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Abstract The  discussion of erroneous  common-sense 
ideas  is  useful  for  developing  the  critical  spirit of stu- 
dents  and  improving  the  understanding of the  physics 
involved.  We  give  here a few  examples,  connected  with 
radiation in stable  and  linear  plasmas.  Though  this 
subject  is  now  fairly  well-known  by  physicists,  it  is  often 
applied  incorrectly in astrophysical  and  geophysical 
contexts,  where-as it should  be-thinking  more  deeply 
about  problems  yields‘a  lot of surprises. 

1. Introduction 
Levy-Leblond  (1980)  has recently emphasised the 
role of wrong theories in developing the critical 
spirit of science students. In addition to wrong 
theories, the present scientific literature also con- 
tains and uses ‘well-known’ though  often  incorrect 
ideas: the  error lies in applying correct  concepts out 
of their domain of validity, or equivalently the use 
of implicit (or forgotten)  hypotheses. 

This  situation, which has been discussed recently 
in genetics (Jacquard 1982), is particularly wide- 
spread in those sciences such as astrophysics or 
geophysics, that use a lot of physics, but employ few 
physicists. 

Some  examples  connected with radiation prob- 
lems have  been discussed by Ginzburg  (1979).  We 
study below a few others, involving radiation in 
stable  and linear plasmas. 

Though the selection of examples is very subjec- 
tive, they have been chosen in order both to illus- 
trate classical methods of calculations in the field 
(source  harmonic (sections 2 and 4) or not (sec- 
tions (2  and 3), plasma ‘cold’ (section 2), ‘hyd- 
rodynamic’ (section 3) or ‘Vlasov’s’ (section 4)), 
and  to  be of interest in other contexts. 

Section 2 recalls the so-called Herlofson 
paradox, i.e. how a  source loses energy in a ‘loss- 

RCume La discussion  des  idees  fausses  joue un r61e 
inttressant  pour  dtvelopper  I’esprit  critique  des 
Ctudiants  et amtliorer la  comprthension  de la physique. 
On  donne ici quelques  exemples, rencontrts dans  des 
problkmes  de  rayonnement  en  plasmas lintaires et 
stables.  Ce sujet, qui  est  maintenant  bien  connu  des 
physiciens,  est  souvent,  applique de maniere  incorrecte 
en  astronomie  et  en  gtophysique, et, c o m e  il  est 
normal,  une ttude non  superficielle  des  problkmes 
apporte  quelques  surprises. 

less’ system. This  introduces the collisionless losses 
in a plasma and  the getting round poles which  is then 
used in the subsequent sections. Section 3 deals 
with the (un)shielding of a moving charge,  and 
section 4 recalls the importance of plasma effects in 
the losses of a  (harmonic)  hertzian  dipole, even far 
from the plasma frequency. 

2. Losses in a system without losses 
The common-sense  idea that a  harmonic  source 
cannot lose energy in a system which neither 
radiates nor has any collisions or  other loss 
mechanisms, has  led to a  lot of apparent paradoxes 
and irrelevant scientific disputes. Here,  the  error 
lies in considering as  stationary  a  problem which  is 
in fact  transient. 

We recall below a simple example occurring in 
plasma physics (for a  detailed  account,  see Craw- 
ford and  Harker  1972) which is representative of 
many equivalent  problems in different contexts. 
Take a  plane (infinite in y and z directions) 
capacitor filled with an inhomogeneous  electron 
plasma.  Assume the plasma to be cold and without 
collisions (‘no losses’). Feed the capacitor with  an 
oscillating current.  The question is: calculate the 
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losses of the source, if there are any losses. 
Let w,(x)(w, = (ne2/Eom)1'2) be  the (angular) 

plasma frequency  spatial  variation, and  the plates 
located at x = 0, x = X .  The cold plasma is only 
temporally  dispersive; at frequency W, the local 
dielectric  permittivity is &(X) = 1 - w;(x)/o2. We 
assume that  &(X) has one  zero  at x = ~ ~ ~ 1 0 ,  X [ .  

The naive calculation proceeds  as follows. Let 
the driving current density  be J (variation in e""). 
The field in the plasma is 

E(x) = -J/[ioeos (x)]. 

Hence  the resistance per surface  unit 

The integral is undefined since there is a  pole on 
the integration  axis;  interpreting it as principal 
value  plus  residue yields 

This resistance poses two problems: first, its sign  is 
undefined;  second, if it represents losses, where 
does the energy go? This is sometimes called the 
'Herlofson  paradox'. 

The elementary way of solving the first problem 
is to assume that  the plasma has small losses. 
Introducing an effective collision frequency v, the 
equation of motion  for  electrons becomes 
m dv/dt = -eE - vmv;  hence the permittivity (for 
e-iwt  variation)  &,(X) = 1 -o;(x)/o(w +iv).  Thus 
equation 2  becomes 

where z = u / o  and  &(X) is the permittivity for v = 0. 
When z ".* 0 the result is independent on z and 
equation (4) reduces to  equation (3) with the + 
determination. 

However,  this does not  solve the second diffi- 
culty: where does the energy go if we insist on 
suppressing the collisional losses? 

The solution is to recognise that, contrary to 
what was implicitly assumed when taking  a single 
Fourier  component (e"w?, the problem is not 
stationary in the  resonant region x = xo: the field 
E(xo) increases, even in the limit ot ".* m. Thus,  the 
energy  supplied to  the capacitor  serves to increase 
its  electrostatic  energy. 

Therefore,  one must take  into account the initial 
(or  boundary)  conditions, and  the causality, i.e. the 
fact that  the circuit has to be switched-on at  some 
time, and  that  the  perturbed quantities are  zero 
before switch-on. The usual expeditive  method is to 
add  to o a small positive imaginary part, in order 
that e""' represents a slow temporal growth (see 

Lighthill 1978).  This displaces the pole from  the 
integration axis and specifies the sign of the 
residue. As is well-known, a similar procedure can 
also be used in radiation  problems, to yield the 
retarded  Green functions. 

Here,  one can calculate the actual time  variation 
by using a  Laplace  transformation. Let  the source 
current  be J(t) = J sin wtH(t) ,  where H(?)  denotes 
the unit-step  function, and  take all the  perturbed 
quantities to  be  zero  for t S 0. Define, for  Re (S) > 0 

J ( s )  = J(t)e-"' dt = d / ( s 2 + w 2 ) .  

Laplace  transforming Maxwell equations and the 
linearised electrons'  equations of motion yields, in- 
stead of equation (1) 

I 

E(s,  x) = 
J ( s )  

EOS(1+o ; (X) /S2) .  

Thus, for t 2 0 

=-( WJ cos(w,(x)t)-cos(ot) ) .  (6) 
EO O"&(X) 

In equation  (6), the integration contour had to  be 
closed in the left-hand  side complex plane, giving 
the contribution of the residues S = *io, S = 
*io,(x). Equation (6) yields E(t, xo) = Jt sin(ot)/2e0, 
showing linear tempolal growth in the resonant 
region. 

From  equation  (6), the terminal voltage is easily 
calculated in the limit wt ---*m. The losses come 
from its sin(wt) component due  to  the contribution 
of the resonant region. This yields equation (3) with 
the + determination. 

Two  remarks are in order. First, the main practi- 
cal effect of introducing small collisions (or  another 
loss mechanism) into  the problem, is to ensure 
saturation of the growing quantities: the key point 
is that collisions remove  energy at exactly the  same 
rate as it  is provided by the source in the collision- 
less case. Second, in the lossless case, the result is 
not valid in practice for long times since the tem- 
poral growth can invalidate the linearisation of the 
equations. 

This  example is representative of many less sim- 
ple radiation  problems in plasmas (Crawford and 
Harker 1972). The most familiar one is the classic 
Landau  damping (see for instance Stix 1962), which 
occurs when instead of assuming the plasma to be 
cold, one takes into account the particles velocities 
in the absence of perturbation.  Then,  the plasma 
becomes also spatially dispersive, i.e. the current  at 
a given point  does  not depend only on the field at 
that point. The calculation of a (small-amplitude) 
field component (wave number k, frequency W )  in a 
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homogeneous plasma, involves an integration over 
the particles velocities U :  there is a  pole at o - 
k U = 0, which is a  Cerenkov  condition  ensuring 
that  the particle is at rest in the wave frame and 
thus interacts resonantly. The integration contour is 
prescribed as previously (in this context, this is 
called Landau prescription) yielding wave damping 
in a maxwellian plasma. A s  previously, the solution 
to  the  apparent paradox (‘losses without losses’) is 
that  the problem is nonstationary. Actually, in the 
absence of collisions, the damping reverses and 
exhibits damped oscillations (see Davidson 1972) 
when the temporal growth yields linearisation break- 
down. 

The two cases present also an interesting his- 
torical similarity. Tonks (1931), studying the 
inhomogeneous  capacitor  problem,  discarded the 
residue and missed the losses. Vlasov (1945),  study- 
ing the homogeneous warm plasma problem, simi- 
larly discarded the residue,  but was promptly and 
vigorously criticised by Landau  (1946).  Both cases 
have  led to irrelevant  disputes  about the physical 
nature of the losses. 

The  form of equation (2) or equation  (4),  where 
the losses stem  from an integration  over  a  continu- 
ous network of undamped oscillators including a 
resonant one, appears in many different  contexts. It 
has  been used recently (Greenberg 1983) to obtain 
the confinement of ringlets (playing the  role of the 
continuous set of oscillators) by a ‘shepherding’ 
satellite (the harmonic  source) in planetary rings. 

3. Fooling the Debye shielding 
It is well-known that  the  perturbation  due  to an 
electric charge in a plasma is generally shielded  at 
a  distance called the  Debye length.  This feature 
corresponds to  the static  solution of a Klein- 
Gordon  equation,  and occurs in many other con- 
texts. The shielding requires  several  conditions 
which are not always completely mentioned in the 
textbooks  (see  for  instance Stix 1962, Landau and 
Lifshitz 1981)  and  are sometimes  forgotten in 
astrophysics (some examples of misapplications are 
quoted in Opik  1964). 

In particular, the shielded field which is a  solu- 
tion of a static equation, is not  expected to be valid 
for moving charges, and in fact it is not at all for 
suprathermal ones. To illustrate this feature, which 
does not appear  to  be widely known even today 
(for instance Morfill et al 1983), we shall calculate 
the force  between two charges moving in an elec- 
tron plasma. The result is rather basic, though it 
cannot-as far as I know-be found as such in the 
textbooks, and  the calculation exhibits some inter- 
esting features typical of radiation in plasmas. 

In its simplest form, the problem is the following. 
Let two charges ql,  q2 located  at z1 = -SL+vt, 
z2 = vt(6 = *l) on the Oz axis, i.e. moving together 
with velocity V =  uOz in the frame of an equilib- 

rium electron  plasma. In the linear  description, the 
force on (say) particle 1 consists of two compo- 
nents. The first one is the familiar drag  due  to its 
interaction with the plasma charges (Chandrasekar 
1943, Spitzer 1962, Cohen 1961, Sitenko 1967). 
The  other  one, which we shall calculate, is due  to 
particle  2 in the presence of the plasma. 

Let us try to  further simplify the problem, while 
keeping the essentials of the physics. We  cannot, as 
in section 2, assume the plasma to  be cold, since 
the  temperature plays a key role in the shielding. 
However, we shall make two main approximations. 
First, we shall neglect the transverse electromagne- 
tic part of the field: this could be justified a poste- 
riori but we shall only say here  that v/c << 1, and 
also that  the unshielding is due  to Cerenkov  radia- 
tion, which does not exist for EM waves in a 
plasma  (without  a  static  magnetic field), since their 
phase velocity is greater  than c. Thus, the plasma is 
defined only by its longitudinal permittivity 
EL(k, 0). In the collisionless Vlasov description 
(i.e., broadly speaking, if there  are many particles 
in a cubic Debye-length LD = uT/o,(uT = (~T/tn)~”) ,  
the classic and nonrelativistic expression of is 
(see for  instance  Sitenko 1967): 

E L ( k , W ) = 1 + ~ ( 1 - ~ ( z ) + i r r ” 2 z e - ‘ 2  1 
o2 
k2v: 

The imaginary part represents losses due  to  the 
resonant  interaction  (Landau  damping)  mentioned 
in section 2. Our second  important  approximation 
will be  to assume z >> 1 in (note that z +m 
yields the cold plasma used in section 2) .  In other 
words, we shall take dispersion into account in the 
simplest (first order) way. Since only waves o = 
k U will contribute  to  the calculation, we expect 
the result to  be correct if v / v ~ > >  1. Developing 
4 ( z )  up to second order in 1/z2, neglecting the 
small term in the  numerator,  and setting o -up, in 
the small term in the denominator, yields 

At this order of the development, other expressions 
could have  been  chosen; the above choice permits 
easy calculations and is identical to  that obtained 
by using a set of hydrodynamic equations (with an 
adiabatic hypothesis). (See for instance Clemmow 
and Dougherty  1969.) 

The calculation proceeds straightforwardly as fol- 
lows. The charge q2 produces the density distribu- 
tion 

d r ,  t) = q2 S(x) S(Y) - u t i ,  (9) 

where S(x) denotes  the  Dirac distribution. 
This induces a longitudinal field in the plasma, 
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which derives from a  scalar  potential, and 
satisfies, in Fourier  space 
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The corresponding  force on particle 1 is 
readily obtained as 

x gd’k k, e-iskzL 
k2EL(k, k,v) ’ 

Inserting equation (8) yields (with x = k,L, y = 
M = v / f i  v=, a = w,L/& vT = L/& L,) 

1)~’- y’] 
X 

(X’+ y’)[(x’- xg)(M2 - 1) +io sgn x]  

X;= (Y’+a‘)/(M’- 1). 

(10) 
If y =o,L/v >> 1, equation (14) reduces to 

The small imaginary term in the  denominator, 
which stems  from the imaginary part of ensures, 
as in section 2, that  the integral  be always well- 
defined since the poles *iy, *xo-io  are complex. It 
can be integrated by residues by closing the  contour 
in the lower (or upper) half complex planes if S is 
positive (or negative). Assume M> 1 (recall the 
approximation on E = ) .  Then .xo is real and  the poles 
*xo- io are located both inside the  contour (if 
S > 0) or outside (if S < 0). One  obtains 

(H denotes  the unit-step  function). 
At small distances or dilute plasma (o,L/v << 1) 

this reduces  approximately to  the Coulomb  force. 
At large distances (o,L/v >> l),  the first term disap- 
pears  but  the second term, which exists only if S > 0 
i.e. on the trailing charge  (and M >  1) yields a  force 
decreasing slowly with distance. The first integral 
can be found in (Abramowitz and Stegun 1965); 
the second one is calculated by transforming it into 
(let p = &/(M2-  l)’”, y = a / M )  

One finds 

Thus, at large  distances, the Coulomb field of the 
(11) suprathermal moving charge q2 is shielded only at 

the  front; at the back, it  is replaced by an oscillat- 
ing field varying inversely with distance  and 

k,L, generally larger  than the Coulomb field. This field 
corresponds to  the Cerenkov emission of plasma 
waves in a  cone of half-angle sin”(l/M) trailing 
the particle (see for  instance  Cohen 1961, who uses 
a different and instructive method, but  does not 
calculate explicitly the electric field). 

(12)  Note that, owing to  the  term H ( S ) ,  one has 
F,, # -Fl2, which may seem surprising at first sight; 
actually this is not a  surprise  since the interaction 
involves not only particles 1 and 2 but also the 
plasma. 

The same method can be used (see Sitenko  1967) 
to calculate the well-known drag acting on (say), 
particle 1, in the plasma,  independently of particle 
2, (set q2 = q1 and  L = 0 in equation  (11)). In this 
case, the integral diverges (logarithmically) for 
large k ;  the convergence is restored by taking 
account of a finite size R of the charge and/or 
noting that  the Vlasov framework neglects the close 
interactions  and  thus becomes invalid for distances 
smaller  than b - q2/4moKT; practically this cuts 
the integral at  k,,“in(l/R, lib). 

Finally, we note  that in practical applications, the 
charges often move suprathermally with respect to 
the ions rather than the electrons. Then  the con- 
tribution of the former to  the dielectric permittivity 
must be  taken  into account, yielding similar effects. 
One should also be careful to ensure that  the linear 
approximation holds, and that  the nonelec- 
tromagnetic  interactions  between the moving body 
and  the plasma (for instance binary collisions) can 
be neglected: this limits in particular the body’s size 
and charge. Thus it is not too surprising that the 
above  results  cannot  be  applied to spacecraft (see 
Laframboise 1966). 

4. Plasma effects on antenna l o s s e s  far from  the 
plasma frequency 
That plasma effects can be neglected when calculat- 
ing the high-frequency losses of a  source, is a 
widespread  idea which has led occasionally to  erron- 
eous  results in astrophysics and geophysics (some 
examples are  quoted in Meyer-Vernet 1981).  The 
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simple-minded justification is that only elec- 
tromagnetic waves matter, since plasma waves are 
heavily Landau  damped  far from the plasma fre- 
quency. 

However, in many cases the source loses much 
more energy in the  form of (damped) plasma waves 
or fluctuations than in electromagnetic waves. 
Though the  former energy is absorbed in the 
plasma and thus not observed  at a distance, it is 
important in the source  energy  balance. 

We  study below such a simple situation.  Consider 
a small hertzian  dipole antenna,  at rest in an iso- 
tropic  homogeneous equilibrium electron  plasma, 
assumed to  be described by the (collisionless) 
linearised Vlasov framework. The problem is 
defined by the following quantities: L = dipole half- 
length, * q  = dipole oscillating charges, U = angular 
frequency, wp and V, as in previous sections. We 
assume U >>U, and oL/vT<< 1. The  latter inequality 
ensures that  the  antenna length is small with re- 
spect to all the relevant wavelengths (the so-called 
dipole  approximation). By electron  plasma, we 
mean, as in previous sections that  the ions act as a 
uniform  static  background. (It is important to  note 
that, contrary to a common belief, this hypothesis 
can be invalid even when U >> o P > > w p i  = 
(m/mi)1'2wp, where mi is the ion mass, as discussed 
below). 

The power radiated by the  antenna consists of 
two components. One is the well-known contribu- 
tion of electromagnetic waves 

2 4 2  - 
Pm =- U L3 [l +0(U3U2)] (16) 

3.rreoc 
where plasma effects are negligible at the  order 
o;/o2. Note that  the electrons' temperature  does 
not enter in this expression; this is no surprise since 
the phase velocity of electromagnetic waves is 
larger  than c, so that  there is no plasma particle 
with a similar velocity which could (Landau) damp 
the waves. 

The  other contribution comes from (Landau 
damped) plasma waves or fluctuations. Since it 
cannot  be  found in the textbooks,  and since some 
well-known papers (see for instance Birmingham et 
al 1965)  seem  to suggest that it is negligible except 
for W -up, it is useful to recall its derivation (see 
Meyer-Vernet 1983). The (harmonic)  source 
charge  distribution is 

p ( r )  = q S(y) 6(z)[6(x -L) - 6(x + L)](e""'). (17) 

It induces a  (harmonic) longitudinal field in the 
plasma EL(r) given as in equation (10) of section 3. 

The corresponding  time-averaged power-loss is 

PL = - - d3rEL(r)  J(r) 
2 ' I  

-" - 
2(2.rr)3 ' J  Re  d3kEL(k) * J(k )*  (18) 

where J ( r )  denotes  the source current distribution 
(which satisfies, in Fourier  space k J ( k )  = o p ( k ) ) .  
This yields: 

P== - 7 I m  d3k 
U IP(k)l' (19) 

Eo k2eL(k, U )  

EL(k, W) is written in equation (7), and in the pres- 
ent section, it is neither useful nor a priori justified 
to approximate it as in section 3. Indeed, we re- 
mark that, since o / ~ ,  >> 1, - 1 in the relevant 
part of the integral (19) (since whenever (eLI # 1, 
the integrand is exponentially small). The remain- 
ing terms can be easily integrated, yielding: 

P, = 
4q2L2w2U; 
( ~ T ) ~ / ~ E ~ v ~  

G ( v 5  oL/vT) 

For x << 1, G(x)  - -(Ln x)/6+0.17;  thus 

(UL/V,<< 1.) Hence,  the contribution of plasma 
effects satisfies approximately: 

/PE" (2~)" ' ' (~~ /~ )2 (c /vT)3 .  (22) 
Therefore, in order  to neglect plasma effects on  the 
high-frequency dipolar power-loss (uL/vT << 1) one 
should have o/oP>> (C/vT)3!2. (It is worth noting 
that, if one has  not only COL/VT<< 1, but also 
oL/vTi = (mi/m)''20L/vT< 1, then the ion contribu- 
tion cannot  be neglected and PL is multiplied by 
( n ~ J m ) " ~  >> 1 (see Meyer-Vernet 1983); though not 
widely known, this fact is not surprising, since the 
inequality ensures that  the ions can have the same 
velocity as the bulk of the emitted waves, which 
satisfy mostly W/ k > oL). 

Remembering our high-frequency hypothesis 
(hence our approximation for leL(), it comes rather 
as a  surprise that  equation (21) is also approxi- 
mately  correct below (and even near) the plasma 
frequency, provided the dipole  approximation still 
holds. Let us prove this result for u/w,<< 1 (assum- 
ing that  the conditions for neglecting the ion 
motion are yet satisfied). Then, equation (7) can be 
approximated by its low-frequency limit: 

Re eL(k, W)- 1 + l/k2L&. (23) 

(As is well-known, Fourier transforming equation 
(10) with this expression for eL gives the  Debye 
shielding.) The power-loss is now given  by an 
expression similar to equation (20) where  G is 
replaced by: 
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The dipole  approximation below oP requires 
xwP/o<< 1 (thus L/LD<< 1). This  ensures F ( x ) -  
G(x) ,  so that equation (21) still approximately 
holds. 

It is useful to comment on the significance of the 
length L. First, if L is smaller  than the critical 
impact parameter defined in section 3, the integral 
in equation (20) should  be  cut at km=- l /b; practi- 
cally, this changes only logarithmically the final 
result. In the limiting case of an infinitesimal 
dipole,  equation (19) yields integrals  analogous to 
those  appearing for plasma bremsstrahlung calcula- 
tions (Dawson and  Oberman 1962). 

Second,  what happens if the  antenna size is such 
that  the dipole  approximation does not hold?  This 
is not an academic question  since practical macro- 
scopic antennas, though  often  smaller  than the 
wavelengths in vacuum for the radio-frequency 
range,  are seldom small at the scale of the  Debye 
length in usual plasmas. Then,  the problem be- 
comes more difficult since the actual  geometry of 
the  antenna must be taken into account, but a 
preliminary idea can be  obtained by looking at 
equation (20). Let us assume for  instance wL/v >> 
1; using G(x) - 1/(2x2), we obtain a very different 
value for the high-frequency power-loss 

for W / W ~  >> 1 and oL/vT >> 1. Similarly, equation (24) 
yields a very different value for the low-frequency 
power-loss. This is not surprising, since large L 
means that small k plays a  dominant  role  (see 
equation (19)), which is the range  where the plasma 
temporal dispersion is most important.  This ex- 
plains why the behaviour of long antennas in plas- 
mas is much more frequency sensitive than that of 
short  ones.  The difference is most important  at 
W *ap. There, can be  approximated by equation 
(8) and allowing for large L (small k )  yields a  spike 
in the losses, so much sharper as L is larger (see for 
instance  Kuehl 1967). 

Finally, we note  that  the above features have 
useful practical applications when the  antenna is 
used as  a passive ‘thermometer’,  instead of an 
emitter. Knowing the radiation  resistance (which 
stems from  the above values), the noise measured 
by a passive antenna can be used to  deduce  the 
plasma temperature from Nyquist theorem (see  for 
instance  Sitenko 1967). Then,  one must be  careful 
in remembering that  the resistance  depends itself 
on  the  temperature, contrary to what happens when 
there  are only electromagnetic waves. In particular, 
the noise may be  a  decreasing  function of the 
temperature (deduce the resistance from  equation 
(21) and use Nyquist theorem). So, the physical 
intuition  acquired with antennas in vacuum must 
not be used in plasmas. 

Here comes the real  surprise of this section, and 

this is a historical one.  The main relevant  results on 
antennas in isotropic plasmas were  obtained nearly 
twenty years  ago (see the pioneering works by 
Cohen 1962, Fejer 1964, Balmain 1965 and Kuehl 
1966). It was subsequently suggested (Andronov 
1966, De Pazzis 1969) to use these  results to 
measure plasma parameters  and  to this aim they 
were extended  to nonthermal stable plasmas (Fejer 
and Kan 1969). Nevertheless, when this stable 
plasma noise was recently measured in the solar 
wind and planetary  magnetospheres, it was not 
always recognised as such and  attributed instead to 
instabilities, which were  indeed  more exciting. S o ,  
the surprise is not to discover that  antennas in 
plasma behave differently than when in a  vacuum; 
it  is that it was so difficult to convince some well- 
known geophysicists of this fact (see the geophysi- 
cal papers quoted in Meyer-Vernet 1979 and 
Couturier et a1 1981). 

5. Conclusion 
We  have given a few examples  where the lack of 
care in reasoning or out-of-context ‘well-known’ 
ideas yield incorrect  results for radiation in stable 
plasmas. Some (in sections 3 or 4) have  led  (and 
continue to lead) to  erroneous and  irrelevant  pap- 
ers in reputable scientific journals. Others  are 
harmless  and appear  rather as  surprises in the 
results of calculations, due  to insufficient thinking 
in advance, as often occurs in physics (see Peierls 
1979). 

Both cases are of pedagogical value.  They show 
the dangers of using improper  generalisations or 
blindly trusting the textbooks, and ilustrate the 
difficult art of choosing a  correct  approximation. 
Returning  to plasma physics, it is hoped that  the 
present paper may convince students  to  ensure  that 
they have  properly  understood stable  and linear 
plasmas, before  attacking the  more fashionable 
subject of plasma instabilities. 
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