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Electrostatic Noise in Non-Maxwellian Plasmas' 

Generic Properties and "Kappa" Distributions 

YVES F. CHATEAU 1 AND NICOLE MEYER-VERNET 

Recherche Spatiale, Observatoire de Paris, Meudon, France 

We study the generic properties of the electrostatic noise spectrum measured by an antenna 
immersed in a plasma with an isotropic electron velocity distribution function, at frequencies of the 
order of magnitude of the plasma frequency. We find that at high frequencies the noise level is 
proportional to the electron pressure for long wire antennae and to the electron flux for long 
double-sphere antennae. At low frequencies it depends mostly on the low-energy electrons. We also 
study the shape of the peak near the plasma frequency, for distribution functions with Maxwellian or 
power law high-energy tails. We calculate the noise produced with a generalized Lorenzian ("kappa") 
distribution function and compare the results with those obtained with different distributions having 
the same density and equivalent temperature. We deduce some practical consequences for plasma 
wave measurements in space. 

1. INTRODUCTION 

Although the conventional use of electric antennae is for 
remote sensing by detection of electromagnetic waves, they 
can also be used for in situ measurements, by detecting 
electrostatic waves produced by the random motion of the 
ambient plasma particles. The spectroscopy of this quasi- 
thermal noise near the plasma frequency is currently used 
for measuring electron parameters in space plasmas [see 
Meyer-Vernet and Perche, 1989 and references therein]. It is 
also planned to be used on future missions such as Ulysses 
and Wind in the solar wind, and CRAF and Cassini in a 
cometary and the Saturnian environment, respectively. 

This method is complementary to cofiventional electron 
, 

analyzers; in effect, since it "sees"• a much larger plasma 
volume, it is less sensitive to spacecraft and secondary 
particle perturbations, so that it works better than conven- 
tional analyzers at low temperatures; in any case, it beCOmes 
less efficient when the temperature is so high that the Debye 
length becomes larger than the antenna length. 

This method has been studied for realistic antenna geom- 
etries by using a simple model of velocity distribution, made 
of two Maxwellians [see Meyer-Vernet and Perche, 1989 and 
references therein]. More recently, it has been extended to 
flat-top distributions [Chateau and Meyer-Vernet, 19,89]. 
The aim of this paper is to study more general distribution 
functions, and to derive some generic properties of the 
quasi-thermal noise as a function of the electron velocity 
distribution. 

More precisely, we will try to answer the following 
questions: What are the model independent properties of thi s 
noise, if they exist at all? Can one deduce global plasma 
properties from the noise spectrum detected by a given 
antenna, without taking a particular model for the distribu- 
tion function? 

As an illustration, we will calculate the noise produced 
with generalized Lorenzian ("kappa") distributions [Vasyli- 
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unas, 1968; Olbert, 1968]. This form has the advantage of 
being analytically tractable, while representing rather well 

ß 

the electron distribution in different media such as the solar 

wind or planetary magnetospheres; indeed, it is not very 
different from a Maxwellian at low energies but has a 
high-energy tail with a power law form. Therefore these 
calculations can be easily used to generalize the theory and 
its applications to distribution functions having a power law 
tail. 

We will compare the results obtained with different distri- 
bution functions, in order to illustrate the generic properties 
of the noise, and finally deduce some practical consequences 
fo r plasma measurements in space. 

Unless otherwise stated, we shall use SI units. 

2. BAsics 

We study the following problem. An electric dipole an- 
tenna is at rest in a homogeneous infinite plasma. The 
antenna is assumed to be gridlike and at zero dc potential 
and is defined by its current distribution J(r). We will 
consider either thin cylindrical wire dipoles of tiP-to-tip 
length 2L or dipoles made of two small spheres separated by 
L, of radius a much smaller than the Debye length; we 
assume ooL/c << 1. The plasma is defined by the electron 
velocity distribution f(v), assumed isotropic, and by the 
(angUlar) plasma frequency %, = (ne2/eorn) 1/2, n being the 
electron density. The ions are assumed to be stationary, 
since we restrict our analysis to frequencies of the order of 
magnitude of %,. 

We then calculate the power spectrum V 2 of the' voltage at 
the antenna terminals. From Nyquist's theorem this .quantity 
would be 4k B TR in the special case of thermal equilibrium, 
R being the antenna resistance; note that in practice, R only 
involves the electrostatic part of the field, since this contri- 
bution is generally much larger than the electromagnetic part 
[see CoutUrier et al., 1981] (and the space plasma involved is 
generally optically thin for electromagnetic waves). For 
nonequilibrium but stable distribution functions, V 2 is cal- 
culated by using the correlation tensor of the electric field 
fluctuations in the plasma, Eij(k, •o) in Fourier space, which 
is a known function off(v) [e.g., Sitenko, 1967]. 

As is well known, this noise can be viewed and calculated 
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as the fluctuating electrostatic field due to the motion of 
passing plasma particles, "dressed" by the dielectric func- 
tion eL (k, M. Broadly speaking, this means that for • < % 
the antenna mostly sees the shot noise of electrons passing at 
distances smaller than the Debye length (see equation (9)), 
while for •o > %, the plasma temporal dispersion (i.e., the 
variation of eL with •o) also becomes important and the 
electron motion induces damped longitudinal plasma waves. 

We start from the expression of V 2 deduced [Chateau and 
Meyer-Vernet, 1989] from the correlation tensor Eij(k, •o) 
and the antenna geometry: 

V2 16m•o• 2 ff F(kL)B(k) .... (1) 
•re 0 k2leL[ 2 

= dv vf(v) (2) 

t•L= 1+ 
2,r•o 2 

• f_+• dvll Vllf(Vll) (3) k k Vll- •o - i o 

where vii is the component of v parallel to k and the 
distribution function is normalized as 

• d3v f(v) =• dv 4rcv2f(v)= 1 
The term io denotes an infinitesimal positive imaginary part, 
and the function F specifies the antenna geometry as 

F(x) Si (x) « Si (2x) 2 ..... sin 4 
x x 

(wires) (4) 

F(x) = • 1 x (spheres) (5) 

where Si is the sine integral function; for the wire antenna we 
have assumed that the current varies linearly with the 
distance to the antenna feed point [see Couturier et al., 
1981]. 

Note that from (3) the imaginary part of er is 

Im e L -- k 3 (6) 

3. GENERIC PROPERTIES OF 

THE ELECTROSTATIC NOISE 

We will characterize the noise V 2 in the most general way, 
i.e., as a function of the (angular) plasma frequency %, and 
of the other moments of the distribution functionf(v) defined 
as 

We define the equivalent temperature as 

(7) 

in 

T = (v 2) (8) 
3k/• 

We will study the specific cases •o << w v (but still much 
larger than the ion plasma frequency), •o >> •ov, and •o = %,. 

3.1. Low Frequencies 

Let us consider the limit •o/kv -• O. The dielectric function 

(3) becomes 

2 

4•p f• er • 1 + d•f(•) k 2 

which can be rewritten by analogy with a Maxwellian 
plasma, in the form 

1 

• L • 1 + k2L 2 D (9) 
where the Debye length is defined as 

m D = 4 rr •o • dvf( v) 
-1/2 

(10) 

Note in passing that in the particular case where f(v) is 
Maxwellian, this definition yields the Debye length as a 
function of the temperature as 

LD .... : •m•o•2• 
1/2 

(11) 

In general, however, L D 5 • L Dma•w, although both quantities 
are of the same order of magnitude. Hereafter, we shall use 

LDmaxw when we need an expr'•ssion depending only on 
and the equivalent temperature T (8), but not on the partic- 
ular shape of the distribution. 

Taking the low-frequency limit of (2), we deduce from (1) 
(making the change of variable y = kL D) the variation of the 
noise with the distribution function f(v), 

If0 © ][fO © ]-1 fi• yF(yL/LD) V2 = 8m dwf(v) dvf(v) dy (1 + y2) 2 7r8 0 

(12) 

First, let us consider long antennae, i.e., L/LD >> 1. The 
function F can be approximated for large arguments by 

F(x) = m x >> 1 (wires) (13) 
4x 

F(x) = ¬ x >> 1 (spheres) (14) 

We thus obtain from (12) 

V 2 = 
•r 1/2m 

4eo•opL [.I• d wf(v) .!o © dvf(v) 
L/LD >> 1 

-3/2 

(15) 

(wires) 

in 

7rE 0 •• dwf(v) 1 f• dvf(v) 1-1 (16) 

L/Lo>> 1 (spheres) 

Second, consider short antennae, i.e., L/LD << 1. The 
function F can be approximated for small arguments by 

F(x) = x2/24 x << 1 (wires or spheres) (17) 
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Inserting (17) into the part of the y integral in (12) where 
yL/LD < 1, we obtain for both the wire and the sphere 
dipole antennae 

V 2= 4møavL [In (LD/L) + O(1)] dvvf(v) (18) 
3eo 

L/L o << 1 

Looking at (15), (16), and (18), one sees that whether the 
antenna is made of wires or spheres, and whether it is large 
or small, the low-frequency noise level depends on the lower 
moments of the distribution function f(v), and thus mainly 
on the lower-velocity electrons. We expect, therefore, that it 
will be nearly insensitive to any high-energy tail of the 
velocity distribution. 

3.2. High Frequencies 

Let us now consider high frequencies, i.e., 60 >>%. In this 
case we can make the approximation eL = 1 in (1) and thus 
obtain 

V2 • 32m,op dk k3 dwf(v) (19) EO /k 

which can be rewritten 

V232m•ø•2fl foo' F(kL) • dv vf(v) dk (20) 
eO /v k3 

For antennae satisfying wL/wpL o >> 1, we approximate 
the function F by using (13) or (14) depending on the antenna 
geometry, and we deduce the noise power spectrum 

V2 • 2mw• 3e0L w 3 (V2) W/Wp>>max [1, Lb/L] (wires) 
(21) 

2 
m60 

V 2= P (v) ,o/,op>>max [1 LD/L ] (spheres) 2 , 

(22) 

where the moments of the distribution function are defined in 

(7). 
We therefore obtain the very interesting result that the 

high-frequency electrostatic noise is proportional to the total 
electron pressure P for long wire antennae and proportional 
to the total electron flux J for 10ng double-sphere antennae: 

2e 2 
V 2• P ,o/•ov>>max [1 Lb/L] (wires) e o2Lm•o 3 , 

(23) 

4e 2 
V := J w/w•>>max [1 LD/L] (spheres) 2 2 ' 

7r E o mo9 
(24) 

where P = nm(v2)/3 - nkT and J = nm(v)/4 and where the 
equivalent temperature is defined in (8). This generalizes to 
any stable distribution function, the results previously found 
[Meyer-Vernet and Perche, 1989] for distributions made of a 
sum of Maxwellians. 

3.3. Frequencies Just Above the Plasma Frequency 

Let us now consider frequencies 60 = %. 
For short antennae, i.e., L/L D << 1, we expect that the 

noise V 2 will not vary greatly with frequency [Meyer-Vernet 
and Perche, 1989]; indeed, antennae of length L are mostly 
sensitive to wave numbers k -> 1/L (see (4) and (5)), i.e., to 
k >> 1/L D for short antennae; this means that the range odkv 
<< 1 should play the dominant part in the integral (1), so that 
the results obtained in section 3.1 should hold also for any 
frequency of the order of magnitude of the plasma fre- 
quency. 

Let us now consider long antennae, i.e., L/L D >> 1. We 
then take the opposite limit w/kv >> 1; considering suffi- 
ciently well-behaved distribution functions, we use the 
asymptotic expansion of (3) in powers of kv/o•, 

2[ k 2 4 •o ,._ • ! - • 1 4- • /•,25 4- • /7,4• + ß ß ß 
0) 2 602 

Hence the nearly real zero of e L, 

(25) 

k0 • (V2) 1/2 -- 1 
1/2 

(26) 

which is analogous to the usual Langmuir wave in a thermal 
plasma. 

We now calculate the contribution of this zero to the 

integral (1) giving the noise. Writing for k • k0 

Re eL•(k-k0) 
0 Reel 

Ok 

0 Re eL 2w•2ko(v2) 
4 Ok •o 

we deduce the contribution to V 2, 

Vo 2 = 16mw•• 2 F(koL)B(ko)(ko 2 e0 
Im e L 

and hence 

0 Reel 

Ok k = ko ) - 1 
Vo 2 • 4mwpF(køL)B(kø) L/Lb >> 1 (27) 

rr 2 e o( v2)f( w/ko) 

with B(k) given in (2), thus 

= dv if(v) (28) B(kø) -•øø /ko 
Hence when k0 is given by (26), the noise exhibits a cutoff 

at 6o = 6%, with a peak given by V02 just above 6%. This peak 
depends, through B(ko)/f(odko), on the distribution function 
for velocities v _> odko. Thus for a given value of m/me the 
noise depends on the electrons of velocity 

• [ (V2) 1/2 v> v• ko (w /mp - 1) 

- •2mXJ (29) 
where we have put 
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X = 1 <<1 
p 

so that the high-energy electrons determine the noise near 
top. 

Note that a relativistic treatment would be needed if 

relativistic electrons contributed much, namely if v,o were 
not much smaller than c; this occurs when X = to/%, - 1 is 
equal to or smaller than 

(v 2 ) 
Xm 2c 2 2.5 x 10-1øT(K) (30) 

Therefore, in the usual space plasmas this problem occurs 
only fo r very small receiver bandwidths; for instance, in the 
solar wind it only occurs when to/%, - 1 is smaller than a 
few times 10 -4 . 

It must also be kept in mind that the approximation (26) of 
k0 is not valid for any distribution function; in some cases, 
the first terms of the asymptotic expansion (25) may not 
represent a correct estimate (even though a relativistic 
treatment ensures the convergence of the high-order mo- 
ments {vn)), and other nearly real zeros of eL might appear. 
In practice, however, this problem only occurs in the rare 
case when the contribution of the very hot electrons to the 
pressure is dominant. 

Now, let us deduce the shape of the peak for different 
high-energy electron distributions. 

First, let us assume that the high-energy tail of f(v) is a 
Maxwellian whose temperature is Tu = mv2H/2, such that 

f(v) o• exp (-v2/v•) v•v• (31) 

v• being defined in (29). In this case, B(ko)/f(w/ko) • l/k0, 
and (27) yields 

4mweF(koL)v• 
V• • L/Lb >> 1 (32) 

0(v2)0 

for frequencies such that (31) holds. Since F(x) • x 2 for x • 
0, one has V• • 0 when w • w•, and the noise has a peak 
at the value of w/w• co•esponding to the value of 

for which F(x)/x is maximum [Meyer-Vernet and Perche, 

1989]; the peak occurs at X = •/w• - 1 • 8(Lo•/L) 2 for 
the wire dipole antenna (and a value about 2 times larger for 
the double-sphere dipole); its width is of the same order of 
magnitude, defining the "width" as the relative frequency 
band for which the noise is larger than about 1/e its peak 
value. The amplitude of the peak [Meyer-Vernet and Perche, 
1989] can be put in the form 

O.05(mkaT) •/2 Tu L 2 
Vm• X • 

eo T L D 

Let us now assume that the high-energy tail off(v) has a 
power law shape 

f(v) o• v -n v > voo (34) 

In this case, we expect a more spiky behavior for V02 since 
B(ko)/f(to/ko) or 1/ko •, so that (27) yields 

Vo2= 8mtov 3F(koL) rreo(n - 2)(v2)k• L/LD>> 1 (35) 
for frequencies such that (34) holds. 

Equation (35) exhibits an important difference with the 
Maxwellian case: the function F(x)/x 3 --> oo when x --> 0, 
without having a maximum at x • 0. This would yield V02 --> 
oo for to --> tot, if the electron velocities were allowed to 
become infinite, but as indicated above, equation (35) is not 
valid too close to tot,, i.e., for X -< X m (Xm being defined in 
(30)). To obtain the peak behavior, we approximate F by (17) 
for koL << 1, and we get 

Vo 20'04(mkBT)'/2 ( L ) 2 • (36) 
E0(t/- 2)X 1/2 LDmax w 

for 

X m <<X = to/tOp - 1 << (L D .... /L) 2 << 1 
(and X such that (34) holds, v,o being given by (29)). Thus the 
noise has a finite peak at X of the order ofX m and a width (at 
1/e level) of the same order. In practice, this part will 
generally be hidden by the finite frequency resolution AtO/tO 
of the receiver, so that the apparent peak amplitude will be 
of the order of the value given by (36) where X is replaced by 
AtO/tO (assuming the resolution AtO/tO < (L D .... /L) 2 and of the 
order of the relative bandwidth, so that the noise measured 
should be of the order of the mean of (36) over the bandwidth 
AtO). In practice, however, this part of the spectrum might be 
modified by the antenna impedance as discussed in section 
3.4. 

In short, for long antennae, while the cutoff of the spec- 
trum occurs at the plasma frequency, the fine structure of the 
peak just above %, depends on the shape of the high-energy 
tail of the velocity distribution. More precisely, if it is 
Maxwellian, then the peak occurs above %,, and its width is 
of the order of 8(LD/L)2; on the other hand, for a power law 
tail the peak is nearly at %, and is sharper (and it has also a 
fine stcucture of relative width (v2)/2c 2, which is generally 
hidden by the finite receiver bandwidth). 

An important question therefore arises: Consider an ex- 
periment having a frequency resolution AtO/tO insufficient to 
resolve the fine structure of the peak. In this case, one 
cannot deduce the high-energy tail of f(v); more precisely, 
one cannot deduce f(v) for v > [(v2)/(2AtO/tO)] 1/2 except if 
these electrons contribute significantly to the pressure or to 
lower-order moments of f(v). But one can still deduce the 
plasma frequency and the other low-order moments off(v), 
by using the other parts of the spectrum. 

2 x 10-17(T) •/2 TH L • (33) 
T LD 

for the wire dipole antenna (and a value about 30% larger for 
the spheres). 

3.4. Antenna Impedance 

The voltage power spectrum calculated above appears at 
the antenna terminals. In practice, however, the antenna is 
connected to a receiver with a finite impedance ZR. It is 
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possible to build receivers with an input resistance of the 
order of 109 ohms or larger, but one cannot eliminate, in 
parallel to this resistance, a "base" capacity C b due to the 
receiver input capacity and to the antenna erecting mecha- 
nism, which is usually of the order of a few tens of picofar- 
ads, so that one generally has Z R • 1/iC bco. 

A precise plasma measurement therefore requires calcu- 
lating the antenna impedance Z = R + 1/iCco, from which 
one deduces the receiver gain 

I• 2 V 2 (C + CB)2 = •= + (RCBCO): (37) 
2 c 

The antenna impedance is given by [Meyer-Vernet and 
Perche, 1989] 

4i F• F(kL)Fa(ka) Z = : dk (38) 
7r E0CO J0 EL 

An interesting point is that the high-frequency resistance of 
a long wire dipole antenna is independent of the distribution 
function: it only depends on the total electron density. 

In the vicinity of the plasma frequency, R is given by (27) 
for long antennae, where B(ko) is to be replaced by ½rf(co/ 
ko)/(2mko), and thus 

2copF(koL) 
R • L/LD>> 1 (41) 

rr• 0(v2)/•0 
We find therefore that in contrast to the noise spectrum, 

the resistance does not depend crucially on the high-energy 
electrons (except if they contribute significantly to the pres- 
sure), even near cop. This confirms the results previously 
obtained in the particular case of distributions made of 
several Maxwellians. 

4. "KAPPA" r• ............. • .......... UIOII•.IDU 11Uinl i I,,iinl•,.•llUinl 

where the function F is given in (4) or (5), and F a takes into 
account the finite radius a of the antenna as 

Es(X) = Jo2( X) wires 

Fa(x)=[si•x] 2 spheres 
Indeed, although for a/L D << 1, both the real part of Z and 
V 2 can be calculated by using the approximation Fa(x) = 1 
as we did in the previous sections, this is not so for the 
imaginary part of Z since the capacitance depends on the 
field at distance a, so that one cannot use the limit ka --• 0 
[Meyer-Vernet and Perche, 1989]. 

For sufficiently small values of a/LD, F2 exhibits a rather 
smooth variation, except if one has simultaneously co = cop 
and L/L D > 10 [Couturier et al., 1981]. In the latter case, the 
fine structure of the peak of the spectrum might be affected 
by the antenna impedance Z. Note, however, that one 
expects that Z should not depend very much on the high- 
energy electrons, except through their contribution to the 
low-order moments. 

In particular, it is easy to transpose to the resistance R the 
analytical results obtained for V 2, by noting that R (from 
(38)) is calculated by replacing B(k) in (1) by the quantity 

k 2 Im e r rrf(co/k) 
4 ½r m co co 2- 2 m k 

Consequently, for low frequencies the analytical values 
for R are trivially deduced by replacing the integral fg 
dvvf(v) in (15), (16), and (18) by the quantity f(O)/(4m). 

For high frequencies, R is given by (19), where the integral 
over v is replaced byf(co/k)/(4m). Using as in section 3.2 the 
approximations of F for large arguments (13) or (14) and 
making the change of variable v = co/k, we obtain instead of 
(21) and (22) 

2 

P 

R • 2eoLco 3 L/LD>> 1 (wires) (39) 

R • 2 dvvf(v) L/L D >> 1 (spheres) (40) 
E0CO 

4.1. Choice of the Distribution Function 

We choose the following electron velocity distribution 
function: 

A 

fK(v) (1 + v2/KVo 2) • + • (42) 
Such f• functions will be named in this paper "kappa 
functions"; •c is a real number larger than or equal to 2, but 
in order to simplify future calculations we will only consider 
integer values of 

These functions were introduced to describe the departure 
of actual electron distributions from Maxwellians in the 

interplanetary medium and the Earth's magnetosphere [see 
Olbert, 1968; Vasyliunas, 1968; Binsack, 1966]. 

From the experimenter's point of view, these functions 
are very interesting, since although they have only two 
adjustable parameters, they are rather close to a MaxwellJan 
at low velocities, while they join smoothly onto a power law 
spectrum at high energies. The fitting of energy spectra 
measured in the Earth's plasma sheet gave approximate 
values g --- 2-4 [Vasyliunas, 1968]. In the solar wind, values 
•c --- 4-7 (J. D. Scudder, private communication, 1989) seem 
to describe rather well the core-halo parameterization used 
by Feldman et al. [1975]. 

From the theorist's point of view, the kappa functions 
have the interest of being analytically easily tractable. As is 
well known, they reduce to a MaxwellJan distribution in the 
limit • • o•. 

A convenient indicator for deviations of a distribution 
function from a superposition of Maxwellians might be the 
differential temperature used by Pilipp et al. [1987], 

d lnf• -1 Tdiff = - kB dEJ 
(E = my2/2). For a Maxwellian at temperature T, Tdi ff = T. 
For a superposition of two Maxwellians ("cool" and "hot"), 
Tdi ff = T C at low energies but increases to Tn at larger 
energies and remains constant. On the other hand, for kappa 
distributions we find 

mvo 2 •c + v2/vo 2 
Tdiff= 2k• •c + 1 
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ellion 

ß -0 1 2 3 4 5 

X----V/V 0 

Fig. 1. Comparison between the "kappa" distribution functions corresponding to the values of K 
used in this paper and their Maxwellian limit (K--• •). Here the functions have been normalized so that 
f(O)-- 1. 

Thus Tdi ff is constant at low energies, as for a Maxwellian, 
but increases monotonically at larger energies. This behavior 
seems in qualitative agreement with the differential temper- 
ature calculated on the basis of isotropic distribution func- 
tions measured in the solar wind [see Pilipp et al., 1987, 
Figure 5 c]. 

Figure 1 shows a set of such functions compared to their 
Maxwellian limit. 

Let us first calculate the moments of f(v) defined in (7). 
We get 

F K ' 
2 2 

ß [F(K + 1)] -• (43) 

where F(x) denotes the gamma function. Since the distribu- 
tion function is normalized as (v ø) = 1, we find quite 
immediately the value of A: 

r(• + 1) 
A= 

(z-•()3/2v03r(•(- 1/2) 
We can also calculate the equivalent temperature T - 

m(v2)/3ka; using (43) and properties of the gamma function, 
we obtain 

2 
mv o K 

T = (44) 
ks 2K-3 

As said above, we only consider integer values of K. In this 
case, A becomes 

2•-IK! 

A = 7r2v03 K 3/2(2K _ 3)!! (45) 
where 

•!=1 X2X3X'''X(K--1) XK 

(2K-3)!!= 1 x3x5x...x(2•-5) x(2•-3) 

4.2. Longitudinal Dielectric Permittivity 

The longitudinal dielectric permittivity is given by (3). 
Replacing f(v) by the kappa function, we obtain 

2•rto• 2 
eL=l+ A 

' f /• dvll vii (kvll - w - io)(1 + vl•/KV02) K + ' 

Setting x = Vll/K ]/2Vo and z = to/• l/2kv0, we get 

e L = I + k2 (I• + ZI2) (46) 
with 

I 1 --' A vo K 1/2 f._+• dx (x 2 + 1) K + • (47) 

12 = A VoK •/2 f __+• dx (x - z - io)(x 2 + 1)" + I (48) 

The calculation of I• is straightforward and gives 

1 • - 1/2 

II = 2 
7TU 0 K 

Calculating 12 is equivalent to integrating the function 

(49) 
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(x-z)(x 2+ 1)K+I 
(50) 

on the real axis avoiding the real pole x = z by passing below 
it. To achieve the calculation of 12, the integration path is 
closed with a large semicircle in the half complex plane Im x 
< 0. The contribution of the integration on this large 
semicircle is zero because 

(x-z)(x 2+ 1) K +1 

The only pole included inside the integration path is -i. So 

12 = AvoK l/2(-2i•r)R 

where R is the residue of the function (50) for the pole -i. 
We have 

R ..... x=-i 
• ! dx • x - z)(x- i) • +l 

Using Leibnitz's formula, we write 

•._ 

dx • (x - z)(x - i) • + l 

= Z C:d- x-b dx 
p=0 

with 

Comparing this with the corresponding limit for a Max- 
wellian distribution, namely 

1 

e L-• 1 + k 2 L 2 o 
which means that the low-frequency electric perturbations 
are exponentially shielded over a distance L o, we define the 
Debye length in this plasma as 

L D = • (52) 
top 2•:-1 

Note that by replacing v0 by its expression (44) as a function 
of the equivalent temperature T, we obtain 

LD = (53) 
w e , 2•: - 

so that the Debye length depends not only on %, and T but 
also on •. Of course, for • --• •, we recover the usual 

Maxwellian result L D .... ß 

4.3. Calculation of the Electrostatic Noise 

The fluctuations of the electrostatic field are given in (1). 
The dielectric function e r has just been calculated and is 
given by (51). F(kL) depends on the geometry of the 
antenna: depending on whether the antenna is a wire dipole 
or a dipole made of two spheres, expression (4) or (5) has to 
be used. Let us now calculate B(k). 

Inserting (42) into (2), we get 

p!(t• -p)! 

--. =(--1) n 
dx n X- Z (X -- Z) n +1 

dn ( 1 ) dx n (x i) K+l = (--1)n 
1 

(x_i) •+l+n 

and we obtain eventually 

g I (" +p)! 
p=0 

(2i),• + I +P(Z + i) '• + •-P 

We can now deduce the final expression of 

Z2( (--2) K+I er = 1 +•7 2g- 1 + (2t•- 3)!! iz 

'• (•: + p) ! 1 ) ß • , 
p=O P! (2i)'• + I +P(z + i) '• + I-P 

where r = wlwp = f/fp. 
The dielectric function has the low-frequency limit 

eL--->l +•7(2t<- 1)= 1 + w-->0 

(51) 

2•rA dv 

B(k) = -• 
7U 

(1 + V2/KV02) g+ I 

which gives, after we set x = v2/•v02 and z = to/K•/2kvo, 

B(k) - 2 era t• vo 2 fz+• dx k 2 2 (1 +x) K+• 

This is trivially integrated as 

z'A vo 2 1 
B(k)= k (1 +z 2) • (54) 

Substituting this expression of B(k) into (1) and setting z = 
w/•/2kvo, r = w/w e, and u = L/L o with L o given by (52), 
we obtain 

•r2e (2,z 3)11 1/2 r 2 dzzF z(2az 1) 

ß [(1 q-z2)•l•12] -• (55) 

Introducing the equivalent temperature given by (44), we 
find the expression of the normalized fluctuations 

V 2 2 • + 3 (K -- 1)!(2t• -- 3)1/2 1 
T 1/2 = 7r 2E (kBm) 1/2 __ 0 (2t< - 3)!! r 2 

ß dz zF z(2•- 1) 1/2' [(1 + z •IeL (56) 
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Fig. 2. Noise power spectrum in V 2 Hz -1 normalized to T(K) la calculated with a "kappa" 
electron distribution (K = 4) and a wire dipole antenna for different values of the normalized antenna 
length œ/œD .... ' 

keeping in mind that eL is given in (51). 
As the analytic calculation of V 2 T -1/2 cannot be done in 

general, the integration must be numerically computed. This 
is easier than for a Maxwellian distribution since the dielec- 

tric permittivity e L does not involve any special function. 
The comparison between the spectra corresponding to 

kappa distribution functions and those corresponding to 
other distributions must be done for the same values of the 

equivalent temperature. Yet L D depends not only on the 
temperature but also on K (see equation (53)). That is why 
spectra shown in the figures have been drawn not for 
different values of u = L/LD but for different values of u = 
L/LD .... where L D .... (defined in (11)) is the value of L D for 
a Maxwellian distribution with the same equivalent temper- 
ature so that it now depends only on T (and top and L) but no 
longer on K. Using (11) and the equivalent temperature given 
by (44), we have 

.... O)p 2•--3 

1/2 

so that the only thing you have to do is to replace F[ru/z(2• 
- 1) •/2] by F[ru/z(2• - 3) •/2] in the expression of V2/T •/2 
to achieve the calculation as a function of the parameter u = 
L/Lb .... ß 

5. RESULTS AND DISCUSSION 

In order to study how the shape of the distribution 
function determines the quasi-thermal noise spectrum, we 
will first compare spectra calculated with different values of 
• and then compare them with Maxwellian, "flat-top," or 
bi-Maxwellian distributions. Of course, we consider plasmas 
having the same density and equivalent temperature, so that 
the curves are drawn using the parameter L/LDm•w. In 
calculating these curves we have excluded the spectral 
region where 1 < w/% < 1.01, because it presents some 

numerical difficulties and, in any case, the usual noise 
receivers have a bandwidth of the order of 1% or more. The 

limitation due to relativistic velocities discussed in section 

3.3 is then irrelevant if the equivalent plasma temperature is 
smaller than about 4 x 107 K (because Xm is then smaller 
than 1%). Note that from equation (36) the mean of the 
spectrum over the frequency range W/Wp = 1 and W/Wp = 
1.01 is about 2 times the value for w/wp = 1.01. 

Figures 2 and 3 show a set of normalized spectra calcu- 
lated with a kappa distribution K = 4 for different values of 
the parameter L/LD .... and a wire dipole and a double- 
sphere antenna, respectively. This illustrates the generic 
behavior of quasi-thermal noise spectra: a plateau below fp, 
a cutoff at fp with a peak which is sharper for long antennae, 
and a high-frequency spectrum proportional tof -3 orf -2 for 
wire or sphere long dipole antennae, respectively; on the other 
hand, the spectrum is nearly flat for short antennae. As shown 

in section 3.3, the peak is sharp and occurs at f•,, which is a 
generic property of distributions having a power law tail. 

Figure 4 shows the effect of changing the parameter •. 
Here we have compared • = 2, 4, and 6, for a short wire 

dipole antenna (L/LD .... = 0.5) and a long one (L/LD .... --- 
8). Other cases are given by Chateau [1991]. The low- 
frequency level depends on the low-order moments of the 
distribution (and more strongly for longer antennae), but 
these moments do not depend very much on • for • >> 1' 

note for instance that for K = 2, LD = LD .... /3 •/2, while for 
•: -> 4, L D differs from L D .... by less than 15%. This is why 
the curves • - 4 and 6 are near each other but rather 

different from • = 2. 

On the other hand, for long antennae the differences near 
f•, stem from the high-energy tail, which varies as 1/v2K+2; 
the peaks for the different values of • behave as in (36). Note 
also that if there are more high-energy electrons, the spec- 
trum just below f•, is higher, so that the cutoff is rounded off; 
this is clearly seen for the curve • -- 2. We also verify that 
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IX \. 
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1 10 

Fig. 3. Same as Figure 2 for a double-sphere antenna. 

for a long wire dipole antenna the high-frequency level 
depends not on K, but only on n and T. 

In Figure 5, we compare three cases' a kappa distribution 
(K - 3), a Maxwellian, and a "flat top," for a short wire 
dipole antenna (df:t••w = 0.5) and a long on• (L/LDm x -- 8). The flat-top ' ' ionf(v) oc 1/1 + (V/Vo) was stuad•ed 
by Chateau and Meyer-Vernet [1989]; it has a flat top at low 
energies and a power law tail ocv -8. It is thus interesting to 
compare the results with a • = 3 distribution whose high- 
energy tail has the same form. We note the following points, 
illustrating the generic properties. First, we see again that 
the high-frequency levels for a long dipole antenna are 
identical, since they depend only on n and T. 

Second, the peaks are identical for the kappa and the flat 
top, as expected from (36)' since their high-energy tails have 
the same power law variation. Note, however, an interesting 
point; though both tails vary as v -8 they are not equal' for 
v/(v 2) •/2 >> 1, f(v) is a factor 8/(2 +'2 •/2) •/2 larger for • = 3 
than for the flat top, yet the peaks are identical. This is 
because the noise peak has the form Vo: o• B(ko)/f(w/ko ) (see 
(27)), so that only the shape of the tail (for velocities v > v,o) 
matters, not its amplitude. Note also that as shown in section 
3.3, the Maxwellian distribution produces a very different 
peak: it is much broader and occurs significantly above 

Third, the low-frequency levels are slightly different, due 
to the difference in the low-energy electrons. A final point is 

o. 1 1 lO 

Fig. 4. Noise power spectrum in V 2 H z-1 _normalize_d to T(K) 1/2, calculated with "kappa" electron distributions K = 2, 4, and 6, with two ditterent values of the normalized length L/L D .... of a wire dipole antenna. 
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f/fp 

Fig. 5. Comparison between the spectra (normalized to T 1/2) calculated with a "kappa" distribu- 
tion K - 3, a Maxwellian, and a "flat top," for two different values of the normalized length L/L D .... 
of a wire dipole antenna. 

worth noting: although the function K = 3 and the flat top 

produce the same fp peaks, the former gives a much larger 
noise level just below fp. This is because this level, in 
contrast to the peak, depends on the quantity of electrons in 
the high-energy tail (not only on the shape of the tail), and 
the function K = 3 has a much larger proportion of high- 
energy electrons than the flat top. On the other hand, we see 
that the Maxwellian, which has practically no high-energy 
(v >> {v 2 ) 1/2) electrons, yields a spectrum with a very sharp 
cutoff. 

High-energy electrons are often described by adding to a 

(cold) Maxwellian distribution a second (hot) Maxwellian; 
this kind of modeling has been used to compute quasi- 
thermal noise spectra [see Couturier et al., 1981]. In Figure 
6 we have compared a spectrum calculated with a sum of 
Maxwellians (nH/nc -- 0.01, TH/T c = 10), with our results 
for a kappa (• = 4) and a flat top distribution for a long wire 
dipole antenna of length L/LDm•w = 8; these parameters are 
rather typical in the solar wind. In order to illustrate a case 
with more high-energy electrons, Figure 7 compares a bi- 
Maxwellian having nH/n c = 0.01, TH/T c = 100, with our 
results for • = 2. 

flattop 
bi-Maxwellian 
•ith nH/nc=O.01 and TH/1'C=10 

.7 .8 .9 1 1.5 

f/fp 

Fig. 6. Comparison of the spectra obtained with a "kappa" distribution t½ = 4, a distribution made 
of a cold and a hot Maxwellian with nH/nc = 0.01 and TH/Tc = 10, and a "flat top," for a wire dipole 
antenna of length L/LDm•x w = 8. 
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Fig. 7. Comparison of the spectra calculated with a "kappa" distribution K = 2, and with 
a bi-Maxwellian having nH/nc - 0.01 and TH/Tc = 100, for a wire dipole antenna of length 
L/LD .... = 8. 

Two important points are worth noting. First, the bi- 
Maxwellian noise spectra have a peak which is above fp and 
less sharp than that obtained with the other functions: as 
already discussed, this is a generic feature of Maxwellian 
tails, as compared to power law ones. Second, the kappa 
functions produce higher levels just below fp than the other 
distributions, which reflects the fact that they have more 
high-energy electrons; this smooths the cutoff. On the other 
hand, the flat top, which has few high-energy electrons (even 
though the tail varies as v -8) has a low level of noise just 
below fp and thus a sharp cutoff. It is important to note, 
however, that, as discussed by Chateau and Meyer-Vernet 
[1989], these differences are not very important, so that a 
rather sensitive experiment is necessary to detect them. 

6. CONCLUSIONS 

We have derived the following generic properties of the 
electrostatic noise in a stable isotropic plasma of density n 
and equivalent electron temperature T (proportional to the 
mean square velocity, as defined in (8)). 

1. The high-frequency (f >> f•,) noise level on an 
antenna of length L >> L D varies as 

V2(V 2 Hz -•) • 4 x 10-•T(K)n(m-3)/f3(Hz)L(m) 

for a wire dipole and as V 2 o• n(v)/ro 2 for a double sphere 
(see (23) and (24)). Therefore the measurement of this level 
gives a direct determination of either the pressure or the flux, 
for any stable distribution function. This result might pro- 
vide a practical method for measuring one of these quantities 
at a high rate in space, without having to measure a complete 
frequency spectrum. 

2. The low-frequency level (f << fp) has a plateau which 
depends on the low-order moments of the velocity distribu- 
tion function, e.g., equations (15), (16), and (18). In practice, 

with either kappa distributions having K > 4 or flat-top 
distributions (for which the hot electrons do not contribute 
too much to the equivalent temperature T), this plateau 
differs from the Maxwellian result by less than about 20%, 
for practical antenna lengths. In particular, the usual analytic 
expression V 2 (V2 Hz-•) • 3.5 x 10-14 T(K)/L(m)n•/2 
(m -3) [Meyer-Vernet and Perche, 1989] may still be used to 
obtain an order of magnitude of the equivalent temperature 
with long wire dipole antennae. If, however, one has a long 
wire dipole antenna with a sensitive and well-calibrated 
receiver measuring the whole spectrum, one can first deter- 
mine n and T precisely from the cutoff and the high- 
frequency level; then the spectrum below f•, can be used to 
determine the distribution function at low energies. This 
might have important applications since the usual electron 
analyzers have much difficulty in determining low-energy 
electron parameters. 

3. For most practical distributions the peak of the spec- 
trum has a cutoff which determines the plasma frequency, 
and thus the total electron density. The peak shape strongly 
depends on the distribution of the high-energy electrons. For 
a power law tail the peak is nearly exactly at the plasma 
frequency (in contrast to what happens with a Maxwellian 
tail). However, the measurement of the high-energy elec- 
trons is generally limited by the finite frequency resolution 
Ato/to of the noise receiver, since the peak cannot give any 
information on the electrons of velocity v > [(v2)/(2Ato/ 
to)] •/2 except if these electrons contribute to the pressure in 
an important way. 

One might think naively that the fine structure of the peak 
could be resolved by using a receiver with a sufficient 
frequency resolution. This is not necessarily true, however, 
since in practice the spectrum is acquired over a finite time, 
during which the plasma density fluctuates. When these 
density fluctuations occur at frequencies much smaller than 
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the plasma frequency, the noise peak fluctuates accordingly. 
Since f•, cr n •/2, the observed peak should be broadened by 
one-half the amplitude of the density fluctuations An/n. 

For instance, it is well known that in the free solar wind 
the electron density fluctuations are usually of the order of a 
few percent, on time scales larger than a few seconds. 
Consequently, over such time scales the peak cannot be 
determined with a resolution better than 1%; this precludes 
any fine measurement of electrons of velocity larger than 
about 7 times the mean square velocity, by thermal noise 
spectroscopy, at such time scales in the solar wind (except if 
these electrons contribute significantly to the pressure). 

This is not, however, the whole story, because the above 
quoted value does not take into account the fluctuations over 
shorter time scales, for which the measurements are much 
more difficult. Celnikier et al. [1987] have found that the 
power spectrum of the electron density fluctuations in the 
solar wind near 1 AU decreases with a power law index 
generally smaller than 1 for time scales between about 0.06 s 
and 15 s. A similar flattening with respect to a Kolmogorov 
spectrum has been found nearer the Sun [Coles and Har- 
mon, 1989]. This means that short time scales play a domi- 
nant role in the calculation of An/n, so that the value of a few 
percent quoted above is clearly an underestimate: for in- 
stance, the fluctuation spectrum obtained by Celnikier et al. 
[1987] gives An/n • 5% when it is integrated between 0.06 s 
and 6 s. Consequently, a noise peak acquired in about 6 s 
should be broadened by about 3%, or perhaps more since the 
contribution of time scales shorter than 0.06 s is presently 
unknown. 

Can we deduce practical consequences for interpreting 
noise spectra measured with past or present experiments in 
space? They generally have either a low-frequency resolu- 
tion or a large integration time or both. For instance, the 
radio experiment aboard ISEE 3 has a frequency resolution 
barely better than 10% near the plasma frequency in the 
solar wind [Knoll et al., 1978]. Aboard ISEE 1 and 2 the 
noise receiver, which has a better frequency resolution, 
acquires a noise spectrum in 4 s at its highest rate [Harvey et 
al., 1978]. Either of these effects should round off the peak 
and, owing to its dissymmetry, should shift it above the 
plasma frequency. This would make the peaks of the curves 
shown in Figure 6 nearly indistinguishable in practice. As a 
consequence, an attempt to deduce high-energy tails by 
thermal noise spectroscopy with such experiments might 
give meaningless results in some cases; for example, in the 
case of a receiver having poor frequency or time resolution 
and a plasma with a power law tail, one could obtain a quite 
irrelevant hot electron temperature by fitting to the mea- 
sured spectrum one constructed from a sum of Maxwellians. 
However, such an experiment can nevertheless give reliable 
results for the bulk of the distribution (i.e., v •> (v 2) 1/2) if 
it uses a long wire dipole antenna. 

On the other hand, the future experiments planned aboard 
Wind or CRAF might allow one to distinguish between 
kappa distributions and distributions made of two Max- 
wellians in the solar wind if they have a frequency resolution 
of the order of 1% and a time resolution better than a fraction 

of a second. 

Finally, it is important to note that the results obtained in 
this paper rest on two important assumptions: the isotropy of 

the electron distribution and the absence of ambient static 

magnetic field. Although reliable results have been obtained 
with these assumptions in both the solar wind and a 
cometary environment, and some hints have been given 
about the effects of relaxing these assumptions (see, for 
instance, references given by Meyer-Vernet and Perche 
[1989]), more studies of the effect of the magnetic field might 
be needed for fully interpreting noise spectra that will be 
measured aboard the space probe Ulysses [Stone et al., 
1983], which (hopefully) will pass through the Io torus near 
Jupiter before exploring the Sun's polar regions, or aboard 
the projected Cassini spacecraft near the planet Saturn. 
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