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Electron temperature in the solar wind: Generic radial
variation from kinetic collisionless models
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Abstract. We calculate analytically the radial profile of the average electron temperature in
the solar wind with a kinetic collisionless model. The electron temperature profile at large
distances r is the sum of a term oc »~%/3 plus a constant, with both terms of the same order
of magnitude near r ~ 1 AU. This result is generic as it is weakly dependent on the particle
velocity distributions in the corona. It provides a natural explanation for the observed
electron temperature profile near 1 AU, which is in the low or middle part of the range
between isothermal and adiabatic behaviors. The r~%/3 term comes from the isotropically
distributed electrons confined by the heliospheric electric potential, which is found to have
a similar radial variation. The constant term comes from the parallel temperature of the
electrons energetic enough to escape. The calculated profile flattens as r increases and
tends to be flatter in the high-speed wind. We also give simple explicit expressions for the
electron temperature and density at large distances and for the terminal wind velocity as a
function of coronal parameters when the electron velocity distribution is a Kappa function,
which is close to a Maxwellian with a suprathermal tail.

1. Introduction

Since the transport of thermal energy by electrons is be-
lieved to play a key role in thermally driven solar wind mod-
els, the measured electron temperature radial profile is an
important ingredient to constrain the theories. Evaluations
of radial temperature gradients for electrons are generally
made for simplicity as power law approximations of the form
Te x 1/ 7P, There is a large scatter in the measurements,
which give values generally in the low or middle part of
the range B = [0 — 4/3), whose limits correspond respect-
ively to isothermal and adiabatic (isotropic) behavior [see
Schwenn and Marsch, 1991, and references therein]. The
profiles tend to be flatter in the high-speed wind and to flatten
with increasing heliocentric distance in this type of wind [see
Pilipp et al., 1990]. There is, however, no overall agreement
between the existing results, which is not surprising because
it is difficult to separate genuine variations along stream flux
tubes from variations across them and from nongeneric ef-
fects due to temporal variations or to the contingencies of
the experimental setup.

What is the origin of the observed average electron tem-
perature gradient? Can it be explained by first principles?
An obvious theoretical difficulty is that the particle free paths
are nowhere sufficiently small in the solar wind (including its
base) [Scudder and Olbert, 1983] to justify a fluid descrip-
tion closed by using the classical Spitzer-Hiarm conductivity
[Spitzer and Hdrm, 1953], nor sufficiently large to justify
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a collisionless kinetic description. However, the collisions
between particles change their velocity directions and redis-
tribute their energies, but they do not change significantly
the mean electron kinetic energy owing to the large ion-to-
electron mass ratio. In other words, although collisions do
change the shape of the velocity distributions and, in par-
ticular, reduce the large thermal anisotropies given by exo-
spheric models [Jockers, 1970; Lemaire and Scherer, 1971],
they are not expected to change significantly the average
electron temperature

T. = me(v®)/3kp

Here m. and kp are the electron mass and Boltzmann’s con-
stant, respectively, and the angle brackets denote an average
over the electron velocity distribution.

Hence it may be worth using collisionless models to pre-
dict the average electron temperature. This is not true of
the proton temperature, which is affected by collisions with
alpha particles [see Hernandez et al., 1987, and references
therein] and possibly by wave-particle interactions [see, for
example, Tu, 1988].

Numerical results with a full exospheric solar wind model
were obtained by assuming (truncated) Maxwellian velocity
distributions at the base of the wind [Lemaire and Scherer,
1971]. Following the pioneering work of Scudder [1992a,
b], the role of non-Maxwellian distributions was studied nu-
merically by Maksimovic et al. [1997a]. Analytical results
were obtained for the proton temperature at large distances
by Lemaire and Scherer [1972]. The aim of this paper is
to perform a similar analytical calculation for the electrons
and with arbitrary velocity distributions in the corona. We
will find, indeed, that this class of models yields an electron
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temperature radial profile that follows a simple generic law
far from the Sun, weakly dependent on the particle velocity
distributions in the corona.

In section 2 we recall the basics of an exospheric solar
wind model. In section 3 we give general expressions for
the moments of the velocity distributions far from the Sun
and deduce analytically a generic radial profile for the elec-
tron temperature and the ambipolar potential. In section 4
we apply the results to a Kappa electron velocity distribu-
tion, which includes the Maxwellian as a limiting case, and
give explicit approximate expressions for the electron dens-
ity and temperature at large distances and for the terminal
wind velocity. In section 5 we discuss our results in the con-
text of the fluid momentum and energy balance equations. A
summary and final remarks are given in section 6. Except
otherwise stated, we use SI units; in the approximate results
the symbol “a” means “approximately equal,” whereas “~”
means a looser approximation, i.e., “of the same order of
magnitude.”

2. Basics of a Kinetic Collisionless Model

We recall in this section the basic points of a self-consis-
tent, kinetic collisionless solar wind model, with the formu-
lation developed by Lemaire and Scherer [1971, 1973] and
deduce general expressions for the moments of the particle
velocity distributions.

2.1. Basic Physics

A key hypothesis of these models is that above a given
reference level, called the “exobase,” the particles are as-
sumed collisionless. This allows one to calculate the velo-
city distribution of a given particle species above the exobase
as a function of the distribution at the exobase by using Li-
ouville’s theorem with conservation of energy and magnetic
moment. ’

An important point is that in an inertial frame the potential
energy of a charged particle near a massive body is the sum
of the gravitational energy and of the electrostatic energy
due to the ambipolar field required by the large difference
in mass of the electrons and ions. Let us first consider the
simple case of electrons and protons in static equilibrium
with the same temperature. Since the electrons barely see the
gravitational field owing to their small mass, an electrostatic
field is required to equalize the forces acting on the electrons
and ions; the corresponding electrostatic force acting on the
protons is one half the gravitational force and directed in the
opposite direction (the Pannekoek-Rosseland result).

In an expanding atmosphere, however, as first shown by
Lemaire and Scherer [1969] and Jockers [1970], the elec-
trostatic potential is much larger. Otherwise, the escaping
flux of electrons, which is proportional to their thermal ve-
locity at the exobase for a Maxwellian velocity distribution,
would be roughly \/m,/m. = 43 times larger than the es-
caping flux of protons, thereby producing an unphysical net
flux of negative charge from the Sun. Hence the electrostatic
potential adjusts itself in order to confine the electrons well
enough to keép their escaping flux equal to that of the pro-
tons. Broadly speaking, this positive polarization potential
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is a phenomenon similar to the charging of a space probe in
an ionosphere; the space probe acquires a negative potential
which repels the electrons since it would otherwise collect
much more electrons than ions (in the ratio of their thermal
velocities). _

As in the case of space probes and for similar reasons,
the potential at the base of the wind is of the order of sev-
eral times the thermal energy for Maxwellian electrons. In
the simple case of Maxwellian electrons and protons with
equal temperature Ty at the exobase 7o, one finds a poten-
tial e® (ro) = 5kpTo (see section 4.5.2), which tends to
accelerate the protons outward if it is larger than the mod-
ulus of the gravitational energy ®,4(r0) = mpMgG/ro
(where Mg is the solar mass and G is the gravitational
constant). With a typical temperature To =~ 1.5 x 10° K,
this gives ® (ro) ~ 650V, which corresponds to an energy
nearly 4 times larger than the Pannekoek- Rosseland poten-
tial @4 (7o) /2, assuming a typical exobase radius ro ~ 67
[Lemaire and Scherer, 1971]. It is worth noting that one
can obtain an analytical expression of the corresponding
wind terminal velocity Vsw from the approximate proton
energy balance m, VZy /2 ~ e® (ro) — @4 (ro), which gives
Vsw = 300 km/s with the above parameters; (see sections
3.2 and 5.2 and a simplified derivation of N. Meyer-Vernet
(A simple kinetic model of the solar wind, submitted to
American Journal of Physics, 1998).

Contrary to the protons, which are all escaping, only the
electrons of kinetic energy larger than e® (ro) can escape
from the exobase. It is therefore easy to understand why the
possible presence of suprathermal electrons in the corona,
which increases the electrostatic potential in order to pre-
vent the electron flux to become larger than the proton flux,
should increase the wind velocity as found numerically by
Maksimovic et al. [1997a] and shown analytically in section
4. This kind of model emphasizes the role of the ambipolar
potential in accelerating the wind, but, of course, the wind
terminal velocity can be deduced equivalently from the en-
ergy input in the corona due to the electron heat flux (section
5). Note that such an exospheric model takes for granted a
coronal temperature of the order of 1,000,000°. Scudder
[1992a, b] has suggested that this large temperature increase
with respect to the value at the base of the transition region
might be itself produced by velocity filtration in the attract-
ive potential, due to the presence of suprathermal particles.

2.2. Moments of the Electron Velocity Distribution

We apply the formulation developed by Lemaire and Sche-
rer [1971] to an arbitrary velocity distribution, using other-
wise similar assumptions. Above the exobase, the electro-
static potential & (r) is assumed positive and monotonically
decreasing, thereby attracting the electrons, and the mag-
netic field is assumed radial, i.e., the ma§netic field at level
ris B(r) = nB (ro) withn = (ro/r)”. We also assume
as the above authors that no particles are coming from infin-
ity, so that there are only three classes of populated orbits:
(1) the escaping electrons that have enough kinetic energy
to overcome the potential barrier; (2) the ballistic electrons
that emerge from the exobase but cannot escape; (3) the elec-
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trons trapped between two reflection points. In the complete
absence of collisions, the latter orbits can be arbitrarily pop-
ulated; thus to avoid introducing an ad hoc parameter, we as-
sume as Lemaire and Scherer [1971] that these electrons are
in quasi-equilibrium with those emerging from the exobase,
so that their velocity distribution function is similar except
for the different velocity range; this allows one to simplify
considerably the calculations. Note that with typical para-
meters the escaping electrons turn out to represent a small
fraction of the total density.

At a given altitude the nonescaping electrons (classes 2
and 3) have any pitch angle and speeds smaller than a max-
imum value given by

[2e® (r) /me]*/? (1)

from energy conservation with the potential energy —e® (r),
since the gravity is negligible. The case of the escaping
particles is different: their speeds must satisfy v > vy, but
this is not the only condition. Indeed, at the exobase any
electron with v > vy and a pitch angle smaller than 7/2
will escape because of magnetic moment conservation; at
distance r the conservation of energy and magnetic moment
then requires that their pitch angles 8 satisfy 0 < 6 < 6,
with '

’UM':—‘

sin?8. = n(1+V2/v?) @)
2e 1/2 ‘
v, = [;; (@ (ro)—é(r))] )

For accessible trajectories the velocity distribution fe (v)
at distance r is given by Liouville’s theorem in terms of the
distribution f.o (v) at the exobase ro, with conservation of
particle energy and magnetic moment. Assuming for simpli-
city that the velocity distribution at the exobase is isotropic
for each class of particles in the range of directions where it
is not zero, this gives '

fo(v) = fuo (VP2 @

where v is the velocity modulus and the above inequalities
on v and 8 are implied for each class of particles.

This allows one to calculate the scalar moments of the
electron velocity distribution at altitude r as the sum of the
contributions of the nonescaping and of the escaping elec-
trons:

M, = /davvqf.E (v)

vm
47r/ dvv?t? f, (v)
0

6))

oo 0.
+ 27r/ dvv?t? f, (v) / dfsin 6
M o]

Substituting the distribution (4) and performing the angular
integration, we obtain

M, = 41r/ ) dvv?t? foo (\/v2 + Vez) 6)
0
oo
+27r/ dvv?t2 foo (\/ v+ Vg) (1= cosb,)
3y
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In contrast, the electron flux parallel to the magnetic field
is given by the sole contribution of the escaping electrons,
so that

F, = /dsvv“fe (v)

oo B v
27 / dvv? f. (v) / dfsinfcosd (7)
M 0

M

Substituting the distribution (4) and the expression (2) of 4.,
we deduce

[o <]
F,=nF F = 7r/ dvv® feo (v)

Vo

where we have introduced the notation Vo = /V2 + vi,
ie.,

®

[2e® (ro) /me]"/? ©)

The electron density at altitude r is ne = Mo and the aver-
age electron temperature T, defined from the mean kinetic
energy in the electron frame, is given by

3nckgT. = me[Mez— F2/n]
2.3. Moments of the Proton Velocity Distribution

Vo =

(10

The case of the protons is different. Owing to the grav-
itational attraction, they are subjected to the total poten-
tial —mp, Mo G/r + e® (r), which is assumed positive and
monotonically decreasing above the exobase so that their ve-
locity increases monotonically with altitude. All the protons
present at altitude r are escaping, so that the accessibility
from the exobase requires, from conservation of energy and
magnetic moment, that their velocity and pitch angle satisfy
v > Vpand 0 < 6 < 6, with

, sin’ @, =1 (1 - V;,z/'vz) an
V2= m%{e [@ (r0) — ® ()] — @4 (r0) + &4 (1)} (12)
@y (r) =mpMaoG/r  (13)

If the proton velocity distribution at the exobase is fpo (V)
(assumed isotropic in the range of directions where it is not
zero, i.e., for 0 < 8 < /2), the distribution at altitude » for
accessible trajectories is given from Liouville’s theorem by

L) = oy -72)

where the above inequalities on v and @ are implied. This
allows one to calculate the scalar moments of the distribution
at altitude »

(14)

My =

[ w0

[><]
= 27r/» dvv?t2f0 (4 /v2 — V2) (1 — cos b,
|, (o7 - ) (1 costy)

The flux of protons parallel to the magnetic field is obtained
in a similar way as for the electrons, using (14) and (11)

15)

F, =

™ ‘/0‘7 dvv fpo (v) (16)

Contrary to the electron flux, the proton flux is independent
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of the potential, which is not surprising since these particles
are repelled.

2.4. Zero Electric Charge and Current

The electrostatic potential is calculated in a self-consistent
way by writing (1) that there is no net flux of charge from the
Sun; that is, Fe = F, and (2) that the plasma is everywhere
approximatively neutral; that is, ne = n,.

The condition of zero net flux of charge yields from (8)
and (16)

/~°° dvv® feo (v)

Vo

= /Owdvvsfpo(v) a7

This equation determines the velocity Vo and thus the elec-
trostatic potential ® (ro) at the exobase as a function of the
velocity distributions. It is important to note that whereas
the solution depends on the whole proton velocity distri-
bution fpo (v) at the exobase (from the right-hand side of
(17)), it only depends on the high-energy part of the electron
one, feo (v > V) (left-hand side of (17)). Hence as already
noted, the energetic electrons play an important role in the
physics of the wind, but this is not the case for the protons.

The shape of the potential & (r) is calculated by writ-
ing the charge neutrality condition at any level r; that is,
Mo = My, using (6) and (15). In general, this calculation
has to be done iteratively; in this paper we use instead some
simplifications valid at large distances in order to obtain an
analytical result.

Note that the normalization of the distributions feq (v)
and fpo (v) is determined by the charge neutrality condi-
tion at 7o, which can be written since §. = 6, = /2 and
vMm = Vp atrg

ne (ro) = 4w /°° dvv? fao (v) — 27 /‘°° dvv? fao (v) (18)
0

Vo

ne (ro) = np (ro) = 27r/0 dvvzfpo (v) (19)

In practice, the second integral in (18) is much smaller than
the first one since V; is generally much larger than the most
probable speed of the distribution feo (v); hence n (o) is
roughly equal to the integral of f.q (v) over the whole velo-
city space. In contrast, n, (ro) given by (19) is half the in-
tegral of fpo (v) over the whole velocity space, which comes
from the fact that there are no protons coming inward.

3. General Expressions at Large Distances
3.1. Generic Electron Temperature Radial Profile

In order to obtain analytical expressions, we now consider
large distances; that is, n = (ro/ r)2 & 1. In this case, the
velocities V, and V;, given in (3) and (12), respectively, can
be approximated by

Ve ~ [268(ro) /me)? =

Vo (20)

1/2
v, ~ {%[ecﬁ(ro)—cbg(ro)]} =V, Q1)
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The proton moments (15) can be simplified by writing
1 —cosf, ~ n(1—V;2/v?) /2 (from (11) with 6, < 1),
substituting V, ~ Vp0, and making a change of variable in
the integral, so that

Mpg = Cqn

fpo (v)

(22)

) ’U3
Cq = 7!'/0 dv ('U?' N ‘/;2())(1—q)/2

Hence in this approximation all the proton scalar moments
vary as 7 at large distances, so that the average proton tem-
perature, which is given by an equation similar to (10), is
a constant. This represents the contribution of their par-
allel temperature, which follows approximately a double-
adiabatic equation at large distances, whereas their perpen-
dicular temperature is much smaller [Lemaire and Scherer,
1972].

We concentrate here on the electron moments. They can

(23)

be simplified in a similar way by substituting the expression

(2) of 8, with §, < 1 into the expression (6) of Mg, so that

M, =~ 47r/ " dvv?t2f (\/1}2 + Vz)
q ) €0 0

+ 7TT)/ dvv? feo (\/vz + V02) (v? + V)

YM
Furthermore, vy is generally much smaller than the scale of
the variation of the distribution feq (v); (this can be verified
a posteriori). Since we have also vy < Vj, we can make
the approximation

feo (\/ v? + ng) ~ feo (Vo)

in the range 0 < v < vy, so that the first term of the sum in
(24) can be approximated by

24

a2 am g+3
47 feo (Vo) dvv?™* = 3fe0 (Vo) vif
0

g+ 25)

For the same reason, in the second term of M., the integral

f:; can be approximated by f0°° because the contribution of

the range of integration 0 < v < wy is small. Hence the
electron scalar moments M., can be written

My, =~ 47feo(Vo)vii®/ (g +3) (26)
+ 7r17/ dvv? feo ( v2? + V2> v+ V2
; \/ 0 ( )

Thus in this approximation all the electron scalar moments
vary with distance as

Me.q ~ Dgvif® + Byn 27)
Dy = 4rfeo (Vo) /(q+3) (28)
By=7 / do® (- V)V fow)  (29)

0

where the first and second terms of the sum (27) stem from
the nonescaping and the escaping electrons, respectively.
We now write the neutrality condition n, = n, at large
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distances; that is, Mo = Mpo which reads, using (27) and
(22)

ne = np, ~ Dovd+Bon = Con (30)

when
[n(Co — Bo) /Do]*/®

This can be further simplified by noting that the contribution
of the escaping electrons to the total density is small, i.e.,
By < Cy; (this will be verified a posteriori). An important
consequence is that the electrostatic potential at large dis-
tances ® (r) = m.vZ;/2e is given explicitly by

v A (31)

&(r) ~ me[nCo/Do)?'? /2e (32)

which varies as & () o 7?/3 oc 1/r%/3,

The electron temperature is deduced by substituting into
(10) the electron moment M.o given in (27), the electron
flux F, given in (8), and the density given in (30), using the
expression (31) of vy with By <« Co. Noting that in (10)
we can neglect the electron flux term since the wind velo-
city Vsw = Fe/n. = F/Cy is generally much smaller than
the electron thermal velocity (this will also be verified a pos-
teriori), and using D3/ Do = 3/5 (from (28)), the electron
temperature is finally given by

T. =

Tyzs+T (33)

where Ty 3, which comes from the first term in (27), is dir-
ectly related to the electric potential by

2ed (r
Ty3 5k1(; ) 34
me [ Co\® .
Tys = = /3
43 5kp (Do> 63

and T, which comes from the sécond term in (27), is a con-
stant given by

mEBz
3kpCo

(36)

This is an important result; without specifying the velocity
distributions, we find that the electron temperature at large
distances is the sum of a term varying as n?/3 o« 1/7%/3 plus
a constant.’

It may be worth noting that the behavior at short distances
is very different. Indeed just above the exobase, the expres-
sion (6) of the moments M., can be simplified differently
since in that case V, < vy ~ V. Hence if Vj is larger than
the scale of variation of the velocity distribution, one finds

instead of (26): M., ~ 4m f0°° dvvit2 foo (\/uz + Vez).
As a consequence, if feo is a Maxwellian, the term involving
Vez, which determines the variation with distance, factorizes
and can be put outside the integral, so that Mo and M, vary
similarly with distance, and the temperature is thus a con-
stant just above ro. In contrast, if f.o has a suprathermal tail,
being, for example, a Kappa function, then M., decreases
less quickly with distance than Mo (because of the weight-

29,709

ing factor v2+2), 50 that just above the exobase, the tem-
perature increases with altitude [see Scudder, 1992a; Meyer-
Vernet et al., 1995].

3.2. Order-of-Magnitude Evaluation

What are the relative importance of the two terms Ty/3
and T in the electron temperature (33) at large distance? In
this section we make order-of-magnitude estimates (indic-
ated by the symbol ~) in the spirit of the methods described,
for example, by Migdal [1977]. We have

3c5/®

________n2/3 '
5D2/°B,

Tys/T (37

The constant Cy given in (23), which determines the dens-
ity since n, = Con, and the proton flux (16) can be es-
timated by noting that the integrals in these expressions are
determined by the bulk of the proton distribution fpo (v).
Hence they can be evaluated by approximating this distribu-
tion with a function decreasing at the scale w,, as does, for
example, a Maxwellian of thermal velocity w,. We also as-
sume that V0 > w,, which can be, in practice, verified a
posteriori, since Vo is roughly the terminal wind velocity.
In this case, the square root in the expression (23) of Cy can
be replaced by Vj0 to obtain an order-of-magnitude estimate,
so that, comparing with the flux (16), we find

Co ~ Fy/ (n%0) (38)

Note that the terminal wind velocity is Vsw = Fp/np, =
F,/ (nCy); that is,

2 1/2
sz ~ V;,o = {E [e@ (1"0) - @g (1‘0)]} (39)

as expected from the proton energy balance when the ter-
minal wind velocity is large compared to the proton thermal,
bulk velocity and heat flux terms at the exobase (see also
section 5.2).

In contrast, the integrals contained in the expressions con-
cerning the electrons involve the high-velocity range (v >
Vo) of the electron distribution. For Vy much larger than the
scale of variation of this distribution, most contributions to
the integrals in (29) and (8) occur in the vicinity of v ~ Vg
with a range of integration of order V;, so that in order of
magnitude

By ~ wfeo (Vo) Vg
Fe/n = F ~ 7"feO(VO)‘/O‘l

(40)
(41)

Equalizing the electron flux F, given from (41) and the pro-
ton flux F, given from (38), we thus obtain

~ 7rfeO (VO) V04

We deduce the ratio of the two temperature terms by substi-
tuting (28), (40), and (42) with the relevant values of ¢ into
(37) and using the order-of-magnitude relation V/Vpo ~

(myp/me)*'? (from (20) and (21))

CoVpo (42)
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Tays/T ~ 0.5 (mp/me)*® (ro/r)*/?

Expressing the distance r in astronomical units (1.5 x10*
m) and the exobase radius 7o in solar radii (ro = 7 X
108 m), we finally obtain the electron temperature order-of-
magnitude profile

To(ro) 4/3
Te(r) « ~0.2 (——o> +1
T(aU)

(43)

(44)

Since the exobase is typically at a few solar radii, the elec-
tron temperature profile is the sum of a 7=%/3 term plus a
constant, with both terms of the same order of magnitude at
1 AU. The r—%/3 term comes from the first term of (26),
i.e., from the nonescaping electrons which are isotropic-
ally distributed. In contrast, the constant stems from the
second term in the sum (26), i.e., from the escaping elec-
trons. Since, for them, § < 6., we have for n < 1:
v3 /v? = sin? 8 < 75 (1 + V#/v?), so that it can be easily
shown that their perpendicular temperature is negligible at
large distances (by a factor of order 7). The constant temper-
ature term is thus the contribution of the parallel temperature
of the escaping electrons.

Note that in order to simplify the electron temperature, we
have assumed that the fractional contribution Bg/Cy of the
escaping electrons to the total electron density at large dis-
tances is small. This is justified since from (40) and (42); this
contribution s given by: Bo/Co ~ Vpo/Vo ~ (me /mp)l/ 2
i.e., a few percent; note that this value is independent of dis-
tance. We have also assumed that the particle flux term is
negligible in the expression (10) of the electron temperature,
ie., F?/Cy < B,. This inequality is verified since (40)
and (41) yield F2 /By~ Bo. Finally, the large distance ap-
proximation was mainly based on the inequality v < Vp.
Substituting (28) and (42) into (31), we find (vm/Vo)®> ~
3n(mp/ me)l/ ? /4, so that the large distance approximation
requires (ro/r)2 <4 (me/m,,)l‘/2 /3~ 0.03.

It is important to note that the order-of-magnitude profile
(44) is generic since it has been obtained with very weak
hypotheses on the velocity distributions at the exobase. In
the following sections, we specify these distributions.

4. Application to a Kappa Electron Velocity
Distribution :

Since, as already noted, the moments of the proton ve-
locity distribution depend on the bulk of the distribution
at the exobase, the results are not expected to be drastic-
ally changed by the presence of suprathermal protons at this
level. We thus assume hereafter that they are Maxwellian
distributed at the exobase.

4.1. Maxwellian Proton Velocity Distribution

The Maxwellian velocity distribution of thermal velocity
wy, is given by

Npo

fo(v) = :

_p0 —wz/w:
3/2,,3
s wp

(45)
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The normalization constant npo is determined by (19), which
gives
np(ro) = npo/2 (46)
(as already noted, the factor 1/2 is due to the fact that there
are only escaping protons, i.e., one half of an isotropic dis-
tribution fpo (v)). Hence the proton flux (16) is given by
F, = nny(ro) wp/v/T 47
and the expression (23) of Cy yields (with the normalization

(46))
P (\/ UPO)

Co=np(r)/n = mnp(ro) VT (48)
Upo = Vo /w2 (49)
P\E;) - <% - aﬂ) e [1—erf ()] + % (50)

as found by Lemaire and Scherer [1971]. If z > 1, we have

P(z)~(1-1/z%+9/4z* —15/22° + ...} /= (51)

The terminal wind velocity is deduced by dividing the
proton flux (47) by the density given in (48)

Vsw = Fp/np = w,,/P(\/lﬂ)

If Upo > 1, this yields, from (51), Vsw ~ Vpo. The ve-
locity Vo, defined in (21) depends on the potential & (ro)
at the exobase, which, in turn, depends on the electron ve-
locity distribution feo (v). In the next section we consider a
Kappa electron velocity distribution, which generalizes the
Maxwellian by including a suprathermal tail.

(52)

4.2. Kappa Electron Velocity Distribution

This kind of electron velocity distribution in the corona
has been considered, in particular, by Scudder [1992a, b]
and numerically by Maksimovic et al. [1997a]. Namely,

Ne An 2 7-(x+1)
feo(v) = T;W [ + n—wg] (53)
A, = I'(k+1) (54)

T(x—1/2)T (3/2)

This function is rather close to a Maxwellian of temper-
ature mewg /2kp at low energies and has the same most
probable speed, but it has a suprathermal tail whose con-
tribution decreases as « increases, with the distribution ap-
proaching a Maxwellian as k — oo since A, — 2x%/2/4/T
and (1+ vz/nwz)_(RH) — ~*"/2_ This function might
be suitable to describe electron velocity distributions in the
solar wind, where suprathermal electrons with a power law
spectrum have been detected over a large energy range [Lin,
1997], and it has indeed been recently used to fit measured
solar wind electron distributions [Maksimovic et al., 1997b].
Roberts [1998] suggested recently that turbulent waves can
produce a suprathermal electron tail at the base of the trans-
ition region, but the presence of a Kappa electron distribu-
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tion in the corona is still subject to some debate [Ko et al.,
1996]. We introduce the notations

Too = mew?/2kp; Tpo = mpwl/2kp (55)
t = TeO/TpO (56)
m 1/2
b= wp/we = (mpt> (57)
Us = VE/w? = ed(ro)/kpTeo (58)
so that (20), (21), and (49) yield
Upo ¢, (ro)
— -——t = 5
tUo UokpTeo “ 59

where o has been assumed to be positive (see section 2),
which can be verified a posteriori; note also that the simpli-
fications made in section 3.1 assume implicitly that vy <
w,, which can also be verified a posteriori since vy /we
(5T4 /3 / 2Teo) 1 2. Note that from section 4.1, when the ter-
minal wind velocity is large compared to the proton thermal

velocity at the exobase, we have
We 4/ Mealy/my

With the above Kappa distribution, the electron flux at any
distance given in (8) reduces to

Vsw =~ Vo =~ (60)

EAK, e U
Fe(r):n4:;£(nw1) [1+ °] [1+U,] (61

as found by Pierrard and Lemaire [1996]. Equalizing this
flux to the proton flux (47), we obtain Uy as solution of

431 (0) VR (5 1)
ﬁneo A

The normalization parameter n.q is calculated from the char-
ge neutrality condition at the exobase (18)-(19). With the
Kappa distribution (53) this yields

1 1
2" (m)] =np (ro)  (63)
(o]

[1 + %2] (14 Uo) = ©62)

ne (o) = Teo [1 -

The parameters D, and B, involved in the electron mo-
ments are calculated in the appendix. Substituting (48),
(Al), and (A4) into (36) and (35) and using (62), we deduce
the two terms of the electron temperature at large distances

T.=Ty3+Tas
Uo 2/3
1+— ) (1+Uo) (65)

1/2
(1 + U°) (66)

(These results can be retrieved by making a tedious asymp-

Toys _ L [30P &
To 10

T 2uk®?(k—1)(Uo + 3/2)
Too  3PA.(k—3/2)(Uo +1)

v k=1

totic expansion of the formulae given by Pierrard and Le-

maire [1996] and summing on the different classes of or-
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bits.) Note that the fractional contribution of the escaping
electrons to the density is Bo/Cyp given by (A3), (48), and
(62), as

b 2RR-1) (0 12)
Ne PA,; (Uo-l—l)(l-l—Uo/K,)l/z

Nesc

67

These expressions simplify in several cases studied below.

4.3. Maxwellian Electrons (x — oo)

Letting £ — oo in the above equations, we obtain

T, 1
To 10

2/3

3P To+1

The fractional contribution (67) of the escaping electrons to

the density is nese/ne = (v/7p/P) (Uo +1/2) / (U + 1).
In addition, (62), which allows one to calculate Uy, reduces
to

(14 Uo) e Vo = 2uny (ro) /neo (69)

where the right-hand side member is deduced from n. (o)
= nyp (o) with, from (63),

sers (V)] - /2 o)

as found by Lemaire and Scherer [1971].
If Up > 1, these expressions further simplify to give

T, ~ T 1 (3nPU +ﬁy_
10 m 3 P

and n, (ro) & neo (With a relative error of /U /me~V°) so
that Uy is now given by (1 + Up) e~Y° ~ 2u. If in addition
Upo = Vpo/wp > 1, we have P ~ 1/,/Upo, so that the
ratio of the two terms in the electron temperature is

Te (1-0)
Neo

n

Tyys

~ 035 n23( T2
T K <

MeQ

5/6
) Ut (12

where «, defined in (59), is of order 1 or smaller, and we
have ne,c/ne = (ralome /m,,) /2 With typrcal para-
meters, (69) yields Uy =~ 4 — 8, so that Ty;3/T ~0.27

7?13 (myp/ame )5/6 and nesc/ne ~ 0.08/a. However, with
these moderate values of Uy, the above approximations are
rather rough.

4.4. Large Potential With Finite Kappa (x < Up)

Consider now the case Uy > k. Equation (63) reduces
to ne (r0) ~ neo (With a relative error of A /(25 — 1)x

(5/Uo)"~*?), and (62) yields

[ﬁAm"-l/z] ()

4p (s —1)

so that the normalized electrostatic potential increases as x

Uo (73)
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decreases, as expected since the presence of suprathermal
electrons tends to increase the electron flux. The electron
temperature given in (65) and (66) reduces to

T. 1 (30P03 \P,
Too 10 \p(k—1)

If, in addition, Upo = Vpo/wp >> 1, which is generally true
when Uy > k, we have P = 1/,/Upo so that the ratio of
the two temperature terms is

%N 2/3(ﬂ->5/6 Ay (k—3/2)
T ~ 0.31n —_— (75)

meQ k(K — 1)5/3

2uk (k—1) Ué/z

3PA.(r=3/2) 7

with o still given in (59), i.e., of order 1 or smaller. This
yields Ty/s/T ~ 0.219%/3 (m, /m.a)*/® (within 5%) for
Kappa varying from 2 to 6. Note that in this case (67) gives
Nese/Ne = 26451 (kK — 1) /Mea/my, so that ne,c/ne =
(0.04 — 0.09) \/ for k = 2 — 6. The smaller is , the larger
is Uy, and the closer is « to 1 (in particular, for « < 3,
a~1)

4.5. Applications

4.5.1 General approximate results.. Since the ratio of
the two temperature terms, Ty /3 /T as a function of 7, varies
weakly in the two extreme cases considered above and, as
shown below, we have, in practice, @ = 0.5 — 1, we find that
the electron temperature radial profile can be approximated
by

7'0(1 ) 4/3
T, < 0.13 (—0) +1 (76)

T(av)

over a large range of parameters; here g is in 7g and r in
AU. We will see indeed that this expression is very close to
the more accurate results obtained in the following sections.
The above expression refines the order-of-magnitude estim-
ate obtained in section 3.2 without specifying the velocity
distributions in the corona and confirms that the shape of the
electron temperature radial profile is weakly dependent on
these velocity distributions. As an illustration, we have plot-
ted in Figure 1 the profiles obtained between 0.3 and 5 AU
with 7o = 6 rg and 7o = 3 rg, which are reasonable values
in the so-called quiet corona and a coronal hole, respectively
(see sections 4.5.2 and 4.5.3); we have superimposed some
power law approximations, close to values used to fit meas-
ured profiles of the average electron temperature [Marsch et
al., 1989] or of its components [Pilipp et al., 1990].

In contrast, the terminal wind velocity Vsw and the abso-
lute value of the electron density and temperature do depend
on the electron velocity distribution at the exobase. Indeed
the normalized potential U cannot be extremely large with
a Maxwellian electron distribution because of the exponen-
tial factor in (69). An order of magnitude can be obtained in
this case by using (60) with Uy ~ 5 and o < 1, which
yields Vsw < 5 x 1072w, ie., Vow < 3004/Tyo (in
SI units). This is no longer true when the distribution de-
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creases less steeply at high energies. With a Kappa distri-
bution the terminal velocity is approximately given by (60),
so that from (59) and (73) we have for a large normalized
potential Uy > &

I [_w_e\/v‘rAmH/z]”(“”
mp Wp 4(k—1)

8y (ro))?
kBTeO

VSW ~

an

1
Since the main variation comes from the factor (w, /wp)*=*

the velocity Vsw increases as « decreases, i.e., as the exo-
base electron velocity distribution has more suprathermal
electrons. For example, witht =~ 1 and k = 2 — 3 (for
which the second term in the curled bracket above can be
neglected, in practice), (77) yields Vew = [0.27 — 0.13] we;
that is, Vsw ~ [1500 — 700]4/T%o in SI units. Note that the
density at large distances n, (1) & nyp (o) nwpm™Y/2/Vaw
varies in the opposite sense. We consider below two illus-
trative cases without using the approximation of a large po-
tential.

kinetic model |
(ro=3ro)

10 '

kinetic model .
(r,=6ro)

electron temperature (arbitrary units)

radial distance (0.3 to 5. AU)

Figure 1. Large-distance radial profiles of the average
electron temperature obtained analytically using a collision-
less kinetic model of the solar wind with an exobase radius
of (top) 3re and (bottom) 67 . Power law approximations
have been drawn for comparison.



MEYER-VERNET AND ISSAUTIER: SOLAR WIND ELECTRON TEMPERATURE

4.5.2 An illustrative case study with Maxwellian elec-
trons.. With a Maxwellian electron distribution at the exo-
base and assuming, for simplicity, that t =
so that 4 ~ +/m./m,, we deduce from (69) and (70):
Uo =~ 4.8. With the solar mass Mg ~ 2 x 1030 kg we
obtain Upg = Up — 2.3 X 107/ (?‘o(ro)Teo); hence the exist-
ence of a wind requires in this case: ro(o)Teo > 4.8 x 10°
K, i.e., not too small an exobase radius and/or temperature.

The exobase r¢ is evaluated as the radius where the mean
collisional free path equals the scale height, which gives dif-
ferent exobase radii for the electrons and protons since they
have different mean free paths. However, this difference can
be neglected because the variation in free path translates into
a small variation in rg, owing to the large density gradient in
the corona.

Let us consider parameter values typical for the so-called
“quiet” corona, which may be a source for the slow wind.
With the density profile given by Withbroe [1988] and as-
suming Tpo &~ Teo & 1.5 x 10° K at a few solar radii, we
find an exobase radius 7o ~ 6rg. Note that Teo and Tpo
defined by (55) are rather close to the values of the electron
and proton temperatures at the exobase calculated from (10)
and a similar equation for the protons, respectively, by in-
tegrating the distributions in velocity space [Lemaire and
Scherer, 1972] (note also that the corresponding flow speed
at the exobase is, from (47), wp/+/7 & 90 km/s). With these
parameters the electron average temperature profile (68), ter-
minal velocity (52), and density (48) at large distances are

T.(r) ~ 44x10*[15/m5+1] K
Vew ~ 314 km/s (78)
np(r) ~ 13/riy cm™3

These values, obtained analytically, agree with the numer-
ical results of Lemaire and Scherer [1971] and are in the
range of observations in the slow wind [see Schwenn and
Marsch, 1991 and references therein]. In particular, a power
law fitting of the radial profile of the average electron tem-
perature measured between 0.3 and 1 AU yields an index
B = [0.4 — 0.66] in this type of wind [Marsch et al., 1989],
which is a reasonable approximation of the profile above
(see Figure 1, bottom).

4.5.3 An illustrative case study with a Kappa elec-
tron distribution.. As already noted, with a Kappa elec-
tron distribution the normalized potential Uy increases as
Kk decreases, which may produce a large terminal velocity.
Hence let us consider parameters relevant for a so-called po-
lar “coronal hole,” which is believed to be a source for high-
speed wind, and assume, for illustrative purposes, k = 3,
which yields Uy ~ 28 in the simple case where Too = Tpo.
With such a large value of Uy, Upo depends weakly on ¢ and
Teo and the existence of a wind requires 70750 > 0.8 x 108
K, which is a much weaker condition than with a Max-
wellian.

To evaluate the exobase radius, we use the density profile
given by Withbroe [1988] for a polar coronal hole near the
minimum of the solar cycle, which lies within a factor of
2 of recent observations [Fisher and Guhathakurta, 1995].

eO/TpO ~ 1.
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There is a large uncertainty on the coronal hole temperatures
and no overall agreement [see, for example, Habbal et al.,
1993; Ko et al., 1997; David et al., 1997], especially in the
outer corona, and we assume, for simplicity, T.o ~ Tpo =
10° K at a few solar radii, which yields 7o ~ 3 rg.

We deduce the electron average temperature profile from
(65) and (66), the terminal wind velocity from (52) using
(59), and the density from (48)

T.(r) ~ 3x10°[0.55/r3 + 1]
610 km/s
2/riy cm”

np(r) =~ s

Note that these results are close to those given by the simpli-
fied expressions (73), (74), and (77), which represent very
good approximations in this case. The velocity is in the
low range of high-speed values and the density is compat-
ible with observations in the fast polar wind near solar min-
imum [Phillips et al., 1995; Issautier et al., 1997]. A power
law fitting of the radial profile of the average electron tem-
perature measured between 0.3 and 1 AU yields a mean in-
dex 8 & [0.15 — 0.48] (including the error bars) in high-
speed wind [Marsch et al., 1989], with a tendency of the
profiles to steepen with decreasing distance [Pilipp et al.,
1990]; this is in reasonable agreement with the profile above
(see Figure 1, top). However, the temperature value is more
than twice larger than that typically observed in this type
of wind [see Pilipp et al., 1990]. Assuming larger thermal
temperatures at the exobase and/or a smaller value of Kappa
increases the terminal velocity (see(77)) but also increases
the discrepancy in the temperature at large distances. One
can also verify from (74) that this discrepancy cannot be re-
solved by assuming a smaller thermal electron temperature
and/or a larger proton temperature in the corona, as sugges-
ted by some recent observations [see, for example, Kohl et
al., 1996; David et al., 1997] (see also section 6).

5. Momentum and Energy Balance
5.1. Electron Fluid Equations

Do our results agree with the fluid equations? Since the
electron temperature is anisotropic, one must use the aniso-
tropic fluid equations. The radial momentum equation for
the electrons in a radial magnetic field reads

dd 1d 2
C‘ETT = n—ed—r (nekBTe”) + ;kB (Te” - TEJ.) (80)
dd d 2
. — ZkpT,
e drkBTeH SkTes (1)

where we have neglected the electron inertia and gravita-
tional terms, assumed the pressure tensor diagonal with Ty
and T, the parallel and perpendicular electron temperat-
ures, respectively, and n. o« 1/r2. Since the average elec-
tron temperature at large distances is the sum of a term
T4/3 coming from the nonescaping electrons, which have
equal parallel and perpendicular temperatures, plus a con-
stant coming from the parallel temperature of the escaping
electrons (whose perpendicular temperature is negligible),
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with the fractional contributions of these two components to
the total density being constants, we have T.; = T3 and
dTe) /dr = dTy/3/dr. Hence (81) yields

dT. 2
e‘z—q’ = kg ( 43 _ —T4/3> (82)

T T
With Ty/3 o r~*/3, this gives e® (r) ~ (5/2) kpTy/s,
which agrees with (34). :

Note that in contrast, the isotropic fluid radial momentum
balance equation would give incorrect results, which is not
surprising. Indeed writing instead of (80)

ej—f = —:—e% (nekpTe)
with ne o« r72, T, = Ty + T with T3 x @
r=%/3 and T being a constant, we find ed®/dr = —2kp x
[(5/3) T4/3 + T] /7, which is not compatible with (34).

One would also like to retrieve the r~%/3 variation of the
term Ty/3 from the anisotropic fluid energy equation for the
electrons. This equation reads
"id; [k_B (Te]] + 2T'eJ_) + %] + %kBTeJ_ =0 (84)

(83)

2 e

with a radial magnetic field and n. o »~2. Since the parallel
electron heat flux at large distances Qg r~2 (from (87)),
i.e., varies as the particle flux F, this reduces to

d (T. 2 ,
= (—“ +Tu> +oT = 0 (85)
dr \ 2 r
With Te; = Ty/3 and dTe)/dr = dTy3/dr, this gives
dTy/3/dr = —(4/3)Ty/3/r, which yields indeed Ty/3 o
r=4/3,

5.2. Wind Energy Balance

The kinetic calculation emphasizes the role of the ambi-
polar electric field in accelerating the wind. However, the
large terminal wind velocity obtained with a Kappa distribu-
tion can also be understood by energy balance considerations
involving the suprathermal electron heat flux in the corona,
as suggested by Olbert [1981]. Let us calculate the electron
parallel heat flux at any distance 7. Neglecting the contri-
butions of the terms due to bulk velocity, it can be approx-
imated by the parallel kinetic energy flux of the escaping
electrons

Q) ~ 5 [Ewtnn) 6)
R m;e /w dvv® foo (\/v2 + V,f) [v2 + V2]

With the change of variable v = 1/v% + V2 and using the
expression (8) of the electron flux we find

Me

V2
P (7)

Qe (r) = 1Qe) (ro) — (87)

'We now approximate the wind energy balance by neglect-
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ing the electron and proton temperature terms, which is jus-
tified with a large terminal wind velocity, the small proton
heat flux [Lemaire and Scherer, 1972}, the small initial wind
velocity (and the possible contribution from fluctuations and
plasma waves). This gives the terminal wind velocity from

mpViy  Qejl(ro) Qe (r)
2 T F.(ro) F.(r)

—®,(r0) (88)

Substituting (87) with V,, = V} at large distances, this yields

mp Vi me Vg
2 T2
From the definitions (20) and (21) of V5 and V0, this yields
Vsw = Vpo, which is just the result found in section 4.1 with
the same large wind velocity approximation. As expected,
one can thus retrieve the terminal wind velocity from the
energy balance, as produced by the electron heat flux at the
exobase.
Note that, in particular, for either a Kappa distribution
with & > 2 and Uy > & or a Maxwellian with Uy > 1,
(87) yields at any distance r

Qe (r)

N meVée—1 m V2
F.(r) = 2 k-2 2

— &, (ro0) 89)

-(90)

6. Summary and Final Remarks

We have found analytically a simple expression for the
radial profile of the average electron temperature at large he-
liocentric distances in the solar wind by applying a kinetic
model developed by Lemaire and Scherer [1971] to an arbit-
rary electron velocity distributionin the corona. The electron
temperature does not follow a large-scale polytrope law, as
is often assumed, but is instead the sum of a term varying
as 7~*/3 plus a constant. The ratio of these terms is of or-
der (my/ me)s/ ® (ro/ r)4/ 3, 50 that since the exobase radius
7o is a few solar radii, both terms are of the same order of
magnitude near 1 AU. This result is weakly dependent on
the particle velocity distributions in the corona. The relative
contribution of the constant, which flattens the profile, tends
to be larger in the fast wind coming from a polar coronal
hole, where rq is expected to be smaller owing to the smal-
ler density. This provides a natural explanation for the tem-
perature profile generally observed and yields a flattening of
the profile with increasing distance, in agreement with He-
lios observations [Pilipp et al., 1990]. This analytical result
is only valid at distances much larger than the exobase ra-
dius rq; just above rg, the temperature remains constant or
increases, depending on whether the electron velocity dis-
tribution is Maxwellian or not (see section 3.1). All these
results suggest that some care is needed when extrapolating
to the corona empirical polytropic laws determined over a
limited distance range.

This generic profile is not surprising. Indeed, the r—4/3
temperature term, which comes from the electrons confined
by the ambipolar electric potential, corresponds to an adia-
batic behavior since their density varies as r~2; this is not
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surprising since they are isotropically distributed with zero
heat flux. The temperature term which does not vary with

distance comes from the parallel temperature of the escaping.

electrons; this behavior is not surprising since these elec-
trons have negligible heat flux divergence (see (87)) and a
small perpendicular temperature.

As expected, these analytical results are compatible with

_the anisotropic fluid momentum and energy balance equa-

tions for the whole electron population, but not with the
isotropic ones. In particular, the isotropic momentum fluid
equation, which is often used to estimate the heliospheric
ambipolar potential, gives, in this case, an incorrect result.

Our calculation also gives explicit expressions for the am-
bipolar electric potential at large distances, which varies
as r~%/3, i.e., slightly more steeply than the Pannecoek-
Rosseland potential, for the contribution of the escaping
electrons to the total density, which is found to be a few per-
cent, and for the terminal wind velocity. In particular, we

~ show analytically that the terminal velocity increases when
the electron velocity distribution at the exobase has more
suprathermal electrons.

It must be noted that, for the sake of simplicity, we have
neglected the solar rotation and assumed the magnetic field
to be radial. This approximation may be acceptable to study
the polar wind and also at smaller latitudes closer than 1 AU.
For other regions the present results should be generalized
to a spiral magnetic field [see Chen et al., 1972]. It is also
worth noting that the electrons trapped between the electro-
static and magnetic mirror reflection points have been as-
sumed to be in quasi-equilibrium with those emerging from
the exobase; at large distances these trapped electrons con-
tribute much more than the ballistic ones to the moments of
the distribution, so that the »~*/3 temperature term is essen-
tially due to them; relaxing this hypothesis would introduce
an arbitrary coefficient for this term.

This model, which has the immense advantage of sim-
plicity, has, however, some drawbacks. First, it is usual to
identify (1) the confined electrons to the low-energy part
of the observed electron distribution which is roughly Max-
wellian and isotropic inits proper frame (the so-called
“core™), which represents the bulk of the distribution, and (2)
the escaping electrons to the high-energy part of the ob-
served distribution which is highly anisotropic and asym-
metric [Mongomery et al., 1968; Feldman et al., 1975] .
However, in the exospheric description the confined elec-
trons at large distances represent the low-energy part (with
respect to the local heliospheric potential) of the exobase dis-
tribution translated in energy by a quantity roughly equal to
the exobase potential; since the exobase temperature is of
order 100 eV, the resulting distributionis very different from
the core distribution observed near 1 AU, which is a quasi-
Maxwellian of temperature of order 10 eV. Furthermore, the
mean velocity of the core component is observed to be close
to the solar wind velocity instead of zero, and the core tem-
perature is observed to cool less steeply than adiabatically
in the ecliptic [see, for example, Sittler and Scudder, 1980;
Pilipp et al., 1990] and also in the fast wind at high helio-
graphic latitudes [Issautier et al., 1998]. So, as expected,
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collisionless models do not predict correctly the electron ve-
locity distribution nor separate contributions to the moments
of arbitrary parts of the distribution, which are much more
affected by collisions than the average total electron temper-
ature.

Second, as noted in section 1, this model is not expected to
predict correctly the proton temperature profile, and indeed,
it does not. Third, although this model can give results in
the range of observations for the shape of the average elec-
tron temperature radial profile and for the density and ter-
minal velocity in both low- and high-speed winds and also
for the electron temperature value in the low speed wind, a
discrepancy still remains for the high-speed wind. Indeed, a
Kappa distribution with a value of Kappa producing a large
terminal velocity, i.e., £ < 3, results in an electron temper-
ature at 1 AU more than twice as large as the typical values
in the high-speed wind. This result, which can also be seen
in the numerical results of Maksimovic et al. [1997a], is due
to the contribution of the suprathermal electrons through ve-
locity filtration [Scudder, 1992a, b]. Furthermore, it is easy
to verify from the analytical formulae given in section 4 that
changing the coronal thermal temperatures (within reason-
able limits) does not solve this problem. Note also that the
possible presence of non-Maxwellian protons at the exobase
is not expected to solve this problem either. Indeed, in-
creasing the number of suprathermal protons without chan-
ging the thermal temperature Tpo increases the proton flux,
thereby requiring a smaller ambipolar potential to preserve
the zero-current condition. As a consequence, a still smal-
ler value of Kappa for the electron distribution is needed to
achieve a large wind velocity, which, in turn, results in a still
higher wind electron temperature.

A possible solution might be to start with distributions
having an important anisotropy. A large velocity shift at a
few solar radii has been suggested by recent observations in
polar coronal holes [see for example Grall et al., 1996], as
well as possible temperature anisotropies. In this respect it
is important to note that the ambipolar potential as well as
the terminal velocity are mainly determined by the parallel
temperatures at the exobase, whereas the perpendicular tem-
peratures at the exobase mainly influence the average tem-
peratures at large distances. Hence, for example, an increase
of the proton perpendicular temperature at the exobase does
not change our results. '

Finally, it is important to note that the case studies of sec-
tion 4.5 have only an illustrative value because of the simpli-
fications made. A full model testing should involve accurate
measurements in both the corona and the wind under well-
defined conditions. Anyway, the above discussion illustrates
the main deficiency of this class of exospheric solar wind
models, which have the advantage of simplicity but neglect
the fact that particles of different velocities have different
exobase radii [see Brandt and Cassinelli, 1996; Scudder and
Olbert, 1979] and circumvent the old-standing problem of
calculating what happens in the transcollisional region be-
low and near the exobase [see, for example, Scudder and Ol-
bert, 1983; Lie-Svendsen et al., 1997, Pierrard and Lemaire,
1998].
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Appendix: Parameters D, and B, for a Kappa
Distribution

The parameters D, and B, involved in the electron mo-
ments at large distances are obtained by substituting the
Kappa distribution (53) into (28) and (29), respectively

—(x+1)
D, = 2ne0  Ax Uo (A1)
g +3 (kw2)?/? K
2 1-(k+1)
B, = Mo A [1 + V°2} (A2)
2 (kw?)® Kw?
o0 ) ) 2 -(s+1)
X A d’U’Uq (’U +VO) [l-l-m]
With the identity 82 (1) = 1 and the change of variable

1
¢z = 1/[14v?/ (VE + sw?)], B being defined in (64),
we deduce

n U —-k—-1/2
By = ;o [1 + 70} (Uo+1/2) (A3

neonwz

B2 = 5k —3)

U —k+1/2
[1 + }2] (Uo+3/2) (A%
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