Sofu
A(0,0)=1, (3) is worked out in cylindrical coordinates, and since MCs ate e
pected to be not too far from being cylindrical (as a consagee
since the azimuthal flux is later re-normalized to any desirgf magnetic tension), a set of functions can be searchedfor i
value. Equations (1,2,3) have a non-singular solutior’Aoty)  cylindrical coordinates. Then Eq. (6) is rewritten as
only for someB,(A) functions (for example for a discrete series

of B,(A = 1) values). This series of solutions are called resonahf2 i @ 1 @ +a2A=0 @)
solutions (e.g. Morse & Feshbach 1953). This point is furthe or r 12 9% ’
explained in Sect. 2.4. wherer, 6 are the classical cylindrical coordinates (radius and

azimuth angle). We look for separable solutions #) i.e. of the

form A(r,0) = f(r)g(d). A Fourier decomposition o\ in the §

direction, together with the continuity &, implies thatg(6) can

The flux-rope boundary can be generically defined by a closkél decomposed in a series of sif(+ ¢) functions, wherenis

parametric curver, = (X(9),yn(S), wheres is the variable aninteger ang is real number. The remaining equation fgr)

defining the position along the curve. The shape of the bourg#n be reduced to the Besseffeiential equation of ordem

ary influences the shape of the field lines within the flux ropée.g., Botha & Evangelidis 2004). Therefore, any non-siagu

However, with an elliptic problem, such as given by Eq. (g t A(r,6) can be expressed as a linear combination of an infinite

small scale deformations of the boundary are rapidly dampedmber of functions (e.g. Vladimirov 1984)

inside the volume (see end of Sect. 3.2). Conversely, kngpwi _ ;

A(x,y) in the deep interior of the flux rope, or on a cut through i?m‘”(r’ 0) = In(ar) Sin(e + 9) (8)

(such as with spacecraft observations) does not provigkbtel whereJy, is the ordinary Bessel function of order Romashets

information on the spatial fluctuations of the boundary. & VVandas (2005) derived the magnetic components from aserie
We define a boundary shape that includes the main distéf-such functions, and determined the freeftiients by a fit to

tions found in some MHD simulations (Sect. 1). In view of pirev the magnetic data of some MCs (withoutimposing any boundary

ous works, an elliptical shape is a natural starting poingréat shape, dierent to the present study).

variety of boundaries can be defined from the deformation of In practice,A(r, 6) is approximated by a finite series 6f,.

an ellipse, but small-scale variations have only a localigrice This series satisfies Eq. (6) exactly, but in most casestjfies

on the force-free field, so we explore only large-scale degor only approximately the selected boundary condition (EqTég

tions. To minimize the number of free parameters, we resitic  Precision depends on both the number of functions kept inghe

analysis to boundaries symmetric in theirection (orthogonal ries and on the shape of the boundary. Exceptrier 0 (which

to the mean MC velocity). With these constraints, we detie trecovers the Lundquist solution), tHg,(r,6) = O isocontour

2.2. Boundary

following parametrization has a variety of non-circular shapes. So a combination @&ragv

m modes can approximate a wide variety of boundary shapes.
Xp = —Ccosfs) + asirf(rs), Still, these modes have comparable sizes inxhedirections,
Vo = bsin(rs), @) SO this series of functions is not suited to approximate flag-m

netic configurations. The numerical results obtained withget

wheres ranges froms = O at the front tos = 1 at the back, of functions defined by Eq (8) confirm this. Moreover, some
and tos = 2 to close the boundary at the front. The central siAddCs have a magnetic field norm which is nearly uniformin their
of this boundary in the direction (aty = 0) is normalized to Cross-section (e.g., Vandas etal. 2005). This indicatepprox-
2, S0 thabtron: = —1 andXpack = 1. The maximal extension in imate magnetic-pressure ba_lance_, therefore a low mageetic
they direction is at k,y) = (a, +b), with dy/dx = O at those Sion, so a flat magnetic configuration. o
points. The aspect ratio of the flux-rope sizes alongytaad x Another set of functions satisfying Eq. (6) can be derived in
(aty = 0) directions is simphp. As [a] increases from zero, the Cartesian coordlnates_. We limit ou_rselve_s to fu_nctlonsneme
boundary becomes bent in tixedirection (see Figs. 3-5). TheY Since we are analyzing symmetric configurations (Sect. 2.2)
bending is increasing witfy|. Since the front and back bound-The basic functions are
aries are shifted by the sameamount for a givery value, the ¢ (x v) = cos@xcos®d) cos@ysin®d),
area of the cross-section is preserved. W) = sinexcosd D 9

A wider variety of boundaries can be analyzed with thes’d’( Y) = sinfexcosd) cosgysin®), ©)
method described below. However, Eq. (4) already providesmaere® is any real number in the interval,[®/2] (values be-
broad range of boundaries (see Figs. 3-5) with only two feee pyond this interval only provide redundancy). Such a set o€fu
rametersd, b). tions is, a priori, not well adapted to approximate the sofut
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0.20 2.4. Numerical solution with a linear force-free field
In practice,® in Eq. (9) is discretized, with an equi-partition
0.151 of n values in [Q7r/2] since we do not privilege any direction.
o The caseb = /2 givesfs,2(X y) = 0, so that the number of
g functions retained in the series ia 2 1. These functions are
5)
= 0.10} fi(x,y) = cos@xcos®d;) cosgysin®;) foriin[1,n]
S with ®; = /2 (i — 1)/(n— 1),
£ 005l fi(x,y) = sin(@xcos®;) coseysin®;) foriin[n+1,2n-1]
with ®; = 7/2 (1 —n-1)/(n-1). (20)
0.00 L Therefore A(x, y) is written as the series
0 2 3 4 5 6 2n-1
Fig. 1. Evolution of the mean error, Eq. (12), as a functioredbr the (11)

least square fit of Eq. (11) to the boundary condition of Eyja(®l the

normalization of Eq. (3). The boundary is defined by Eq. (4hai= 0,

andb = 1 (continuous line) ob = 2 (dashed line). The eigenvalues ofb

« are found at the local minima of the mean error.

1.2 ~

 (a)

- rectangular

Log[10.error]
| | | | |
W N =
h © h o in

4.

<o

=100

Log[10,b]

} o . 1

A(X,Y) = Z Gifi(xy).
i=1

The codficientsc; are found so thaf(x, y) best satisfy both the
oundary condition of Eqg. (2) and the normalization of Eg. (3
Equations (2,3,6) define an eigenvalue problem that has a
non singular solution inside the boundary only for a diseret
series ofa eigenvalues (e.g. Morse & Feshbach 1953; Moon
& Spencer 1988). WithA(x,y) described by & — 1 functions
(Eqg. 11), we should s&&(xy j, yb,j) = 0 at zh — 1 boundary po-
sitions. Therefore, the values can be obtained by finding the
zeros of detj(Xoj, Yb,j)) With i, j within [1, 2n - 1] (e.g. Morse
& Feshbach 1953; Trott 2006, chap. 3.5). For the application
to MCs, we are interested in the smalleseigenvalues, since
for larger eigenvalue&(x, y) and the magnetic field components
also vanish inside the boundary, and this case is not ob$arve
MCs. We find that this method works well for small valuesiof
However, am increases, the determinant computation involves
the sunfsubtraction of a large number of terms, each being the
product of 2 — 1 functions §i(Xy,j, ,j))- This implies that the
determinant has huge variations withIn particular, the deter-
minant is very small when computed below the first eigenvalue
while it reaches large values just above. The range of vaniat
can reach more than ten orders of magnitude. This huge range
does not facilitate the precise localization of the firsbzefrthe
determinant, thus the determination of the first eigenvalie
conclude that this approach ifective only for small values of
n.

Another approach is to perform a least square fit of Eq. (11)
to bothn, boundary points and to the normalization condition
A(0,0) = 1 (e.g. Trott 2006, chap. 1.2). With this methagd >
2n—2. The conditiorA(0, 0) = 1 is only approximately satisfied,

0 but this can be corrected afterwards by multiplydyg, y) by a

constant factor. More importantly, the conditié{y j, yo,j) = 0
is only approximately satisfied at thrg boundary points. We

Fig.2. Log-log plot of the smallestr-eigenvalue and the associateodefmed the mean error as

mean error, Eq. (12), as a function of thextension of the flux rope 1 Ny 1/2
(parameteb). The three thicker curves are the numerical results for t — Al Ve )2 + (A(0.0) — 1)2 12
boundary given by Eq. (4) and withgiven in the inset. Irfa), the thin an) np+1 ]z; (%5, ¥6)” + (A0, 0)~ 1) ’ (12)

continuous line is the smallest eigenvaluexdbr a rectangular bound-
ary [Eq. (15)]. The advantage of this approach is th@t) has a restricted range
of variations, with comparable values of the local maximhilev
the minima are well marked. This implies that the eigenvalue
for a cylindrical boundary, since each of them has a rectanguare well defined (Fig. 1). This regular behavior is presentfo
shape folA(x, y) = 0. However, we found that a set of such funcwider range ofn values than with the determinant method de-
tions gives a good approximation to the Lundquist solutgee( scribed above. This implies that we can investigate cas#s wi
below). Moreover, they have the advantage of being able to aplarger set of functions, and therefore with a broader rarige
proximate very flat configurations since the spatial waveaarec boundary shapes. Still, the method is numerically limitedal-

in x andy directions can be very fierent (the ratio of the wave ues ofn typically below 15. For largen, e(«) has rapid fluctu-
vectors is tam). ations due to the finite numerical precision in summing adarg
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Fig. 3. Projected field lines orthogonal to the flux rope axis (isdcors
of A, left panels) and isocontours of the magnetic field n@&rfright /\
panels) for the first eigen solution (loweskigenvalue, Fig. 2a) for an S 5= 55T 501000 X 150 055X 0

aspect ratido = 0.5. Both A and B are independently normalized to
a maximal value of 1, and decrease monotonously from the fpe r Fig.5. Projected field lines (isocontours #f top panels) and isocon-
center towards its boundary. The isocontours are equiespbbetween tours of the magnetic field nori (bottom panels). The boundaries are
0.1to Q9 in steps of (L. The isocontour .6 and the boundary are out- defined by Eq. (4) with an aspect ratic= 3. The drawing convention
lined with a thicker line. The top row is for a rectangular hdary and is the same as in Fig. 3.
the second row for an elliptic boundary. The three bottomsrtvave
boundaries defined by Eq. (4).

3.1. Analytical solutions

osh A a=0 0’.'8 B a=0{ The best-known solution is the Lundquist solution. It is jgiyn

Al =05 /\ the first eigen-solution of a linear force-free field
0.4 0.4
ool® ™\ Jol@ //—\\ (Br. By, B) = (0, Jy(ar), Jo(ar)) (13)

a=-0.7 with By, By, B; being the radial, azimuthal and axial component,

0.8 0.8 . ; . ; .
respectively. With a flux rope radius normalized to unity and
04 m 04 B, = 0 at the flux-rope boundary,is the first zero of the Bessel
ool® ﬁ 00 functionJo, calleday, thereforer, ~2.4. _ _
14 Another simple solution can be found in Cartesian coordi-
0.8 0.8 nates. This geometry implies a rectangular boundary (& siz

2x2bwith the same normalization as in Sect. 2.2). The magnetic

0t field is

0.0 0.0
-15-1.0-05 00 05x1.0,7=15-1.0 -0.5 0.0 0.5x1.0 (By, By B)=(-1/ V1+ b2) coskyX) Sin(kyy),
Fig. 4. Projected field lines (isocontours &f left panels) and isocon- b/ V1 + b2 sin(k«x) coskyy),
tours of the magnetic field norm (right panels). The boundaries are
defined by Eq. (4) with an aspect ratio= 1. The drawing convention cosfxx) coslyy) ), (14)

Is the same as in Fig. 3. with ky = 7/2 andky, = 7/(2b). This rectangular solution can

obviously not be applied to observed MCs. However, it id stil
useful to have an analytical expression for quantities siscime
series (Eq. 11). Here, the computations were done with decinmnagnetic flux and helicity (Sects. 3.4 and 3.5), as well astfer
numbers having 16 digits of precision. The fluctuationg(af) @ eigenvalue which is
can be weakened by increasing the number of boundary points,

np, but this is not &icient. Within these limitations, the least-og = T b . (15)
square fitting method is precise enough to derive the solutio 2\1+12
gisto(zlg(@éwtzh) an aspect ratio of the cross-section imahge This provides an order of magnitude estimate for the fluxerop

characteristics, as shown below.

A given non-zero value dd has a very dferentimplication A third analytical solution for a linear force-free field Wit

for small and largé: with a largerb, a largera value is needed 4, aliintical boundary (pbarticular case of Eq. (4) with= 0
to distort the flux rope significantly (see Figs. 3-5). We c®t® | o fopund by Vanda)g(g Romashets (2003()1_ éq)uation (6)) Was
scaleawith Vbin Figs. 2, 8-11, as the precision of the methodglved with elliptic cylindrical coordinates, one of thevfeo-
decreases significantly f¢a] > 1.5vb (Fig. 2). ordinates system where Eq. (6) has separable solutionsllFor
b values, they found an analytical solution expressed wiéh th
even Mathieu function of zero order. While analytical, the e
3. Flux rope solutions plicit solution .needs numerical computations thqt theyiexsd _
through a series expansion of the Mathieu function. We aonfir
In this section we analyze the force-free solutions founé. Vill their derivations, including their numerical resulige(com-
start with a summary of previously known force-free solnfio puted them dterently by using the Mathieu function inside the
in order to compare them later with our results. Mathematica software). We found only minofférences in the
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numerical results. We also found smalifdrences when using 0.0 0.2 0.4 0.6 0.8 1.0

the numerical method descrlbgd in Sect. 2 (within the meam errig. 7. Magnetic pressure along the flux rope boundary [Eq. (4)] nor-

found at the boundary shown in Fig. 2b). malized to the maximum pressure (located at the flux ropeecerthe
coordinates ranges frorms = 0 at the front, tos = 1 at the back.

3.2. Flux rope structure
flux rope (Fig. 6). Foa > 0, symmetric results are obtained but
such cases are usually not observed in MCs.

Next, let us consider a cut of the flux ropeyat 0 in order
i a0 L - to simulate observations made by a spacecraft. The defammat
!lne projections inside .the fqu rope are more circular thizen Lof the boundary much lesdfacts the direction of the magnetic
imposed boundary. Thigfect is stronger closer to theflux-ropqiem than its norm. This is illustrated in Fig. 6 for one of the

center (Figs. 3-5). This is due to the balance of force, devis. spherical angless], defining the direction 0B, and it is also
The sharper parts of the boundary impose a strong curvature,

therefore a strong magnetic tension which reduces the fregd |true for the other angle (¢ = sin™(By/ /B + Bg)). This result
bending inside the flux rope (see the regions around the corhelds approximately also for values|gfb| not too large. Indeed,
of the rectangular boundary in Fig. 3a or the region with th#e isocontours o\ in Figs. 3-5 show that the deformation of the
most negativex-values fora ~ -1, -2 for the other boundaries, projected field lines remains moderatedifis increased. Since
Figs. 3-5). theseA isocontours are also isovaluesBf, the magnetic field
The most importantféect of the boundary on the core fielddirection in most of the flux rope is only slightlyfacted ifa is
is the aspect ratio (callel). The core field has approximatelymodified.
an elliptical shape with an aspect ratio closer to unity ttheerb Inside the flux rope, small-scale distortions of the bound-
value. ary have even a weakeffect than the #ect of |al. This can
The next most importanttkect for the core field is a global be shown by considering, for example, the field described by
deformation of the boundary such as theeet induced by in- A(r,0) = Jo(ar) + cIm(ar)sinmg in cylindrical coordinates
creasingal in Eq. (4). This is already a relatively weaRect for (Sect. 2.3). The cdicient c gives the spatial-fluctuation am-
the field line shape inside the flux-rope core, especiallydige plitude of the boundary (defined bi(r,6) = 0). Because the
b values (Figs. 3-5). For a larger bending (i.e. a larigdr the Bessel functions behave &8 near the origin, the deformation
magnetic tension increases, so the magnetic field linebtklig of the field lines decreases rapidly with increasmet a given
shrink towards the flux rope center (e.g. see the evolutighef distancer inside the flux rope. We conclude that the core of the
A/Amax = 0.5 isocontour with increasing| in Fig. 5). We notice flux rope is almost notféected by the small-scale fluctuations of
that the distanceack — Xront iS preserved for eachvalue with  the flux rope boundary.
increasingal, so there is no compression of the flux ropgaas
!ncreases in all the exam.ples shown, and the observed alglénkg_ 3. Magnetic pressure at the boundary
is not due to a compression of the flux rope edges.
The bending of the flux rope introduces an asymmetry b&he magnetic field strengttB] is always maximum at the flux
tween the front and the back. Field lines in the front becoate fl rope center (wher®&, = By, = 0, so whereA, and therefore
ter agal increases (Figs. 3-5). Even an inverse curvature (curvBg(A), have an extremum). However, this center is not necessar-
away from the flux-rope center) is present for the lar¢g@stal- ily at the geometrical center of the shape defined by the bound
ues shown. This asymmetry is also present in the field sthengdry (see, e.g., Figs. 3- B.decreases faster toward the boundary
with the field being stronger in the front than in the back & thwhere the boundary is extended outward, or has a “corne€’, du

The projections of field lines orthogonal to the flux rope axis
given by isocontour values &f(x, y). For a force-free field, they
are also iso-values of the axial fielR} [Eq. (1)]. Typically, field
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to a stronger magnetic tension there (Figs. 3-5). For shlbh

B values are concentrated in a rangexamost independently
of y, while for largeb values this range is located rather at low
Iyl values. Finally, the isocontours & are remarkably dier-
ent from the field lines (isocontours 8) with the exception of
nearly circular contours fax ~ 0,b ~ 1.

The magnetic pressure at the boundary strongly depends on
the flux rope deformation (Fig. 7). Starting from the cylindr
cally symmetrical casea(= 0,b = 1), where the pressure is by
construction uniform along the boundary, a smalllalready is
sufficient to create a significant decrease of pressure on the lat-
eral sides of the flux rope (Figs. 4d-f,7b). Hbk 1 anda = 0,
the magnetic pressure is significantly higher on the sidekeof
flux rope (Fig. 3f), this &ect being more pronounced for smaller
b values. This #ect competes with the flux rope bending (in-
creasingal) to shift the pressure maximyminimum along the 5
boundary (Fig. 7a). Fdo > 1, both an increasing and|a| pro- 0.6f 0 el
duce a lower magnetic pressure on the flux-rope sides (Figs. 5 o — #“__/;ﬁ;é"
f,7c). : s

The equilibrium of the flux rope with its surroundings 0.2 /
is achieved by the total pressure balance at the boundary. .
Therefore, the above magnetic pressure computation giees t y ) ;
total pressure needed in the surrounding SW to achieve such a ’ v ™
boundary shape (assuming a dominant magnetic pressude insi 122} £ LN
the flux rope). The asymmetry of the SW pressure between the = |} AZTTNSNN
front and the back of the flux rope can be due to encountered < /a-" oottt \\\\

. . . . 3 S ~ \
different SW, but in most cases it is plausibly due to the ram ,7/’{ ————= a=-15vVDh \\\"%,‘
pressure due to the relative motion of the flux rope with respe L16} ,?,,z ——=a=-075vb 3
to the surrounding SW. (1} 9

1.0 -'(a)

rectangular

a=-15vVb_ 1
-—=—a=-075vb }

a=0

Log[10,H] & Log[10,F-]

rectangular / x‘&'
mm—=e= a=-15vh S 5
a=-0.75vb 2

a=

Log[10.F/F,]
(=}
oo

" R
Moreover, if the SW conditions permit such low pressure on 10 05 0.0 05 17;,

the flux rope sides, the force-free approximation is expetde Log[10.0]

be no longer valid in these regions (near the most bent parts o

the boundary). More precisely, even with a plaséras low as Fig. 8. Modification withb of the magnetic flux and helicity contained

1072 in the flux rope center, the force-free approximation is ni the flux rope(per unit length along the axial directiof@). The max-

longer valid in the regions where the relative magneticgues imum magnetic field strength is set to unifl) the axial flux is nor-

reaches few 1% in Fig. 7 (supposing a nearly uniform p|asm(,j{nallzed to the azimuthal flux, an@) the helicity is normalized to the

pressure). Such regions are expected to be advected with Rfguct of the fluxes.

plasma flow (in the absence of reconnection), so that the ex-

tended parts of the flux rope are expected to be swept aw ' . . .
by the SW. Reconnection with the encountered SW magne@ere we keep the same field and size scaling (the crossxsecti

field is also expected; it will further contribute to removese size is Rx 2Rb). The r_ectangula_r cross-section is larger than the
extended parts. It remains a strong core with an elliptikal- circular one, so there is more axial flux, but only about 20%emo

shape. This core field is expected to keep its identity winde-t (while the cross-section area is about 27% larger). Thecaspe

eling in the SW (unless there is a large amount of magnetic ﬂ{l'%:leor:fgroeuI'([jhghire]?:?aséhge?exrlrilir?;c)i(o?t/n% rrnnl:;re] ilr?]rgg:t;:??#m'
reconnected with the overtaken SW). ' P P

the estimation of the axial flux than the detailed shape of the
boundary. The azimuthal flux is

Far = L = BnaRL/arR, 20

The axial flux of the Lundquist solution, Eq. (13), is 2R = Amax maRL/ R (20)

Jn(@) whereagr is given by Eq. (15). Fop =1, Faris only = 8%
Bmad® ~ 1.36Bna ¥,  (16) largertharF,, . The ratio of fluxes is

3.4. Magnetic flux

R
FZL=27Tf B,rdr = 27
0

where the two first expressions are general (valid for ay F.r/Far=8/n V1i+b2R/L ~ 255V1+ 2 R/L. (21)
while a = o (defined byB,(R) = 0) for the numerical value. We
have included the scaling with the radii® @nd the maximum At the limit of a small aspect-ratib, this flux ratio is constant,
field strength Bnay for completeness. The azimuthal flux is ~ while it increases linearly witb in the limit of largeb (Fig. 8b).

_ N With the same maximum field strength and maximum ex-
FaL = BT”aXLR/a N 0-42Bmad R, . (A7) “tension in bothx andy directions, the axial flux obtained with
wherelL is the axial Iength of the flux tube. The ratio of fluxes I$he boundary defined by Eq (4) is a|WayS lower than the axial
FoL/FaL = 21d1(@)R/L ~ 3.36R/L. (18) flux obtained with the rectangular bogndary (Fig. 8a)_. TB_is [
. . L an expected result since the area defined by Eq. (4) is lightl
. TTEe axﬁl flux within a rectangular cross-section is COMPUlg 5 ler than the area of the rectangular boundary. THerel
rom Eq. (14) ence increases as the aspect rdtjadeparts from unity. This is
Fzr = 1607 2Bmad®® ~ 1.62bBnaR2, (19) aconsequence of the shrinkage of the field lines as the cer@ ha
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lower aspect ratio for an elliptical than for a rectangulanibd- Forb = 1, a flux rope with a square cross-section contains only

ary (Fig. 3-5). This dference reaches a factor about 2 (shift d8% more helicity than a flux rope with a circular cross-setti

~ 0.3 in log,, scale) both fob ~ 0.1 and~ 10. The bending of This is only slightly above the ratio obtained above for thimb

the flux-rope cross-section, so increaggghas a much weaker flux (20%, Sect. 3.4).

effect (Fig. 8a). As for F,, magnetic helicity is greater for the rectangular
The azimuthal fluxF, = BmaxRL/, is also an increasing cross-section, and thisftgrence is larger fdo values far from 1

function of b becauser is a decreasing function df (Fig. 2). (both smaller and larger values, Fig. 8a). Albt{b) is a steeper

Therefore, the ratid-,/F, has a weaker dependencelmthan function thanF,(b) for low b values, whileH (b) andF,(b) have

F, (Fig. 8b).F,/F4 has a nearly linear dependence min a a comparable slope for lardevalues.

log-log plot, for the whole range df explored. This contrasts  Magnetic helicity quantifies how much the axial and az-

with the result obtained with the rectangular cross-sectio  imuthal fluxes are interlinked. A useful quantity is the natm

the range (. < b < 10, we deduced.36vb < F,/F, < 4vb, ized helicity H/(FaF,)); it is an average Gauss linking number

the lower bound being given by the Lundquist solution and t{Berger & Field 1984). It is independent bffor a rectangular

upper bound being an approximation both for low and High cross-section={ 7%/8 ~ 1.23), a value just below the result of

values. the Lundquist solutionH/(F5;F;) ~ 1.25). With the boundary

defined by Eq. (4)H/(FaF,) depends only weakly on both

andb (1.2 + 0.05) over the large range explored fo(Fig. 8c).

Therefore, the magnetic helicity contained in these fluxesop

An efficient way to compute the magnetic helicity of the fields mainly defined by their magnetic flux (the mean flux linkage

B within a volumeV is to split the fieldB into two parts, as being almost constant). We anticipate that this resulttds!

B = Beiosed+ Bopen WhereBgoseais fully contained insideV, extended_to a much broader ensemble of boundary shapes than

and Bopen has the same distribution &on the boundary ofy  those defined by Eq. (4).

(Berger 2003). For an element of lendtlof a flux rope, a simple

choice forBgjoseaand Bopenis the azimuthalB,) and axial ;) ) ]

field components, respectively 4. Estimation of the boundary shape from B along a

1D cut of the flux rope

3.5. Magnetic helicity

H = Zf Aopen- BelosedV (22) In this section, we analyze the magnetic field profile comghute
v along a cut of the flux rope along thedirection (at a fixedy

= 2|_f A, - BLdS, (23) value). The aim is to provide a first step toward the analykis o
S in-situ data by identifying the characteristics of the fipldfile

where A, satisfiesB, = (V x Ay) - 2, and S is the area of that permit us to determine approximately the parametettseof

the flux-rope cross-section. This is the classical way to-co odel that is most compatible with the observations. Thd fina
puteH for a circular cross-section since Eq. (23) is reduced %termmatlon of the parameters will be realized by a lepsaee

R . L to the data in a subsequent work. However, this procedure i
H= 4”Lfo AByrdr. For the Lundquist solution, it implies that ¢ 5 trivial task due to the number of free parameters irelv

The fitting method will largely benefit from the following ap-
21(J5(a) + J3(@) - 2Jo(@)1(@) /@) BioRL proximate determination of the parameters since the iterat-
0.70B2 RL, (24) volved in the fitting can be initiated closer to the best sohut

) o ] _ (i.e., starting the iteration from a 'good’ seed). This véfieed
where the first expression is general, while= o (defined by yp the convergence towards the global minimum of the functio
BAR) = 0) for the numerical value of the second expressiofefined as the distance of the model to the observationsyand e
This expression was used to estimiaten MCs (e.g., Dasso et al. more importantly, it will limit the possibility of convergi to a

2003; Gulisano et al. 2005). . _local minimum, rather than the global minimum (i.e., théis
However, Eq. (23) is not convenient to compute the heliciyng up at a false solution).

for a general cross-section shape, since one first needsio co
pute A, by integration ofB,. Equation (22) can be transformed .
with the vector identityv-(U x V) = V-V x U -U -V xV 4.1. Aspect ratio

whereU = Aopen = Aa andV = Adoseq = Azz; The surface in- aspect ratioh, of the boundary has a strongfect on the
tegral on the flux rope boundarf(Acioseax Az2) - dSy, vanishes fie|d-line curvature, so on the contribution of the magnedic-

if A, = A=0.This is a particular gauge for the vector potentiakjon Together with the force-free balance, it implies thagas
that we have already selected in Sect. 2.2. Therefore AvtfD 5 strong influence on the distribution of the field strenBtim-

HL

Q

at the flux rope boundary, Eq. (22) can be rewritten as side the flux rope (Figs. 3-5). More precisely, cuts acrosslthx
rope parallel to the-axis, at a fixed = y,, have a clearly peaked
H= ZLIABZdS. (25) B(x) profile for low b values, and this profile becomes flatter as
S

b increases (Fig. 6).

This integral is much easier to compute than the one in Eq, (23 We take advantage of the above property to present a method
since it involves only scalar quantities that are direcpats of to estimatés from B(X). Several attempts have been investigated

the model. to characterize thB(x) profile as a function o, for example by
With Eq. (25), the helicity of a flux rope with a rectangula€omputing the mean curvature of tB€x) profile. However, this
cross-section is easily computed as curvature depends o and on the size of the x-interval crossed.
, . From these explorations, we find that this approach is soitgd
b b i i . i if-
Hg = 4 B2 R3L ~ 1.27 B2 R (26) to relatively low impact parameters. In our explorationtad dif

ferent possibilities, we select the option which has thstlea-

TNTERE Viep
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with the result obtained with a rectangular cross-secttwom
Eq. (14), we find:

raR = Btront — Boack — bcoskyyp)
' Beenter  Bcenter /1 + b2 cog(Kyyp) |

whereky = 7/(2b). In contrast to Eq. (27), we do not include an
averaging in the definition afg g, since we want only a quali-
tative comparison of the main trend, keeping the analyfmal
mula simplergr is weakly dependent oy, if it is small com-
pared tob. In Fig. 9, we only show the casg = O (to provide

a common guide for all panels). The rectangular boundary has
rer(Yp = 0) slightly aboverg for small values of andyy, but

still the global behavior is reproduced. After an explaratof

(28)

— rectangular

02p T "’lppmxt') possible functions, a better approximation is obtained byra
: .. P : ple modification of Eq. (28), using, = O:
-1.0 -0.5 0.0 05 1.0-1.0 -0.5 0.0 0.5 1.0
Fig.9. Evolution of magnetic field ratia;s, defined by Eq. (27), as a rg approx = (b — 0.07)/ V1 + b2. (29)

function of log,b, whereb is the aspect ratio of the flux-rope cross-
section. The averages are computed over 20% of the lengtly #he This provides a relatively good approximation for the nuimer
cutacross the flux ropeg is relatively independent afas wellasthg  cal results forly,| < 0.5b, and it results in an underestimation

position of the cut iry,, especially for low values of these parameter :

The continuous Iinespare the numerical results, the dasheddépre- ng rEI‘ only_ for sr;nallb an(z for Iargglgl)(lal i _\/5,_fl_:|g. gaﬁ)

sents the result for a rectangular boundary, Eq. (28) wite: 0, and orfarge impact parame ersyd > Y. ), and signi icana va

the dotted line is for ues,I's approx Significantly overestimates for largeb, while the

the analytical approximation given by Eq. (29). reverse is true at low. If such an extreme case is needed, the
interpolation within a table of the numerical results carubed

for a more accurates estimation.

pendence on other parameters (such aytheda values). We
also define global quantities, rather than local ones, te kess 4.2. Orientation of the flux-rope axis

gg![iuoenn;e of local perturbations in future applications hser- ':‘/lgass{i:al njefchod to dgtermine tt?]e (ljogalva)(is orientaé'rbam
. . . is the minimum variance metho , see e.g., Sonnerup
The best estimator of the parameltere found is the ratio o~ 1967: Burlaga et al. 1982). It is based on théeti
B ent behavior of the axial and the two orthogonal componeints o
g = — Biront >1 + < Boack > ’ (27) the magnetic field which is expected, since an MC has a flux
2 < Beenter>t rope structure. The method finds the directions where the mag
netic field has the lowest and the highest variance (the third
where the averaging is done over a fractfoof the x-extension rection, with an intermediate variance, being orthogorige
of the analyzedB profile. < Beenter > extends symmetrically MV requires that the three variance values are well sepérate
around the maximal value @, and< Bgont >, < Bpack > @re  condition generally metin MCs. Thus, the MV provides approx
computed in the vicinity of the flux-rope boundaries. Insiag imately the directions, y, z used above (we recall that the flux
f provides a more global determination of the averages, butdpe is supposed to move away from the Sun alery
decreases the range of variationrgfwith b, so its sensitivity. The MV was extensively used to find the local axis of MCs
On the other hand, for a too smdllvalue,rg is too sensitive (e.g., Bothmer & Schwenn 1998; Gulisano et al. 2007, and ref-
to local B perturbations (in the application to MC data). As &rences therein). It provides more accurate results whgmji-
compromise, we seledt= 0.2. plied to a normalized time serid(t)/B(t). It was compared to
Figure 9 demonstrates that has a well defined variation other methods, in most cases successfully, with typiciédi
with b. The saturation ofg, close to 0 and 1 for small andences between the methods of the order 6f The most impor-
largeb values, respectively, is intrinsic to the force-free bakan tant deviation in the orientation is produced by changimgViC
(Sect. 3.2). As a consequence, the estimatidni®fess accurate boundaries (Dasso et al. 2006). Also the systematic errthrein
for small and largd values. Nextrg is weakly dependent o orientation increases with the impact parameggr,However,
so on the bending of the flux rope. This is so becawgsis de- the tests of Gulisano et al. (2007) with Lundquist’s testdfiel
fined by an average of the front and back fielgis also weakly have shown a deviation of only 3° for y, ~ 30% of the MC
dependent omyy, a result coming from the global force balanceadius and ok 20° for y, as high asx 90% of the MC radius.
(Sect. 3.2). Finally, sinceg is defined as a function d, this The results of Sect. 3.2 show that the orientation of the mag-
implies thatrg is explicitly independent of the estimation of thenetic field is weakly &ected by the shape of the cross-section.
axis orientation. However, there is still an implicit depence This is true for low impact parameters (see the ogse 0 in
since the determination of the MC boundaries is more aceur&lg. 6b,d), as well as in about the half of the flux rope (as @n b
in the MC frame (Dasso et al. 2006). deduced qualitatively from Figs. 3-5, see Sect. 3.2). Toeee
The above numerical results could be directly used to estie expect that the results previously obtained in tests lficy
mate the aspect ratlousing the measured valuegf (by inter- drical models are approximately valid also for flux ropeshwit
polating a table of values). However, it is more practicatlés distorted cross-section.
rive an analytical approximation. This task is largely faaied The main advantage of the MV method is that it does not
by the dominant dependencergfonb. As a guide we compare introduce an a priori on the detailed magnetic configuratibn
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(a) <Bx>/<B> (b) <Bx>/<B> <Bback>/<Bfron> <Bvack>/<Bfront>
_y“_:O.S b a=n 0 — 10
N (a) Yp= (b) yP=0'2 b
_--L\A.. . 0,
\_\ 0t 4
0.2

logob log,, b
o —os 0.0 0.5 10-10 _ —0s5 0.0 0.5 10 (¢) y=04b
9

Fig. 10. Estimation of< By > / < B > with averages computed along
the entire cut of the flux rope (locatedyat y,). The continuous lines

a=0

are the numerical results and the dashed lines represeandigtical — 0125y
approximation given by Eg. (31). Two values of the distarfi@rameter — :8?5\/‘?
are shown(a) a = 0 and(b) a = — vh. N
log,, b
the flux rope (e.g., the distribution of the twist). The snugh - 05 00 05 Lo-Lo =05 00 05 10

pendence of the time seri@t)/B(t) on the cross-section shaperig. 11. Evolution of the asymmetry ratin,, defined by Eq. (32), as a
further justifies the use of the MV. This provides an estiorati function of log,b. The averages are computed over 20% of the length
of the MC frame, defined by the y, z directions, in which the along the cut across the flux ropeyat y,. The drawing convention is
data are transformed for the next steps. the same as in Fig. 9.

4.3. Impact parameter Finally, the estimation of,/b permits us to estimate the
extension of a central crossing from the measurg,Qf— Xsront,
as deduced from the observed velocity, from the deternuinati
f the boundaries and from the axial orientation of the MCthwi
ﬁ boundary parametrized by Eq. (4), this step does not depend
fha (asXpack— Xfront is independent od for a giveny,/b value).

Global quantities, such as magnetic flux and helicity, aterex
sive quantities, i.e. they depend on the MC size. In ordesto
timate the true size of the flux rope, it is therefore impatrtan
relate thex extension measured along the flux-rope crossing
its value for a central crossing (wheBeis maximum). This is
realized by estimatingp.

They,, position of the cut fiects the three components®f 4.4. Bending
as can be deduced from Figs. 3-5. As for the determinatidn of . .
above we search for the best way to estimgteGulisano et al. A global bending of the flux rope has a relatively wedfeet
(2007) have used By > normalized to the central field strength ©" the magnetic field (Figs. 3-5). The strongeBéet is present
Bsit, which was deduced by fitting the Lundquist solution to th@" the.BV component_as the front f_|eld IS Increasing with more
data. They derived a quadratic relationship betwgeand < negativea values, while the opposite occurs in the back of the
B, > /Bxt for a magnetic field defined by the Lundquist solutiorfUX roPe (for not too largéy;| values). Therefore, information

Here, we extend this approach, by computin onais containeq in the obs_erye&} profile. However, we prefer.
bp y puting to use theB profile since it is independent of the flux-rope ori-

rex =< Bx>/<B>, (30) entation, and becau$®,| is indeed close t® near the flux rope

where the averages are computed over the full crossing of ffgndaries. We define

flux rope (at a givetyp). This new definition removes the need _

to use a particular model to normalizeB, >. Fa =< Brack>1 / < Bron >1 (32)
Figure 10 shows thatgx has a well defined variation with where the averaging is done over a fractfoof the x-extension

yp, but that it also depends dn and to a lesser extent an  of the analyzed profile. As for Eq. (27), we seledt= 0.2.

Moreover, sinceBy is involved,rgy is also dected by the deter-  r, strongly depends om, but only forb lower than a few

mination of the local MC frame (Sect. 4.2). With a rough esim units (Fig. 11). Indeed, we show curves with fixed values of

tion, we findrex ~ 1.2y,/b. More precisely, the proportionality 5/ v/o, which implies an increasing value afwith b. Therefore,

codficient depends weakly dn with a value~ 0.7 forb << 1,  equivalent curves, with a fixed value farwould show an even

and= 1.7 forb >> 1, so the aboveffine relation can be system-|gwer dependence oa for b > 1. Indeed, wherb >> 1, a

atically biased, up to 40%, for a very small or for a very larggomparable td is required in order that magnetic tension mod-

aspect ratio. A better approximation is: ifies significantly the otherwise fl&(x) profile (Figs. 5-6). The
2-1yp/bl\ Yp choice of the scaling od with Vb was guided by numerical er-
Iexapprox(Yp, D) = | C1 + CZ—2 2 b’ (1) rors (see the end of Sect. 2.4). However, values lafger than

~ Vb are expected to be unphysical (in particular they were not
wherec; andc; are slightly function ofja vb: ¢; = 0.7 + found in MHD simulations, e.g., Riley et al. 2003; Mancheste
0.2la] Vb andc, = 0.9 — 0.2]a) Vb. This formula approximates et al. 2004), so we claim that Fig. 11 represents ficantly
relatively wellrgx (Figure 10). Equation (31) can be used to edroad range of the parameter space which covers most of the
timatey,/b, and thereforg, when the two previous steps havebserved MC configurations.
been realized (Sects. 4.1,4.2). The paramatean first be set ro does not only depend oa, but also strongly orb, as
to zero, agsx andrgyapproxdepend only slightly o (Fig. 10).  well as ony,/b as shown in Fig. 11. Moreover, these depen-
Then, an iteration with the next step (estimata)gcan be real- dences are coupled (the curves evolved significantly with th
ized. Alternatively, this estimategl/b value can be used directly three parameters), therefore we do not present an analgtica
as a seed when fitting the model to the data. proximation (which would be cumbersome). However, with
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andyp/b approximatively determined with the previous stepshape of the boundary but with a significantly lower aspect ra
(Sects. 4.1,4.3r can be estimated from the interpolation of dio, in agreement with previous observations (e.g., Dassd. e
table ofr, values. 2005a; Liu et al. 2008; Mostl et al. 2009).

These estimations can be refined by fitting the model devel- The next deformation in importance is the global bending
oped in Sect. 2 to the data, with the initial parameters s#tao of the flux rope coming from its interaction with surrounding
above estimations. The purpose of the next paper will begtyap SW streams (see refs. in Sect. 1). The symmetric bending mode
this new technique to a set of MCs. Thefdrence between the (Figs. 3-5) can significantlyfiect the magnetic tension, there-
initial parameters and the fitted ones will provide an estioma fore also the distribution of the field strength. With a bewgi
of the precision of the above estimations when applied ta.dat in the direction of the MC propagation, a stronger field in the
front than in the back is present, as frequently observed@s M
Such asymmetry can also come from the temporal evolution of
the magnetic field as the observations of the front and baek ar
The present work is motivated by the need for a magnetic mo@ifted in time (this fect is called the “agingftect”). However,
in order to derive the magnetic configuration of MCs from locdhis efect can be corrected, and it is usually not the main cause
measurements provided by spacecraft. The model shouldée 4l the observed asymmetry between the front and back of MCs
to compute a large variety of magnetic configurations, aadro(Démoulin et al. 2008). Moreover, even removing the agifg e
as possible, but also the parameters of the model should Ibe i&ct, a frontback asymmetry can still be observed in some MCs
defined from the observations. (Mandrini et al. 2007; Dasso et al. 2007). Finally, we find tha

To develop the above goal, we generalized the Lundquist steformation of the flux-rope core decreases with higheriapat
lution, obtained in cylindrical symmetry, the MC boundagwh frequency deformations of the boundary.
ing a broad range of shapes. We express the solution with a se-We next analyzed the results of the model with the perspec-
ries of functions satisfying the linear force-free equasgioSuch tive of applying itto MC data. In particular we search for thesst
a development in series usually involve a large number @& frway to have anféicient first estimation of the model parameters.
parameters (the multiplicative cfieients of the functions in the This step is important as the parameter space to exploregyis, la
series). Here we limit the freedom of the model by imposingnd our previous experience of a direct fit of a simpler moalel t
the shape of the MC boundary (depending on few parametetbp data has shown us that a direct fit does not always conteerge
Moreover, it defines a well posed problem. For a given boundahe correct solution. This consideration is even more irgyur
shape, the internal magnetic-field solution is unique. Pines  as the number of free parameters is larger in the presentimode
cedure provides a solution accurate enough over a broae raM¢e also verify that the magnetic field taken only on a linedr cu
of aspect ratios of the flux rope cross-section (typically @. through the flux rope was sensitive enough to determine the pa
10). While the boundary shape can be more general with tiggneters. We find that this is true for all parameter, wheatied
method, we limit our report to the boundary deformationsaluhi in the expected physical range. The main limitation is th@me
dominantly dfect the observed magnetic field. Other deformaurent of the bending (s&) for large aspect ratidoj.
tions have a lower féect inside the flux rope, in particular on  In previous studies, the determination of the MC axis was re-
its core, and only future studies will be able to tell if sonfe calized mainly with the minimum variance/and with a fit of the
these deformations could be estimated accurately enoogh frLundquist model. We find that the distortions of the MC bound-
the data. ary shape mainly féect the magnetic field strength, but only

The physical origin of the cross-section deformation is theeakly its direction. Therefore, the MC axis direction folun
flux rope interaction with its surrounding SW. In particyldur- previous studies will remain weaklyffacted by applying the
ing the MC travel through the heliosphereffdient parts of present new model. It implies that the local magnetic fragne i
the MC boundary could be in contact withfldirent parcels of relatively well defined. This is an important result to detare
SW having diferent pressure, therefore changing the originaccurately the locations of the MC boundaries, as well as the
shape of the MC. These changes of the MC boundary drivénapact parameter. We find a direct relationship betweenrthe i
re-configuration of the internal magnetic field, in a similaay pact parameter and the mean magnetic-field component presen
to the global expansion of MCs proposed by Démoulin & Dassdong the projection of the spacecraft trajectory orthatigrio
(2009). Thus, the shape of the MC boundary given by Eq. (#)e MC axis. We conclude that all the free parameters of the
can be interpreted as a consequence of the interaction fifishe model can be constrained, and so determined, from a timesseri
rope with its environment. We found that a flataord bent flux- of a measured magnetic field within a MC.
rope cross section requires a large gradient of the totakpre Finally, we plan to study how much global quantities, such
along the MC boundary (Fig. 7). Such a large gradient of preas magnetic flux and helicity, are modified in comparison with
sure is unlikely to be present around MCs outside the intigc their previous estimations using the Lundquist field on MOt
regions between two types of SW. model shows that the estimation of the aspect réits(the most

The most important deformation is a global elongation amportant parameter of the MC cross-section for these ¢loba
the flux-rope cross-section. It is characterized by the@spe quantities. Other boundary deformation, such as the glodyad-
tio (b), defined by the ratio of the dimension across to the omeg (a), have a much smalleffiect on the global quantities. We
along the spacecraft trajectory projected orthogonalthédMC  also found that the magnetic helicity, normalized by thedpict
axis. Simulating the crossing of the flux rope by a spacecrafff the axial and azimuthal fluxes, is very weakly dependent on
we find that, for lowb values, the magnetic field strength peakthe boundary shape (at least with a linear force-free field).
inside the flux rope, while it becomes flatterlamcreases. We
quantify this property so thdt can be estimated from the mag-Acknowledgements. We thank Tibor Térok for reading carefully, and so, im-
netic data collected across a MC. We also confirm the resUItspElf(‘j’Thgréﬁe r’:‘g}l‘ffi’(')%t ;*;fi \f‘eUth;Snigk”ro(;""f;rge&%ﬂ’gﬁ’BT”hfifsovmvo'fIEx:S'
Vand.as & RomaShetS.(ZO(B) WhO de_rlve_d an ana.lyt.lcal S".[‘1u'[|§arti<'sllly sgpported by tphe Argentinean gean%s: UBACyYT X42fs PICT 2007-
of a linear force-free field contained inside an ellipticallnd-  ogs6 (ANPCyT). S.D. is member of the Carrera del Investigaglientifico,
ary. We find that the configuration of the core inherits theatédl CONICET.

5. Conclusions
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