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Abstract

The velocity distributions observed in space have too many fast particles, by Maxwell’s standards. This ubiquitous property raises
doubts about the validity of models based on a set of 4uid equations whose closure requires the distributions to be nearly Maxwellian. I
discuss here two generic cases: bound structures and winds. Near rapidly rotating magnetised planets, particles channelled along co-rotating
magnetic 6eld lines are acted on by the 6eld-aligned component of the centrifugal force, which exceeds the gravitational attraction beyond
a few planetary radii. With dipolar magnetic 6elds, this tends to trap particles near the equator and produce torus-shaped structures,
whereas gravitational con6nement occurs closer to the planet. These con6ning forces act as high-pass 6lters for particle speeds, so that
the temperatures are rising with distance from the potential wells, if the velocity distributions are not Maxwellian — in sharp contrast
to classical isothermal equilibrium; and the density pro6les fall o9 less steeply than a Gaussian — just as the velocity distributions fall
o9 less steeply than a Maxwellian. While these bound structures are shaped along closed magnetic 6eld lines, winds can blow along
open 6eld lines. A suprathermal tail in the electron velocity distribution increases the electric 6eld which ensures the balance of ion and
electron 4uxes, and should thus increase the wind speed above the value predicted by classical hydrodynamic escape. c© 2001 Elsevier
Science Ltd. All rights reserved.
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1. Introduction

“Let us consider our data”, Sherlock Holmes tells us
(Doyle, 1927).
In 1992, the spacecraft Ulysses crossed Jupiter’s mag-

netosphere from north to south, thereby providing the 6rst
— and to date, unique — in situ measurement of the lat-
itudinal structure of the torus of plasma associated with
the satellite Io. The electron temperature was found to
rise strongly with latitude, whereas the density decrease
was not Gaussian (Meyer-Vernet et al., 1993; Moncuquet
et al., 1995), in clear contradiction with the current models
(Bagenal, 1994).
These empirical models were in fact mere extrapolations

of equatorial data, since Ulysses was the 6rst probe leav-
ing the vicinity of the Jovian equator — a serendipitous gift
due to the exploration of the polar solar wind. Could these
models be wrong? The culprit could not be a temperature
anisotropy since this would have produced a temperature
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variation much smaller than observed, and in the opposite
sense. Neither could it be the high-energy electron compo-
nent, since the measured temperature concerned explicitly
the low-energy part. The data were obtained at variable lon-
gitudes, so could the culprit be a longitudinal asymmetry?
Since the temperature increase was found to be roughly sym-
metrical in (centrifugal) latitude, such an explanation would
have required that the temperature variation with longitude
be tailored to 6t, just in phase with the spacecraft trajectory
(and anyway, not in line with the current data and theoreti-
cal schemes.)
What would William of Ockham have made of this?

Minimising the hypotheses suggested to question instead a
basic ingredient of the models:Maxwellian velocity distribu-
tions for each particle species—equivalent to di9use equilib-
rium with uniform temperatures along magnetic 6eld lines.
Indeed, this assumption was in no way supported by obser-
vation. The velocity distributions were badly determined in
the Io torus, because the electron measurements on Voyager
were a9ected by the spacecraft potential, and the ion ones
were complicated by confusion between particle species and
by transonic speeds; for diverse reasons, the detailed Jovian
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exploration by the sophisticated Galileo spacecraft does not
seem to have clari6ed the picture. Be that as it may, the data
suggested non-Maxwellian distributions — as is generally
observed in space plasmas, and as could be expected with
so many non-equilibrium processes at work and so few col-
lisions. Thus there was no reason — except of convenience
— to assume Maxwell distributions.
“Once your point of view has changed”, Sherlock

Holmes continues, “the very thing which was so damning
becomes a clue to the truth”. Indeed, a non-Maxwellian
velocity distribution is just what is needed to produce a
temperature increase along 6eld lines and a non-Gaussian
density pro6le in a bound and collisionless environment, as
Scudder (1992) showed in a quite di9erent context. This is
because the attractive force 6lters the particles by letting
only the fast ones escape, thereby making the temperature
rise outwards; this does not happen with a Maxwell distri-
bution because in that case the 6ltration just multiplies the
distribution by the Boltzmann factor, so that all particles
are 6ltered similarly.
Indeed, simply discarding the Maxwellian hypothesis by

taking into account a suprathermal electron tail compatible
with the data enabled one to explain the Ulysses observa-
tions (Meyer-Vernet et al., 1995). And this novel point of
view shortly turned out to remove a number of apparent in-
consistencies in the Voyager and ground-based data (Mon-
cuquet, 1997; Thomas and Lichtenberg, 1997).
These e9ects are clearly outside the scope of the classic

4uid scheme, but they have important consequences on the
large-scale structure of bound environments — in contrast
to the widespread idea that kinetic e9ects play a role only
at small scales. We will see that the consequences on winds
are more subtle, albeit no less important. I discuss below
the basic underlying physics for the generic cases of bound
structures and of winds; at the risk of gross oversimpli6ca-
tions, I will keep things relatively simple in order to avoid
the fundamental ideas being lost in the wealth of details and
mathematics.

2. Suprathermal tails

As mentioned above, the velocity distributions observed
in space are not in equilibrium: they are nearly Maxwellian
at low energies, but they have an excess of fast particles
which generally decreases as a power law (Fig. 1). This
ubiquity of suprathermal tails has prompted a number of
investigations along many fronts (see Scudder and Olbert,
1979; Collier, 1993; Treumann, 1999), but to date, nobody
has come up with a full generic explanation. Be that as it
may, such distributions are not surprising given the nature
of particle “collisions” in plasmas, which do not occur as
billiard balls, but rather via the Coulomb force; for two par-
ticles to interact signi6cantly, they must come closer than
the distance r at which the Coulomb potential (˙1=r) equals
the kinetic energy, so that their cross-section varies as the

Fig. 1. Examples of velocity distributions observed in space, and com-
parison with Maxwellian and Kappa functions. Top: Electron distribution
observed in the solar wind on Ulysses (adapted from Maksimovic et al.,
1997a). Middle: Electron distribution observed in the Earth’s plasma sheet
(Christon et al., 1988) (adapted from Pierrard, 1997). Bottom: Ion dis-
tribution observed in Saturn’s magnetosphere with the LECP instrument
on Voyager 1 (adapted from Maurice, 1994).

inverse square of the energy (Spitzer, 1962). Thus a parti-
cle moving, say, three times faster than average has a free
path greater by two orders of magnitude. Therefore, even
though low-energy particles are often collisional, faster ones
are generally not so; they are thus easily driven out of equi-
librium and escape to large distances (Scudder and Olbert,
1979; Shoub, 1983).
How to model such distributions? In the menagerie of

mathematical functions, the generalised Lorentzian

f(v)˙
[
1 +

v2

�w2

]−(�+1)

(1)
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Fig. 2. Top: Kappa velocity distribution (Eq. (1) with �=3), compared to
a Maxwellian and to a power law. Bottom: A series of Kappa distributions
with di9erent values of �. All distributions are rather similar at speeds
below the most probable speed w, but the smaller the value of Kappa, the
more fast particles, and therefore the greater the kinetic temperature. The
distributions are normalised so that they have the same number density
(and the same most probable speed); the excess of suprathermal particles
is compensated by a de6cit in low-energy ones.

seems to do nicely. At speeds v6 w, this so-called “Kappa”
distribution is close to a Maxwellian (˙ e−v2=w2

) of temper-
ature T∞ = mw2=2kB for particles of mass m, and it has a
suprathermal power-law tail, in agreement with observation
(Vasyliunas, 1968) (Fig. 2, top). The larger the value of �,
the lesser suprathermal particles, so that the distribution ulti-
mately approaches the above Maxwellian as � → ∞; it thus
has the agreeable property of including the Maxwell distri-
bution as a limiting case. The most probable speed isw what-
ever the value of �; but the kinetic temperature, given by
m〈v2〉=3kB (where the angular brackets denote a mean over
the distribution) is T∞ × �=(�− 3=2), and thus increases as
� decreases — due to the increasing size of the tail (Fig. 2,
bottom). Hence, � is constrained by the inequality �¿ 3=2
for the temperature to remain 6nite; in practice, it generally
lies in the range 2–6. It may be noted that this function must

Fig. 3. Top: The classical 4uid models require the particles to keep
some spatial local ordering, and they assume nearly Maxwellian veloc-
ity distributions. Bottom: Space plasmas contain an excess of fast parti-
cles which do not interact locally since they are virtually collisionless;
thus they may not behave as bona 6de 4uids (based on drawings from
F. Meyer.)

be handled with care because it has only a limited number
of 6nite moments. Although it is not the panacea, this func-
tion is one of the most suitable tools available for modelling
velocity distributions observed in space.
Let us now consider this other pillar of large-scale mod-

elling: the 4uid approach.

3. Fluid or kinetic?

Why should the conventional 4uid models be often in-
adequate in space plasmas for describing large-scale struc-
tures? After all, these structures contain so many particles
that they should follow the average.
The fundamental reason can be understood intuitively

in two ways. Firstly, the 4uid models require the parti-
cles to be localised in space, so as to behave as a whole
(Fig. 3, top). Indeed, if the medium is to be described by
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di9erential equations, the rates of change must depend only
on the local variables. Intuitively, this localisation requires
the particles to travel less than a scale height before coming
into equilibrium. But in most space plasmas, which contain
an excess of virtually collisionless fast particles, the local-
isation processes are insuQcient; it is often argued that the
particle gyration in the magnetic 6eld comes to the rescue for
ensuring a 4uid behaviour, but this does not act in the direc-
tion parallel to the 6eld lines. Hence the medium might not
behave as a bona 6de 4uid (Fig. 3, bottom). The other way is
to note that if a 4uid element is to be completely de6ned by
its number of particles, velocity and energy, then the particle
velocities should be distributed randomly around the aver-
age, that is, the velocity distribution should be Maxwellian;
any other distribution would mean that more information is
available (see Fort et al., 1999). As we have seen, space plas-
mas generally have non-Maxwellian distributions, so that a
few macroscopic parameters may not carry enough infor-
mation to describe them adequately.
It is not easy to put these intuitive feelings on a 6rmer

basis, because the path leading from the kinetic plasma de-
scription to the small set of equations used in 4uid models
is tortuous and full of mines (see Montgomery and Tidman,
1964). It is fair to say that the problem is far from being
solved, except in a few cases which rarely occur in space.
In the precise — albeit obtained itself from approxima-

tion — kinetic Boltzmann’s scheme, the plasma is de6ned
by the particle velocity distributions as functions of space
and time. The passage to a 4uid description — where the
medium is more loosely de6ned by a few macroscopic
parameters — involves truncating (at which level?) and
closing (how?) an in6nite set of coupled equations relat-
ing an in6nite number of velocity moments. The simplest
procedure uses only conservation of mass and momen-
tum; since these two equations involve three parameters
(density, velocity and pressure), the system is closed by
assuming a relation between pressure and density; for
example, if the changes are suQciently slow to secure
a uniform temperature bath, the pressure is proportional
to the density; if, on the contrary, the changes are too fast
to allow any heat exchange, the pressure is proportional to
the density to the power 5=3 — the adiabatic relation for
particles having three degrees of freedom. Both approxi-
mations require the velocity distributions to be suQciently
close to Maxwellian ones. A di9erent approximation is
sometimes used when the magnetic 6eld is strong and
collisions are rare, so that the medium is gyrotropic with
di9erent pressures in the directions parallel and perpendic-
ular to the magnetic 6eld: if heat transport is negligible,
the adiabatic relation can then be generalised. In general,
however, neither of these simple extremes holds, and heat
transport must be taken into account explicitly.
Just as suggested by our intuitive feeling, the standard

procedure for passing to such a 4uid description involves
an expansion into the ratio of the mean free path for scatter-
ing to the scale at which parameters vary — the so-called

“Knudsen number” (see Hinton, 1983 and references
therein) (as mentioned above, the scale length to be com-
pared to the free path may be the one in the direction
parallel to the magnetic 6eld). In ordinary gases, this ex-
pansion only requires that the Knudsen number be smaller
than unity. But in plasmas, the criterion is more stringent
and the Knudsen number must be much smaller than unity
— which rarely holds in practice (see Scudder, 1992 and
references therein). Why is this so? The fundamental reason
is once more the steep increase of the free path with speed:
even when the free path is small for “thermal” particles, it is
not so for faster ones, thereby precluding uniform conver-
gence of the expansion, as has been recognised in earnest
some time ago (see Scudder and Olbert, 1979; Scudder and
Olbert, 1983; Shoub, 1983).
It is not surprising that the 4uid approximations become

questionable when the velocity distributions have suprather-
mal tails. Indeed, the heat 4ux — the third velocity moment
— depends mainly on the fast particles: the faster the parti-
cles, the more eQciently they conduct heat; this is still truer
for the higher-order moments which are disposed of in the
4uid truncation and closure schemes: the higher the order
of the moment, the larger the relative contribution of the
fast particles, so that higher-order 4uid theories may not be
better.
We conclude from all this that the usual 4uid models

should be taken with a large pinch of salt: with few collisions
and non-Maxwellian distributions, the classical schemes
may be inadequate; in essence, they imply a local relation-
ship, whereas the fast particles, which are virtually colli-
sionless, make the problem non-local. Let us now examine
some generic consequences on planetary environments.

4. Trapping agents

Close to planets, which are generally rotating and magne-
tised, several e9ects conspire to con6ne the plasma. Particles
are of course subjected to the planet’s gravitational 6eld,
but they are also channelled by the magnetic 6eld; in the re-
gion co-rotating with the planet, they are thus pulled towards
the equator by the component of the centrifugal force act-
ing along the 6eld. One expects this force to be larger than
the magnetic mirror force by about the ratio of the particle
co-rotation energy (500 eV for oxygen at Io’s orbit) to its
thermal energy (see Cummings et al., 1980). Just as pearls
threaded along a rotating wire (Fig. 4), particles moving
along a 6eld line tend to accumulate near the point where
the B-aligned centrifugal component vanishes; this de6nes
the so-called “centrifugal equator” (which is shifted o9 the
magnetic equator when the planet’s magnetic and spin axes
do not coincide) (Gledhill, 1967).
Consider a very elementary model which contains the

basic physics: a planet of mass M rotating with angular
velocity�, and having a dipolar magnetic 6eld whose axis is
aligned with the spin axis. Consider now a particle of mass
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Fig. 4. Particles channelled by magnetic 6eld lines are subjected to the
projection on B of the centrifugal force Fc and of the gravitational force
Fg. The 6gure illustrates the simple case when the magnetic and spin
axes coincide, so that the centrifugal component along B tends to trap
particles near the magnetic equator.

m at distance r from the planet and latitude . With a dipolar
magnetic 6eld, the angle � between B and the normal to
the radius vector is related to the latitude by tan �= 2 sin .
Now, the centrifugal force is given by Fc =m�2r cos , and
its projection on B equals Fc sin( + �) (Fig. 4). For small
latitudes, one has � ≈ 2, so that the projected centrifugal
force is roughly Fc × 3, whence

Fc|| ≈ 3m�2z (2)

at small distances z ≈ r from the equilibrium position.
The particle is also subjected to the gravitational force Fg =
mMG=r2 (G being the constant of gravitation), whose pro-
jection on B is given by −Fg sin � ≈ −2Fgz=r: The gravita-
tional and centrifugal components are thus roughly equal at
the distance

rc = (2MG=3�2)1=3: (3)

This equatorial distance is in some sense akin to the “Roche
limit” of neutral media: in this vicinity, a co-rotating
plasma droplet tends to break into two pieces, one falling
inwards along the magnetic 6eld, while the other is pulled
towards the centrifugal equator (see Lemaire, 1974, 1999;
we will return to this point in Section 7). This distance
amounts to about 6 planetary radii for the Earth, but to
only 2 planetary radii for Jupiter and for the other outer
planets. Indeed, gravitation dominates in the Earth’s plas-
masphere, except when the solar wind induced electric
6eld increases signi6cantly the plasma rotational speed
above co-rotation, thereby decreasing rc. In contrast, the
centrifugal component is the main trapping agent in the
co-rotating region of outer planets (except at very short
distances).
Let us study this case in a little more detail. Con-

sider the generic example of Io’s plasma torus — a

structure surrounding Jupiter at about 6 Jovian radii. How
far does it extend from the equilibrium centrifugal plane?
Let us suppose that there is only one ion species, of mass
mi and uniform temperature T . We can guess that the par-
ticles 6ll the region where their centrifugal energy exceeds
their thermal energy. With the centrifugal force (2) acting
on ions of mass mi (the light electrons barely feel it), the
increase in potential energy at a (small) distance z is

Wc ≈ 3mi�2z2=2: (4)

Equating this value to kBT gives an estimate of the torus
vertical extent on each side of the equilibrium plane

H =
[
2kBT
3mi�2

]1=2
: (5)

Not unexpectedly, this is just the value derived from the
isothermal (bi)-4uid approach (Gledhill, 1967) when the
electron pressure is neglected. Indeed, the hydrodynamic ion
pressure equation along B yields

dp=dz =−nFc||; (6)

where n is the number density of ions. Now, let us assume
isothermal equilibrium along 6eld lines, i.e. T does not de-
pend on z; substituting the force (2) and the ion pressure
p= nkBT yields

dn=dz =−2nz=H 2 (7)

whence

n˙ exp(−z2=H 2): (8)

It may be worth noting that since the above calculation ne-
glects the electron pressure, it contains the hidden assump-
tion that the electron temperature is much smaller than the
ion one. With equal temperatures, the total pressure would
be twice greater (if the ions are singly charged, i.e. if there
are as many ions as electrons), which yields a scale height
greater by a factor of

√
2 — a result which can also be ob-

tained by putting the average particle mass (roughly half the
ion one) in the scale height (5).
The canonical Gaussian pro6le found above is used in

various contexts with modi6cations of detail. However, it
involves a crucial assumption: isothermal equilibrium along
6eld lines. We saw in the introduction that this assumption
con4icts with observation, but it is not evident how to pro-
ceed instead if we stick to the 4uid picture. What is the ade-
quate closure relation? And is there any? So let us see what
the kinetic theory has to tell us.

5. A kinetic picture of trapping

When the mean free paths are much greater than the scale
heights, as occurred for Ulysses’ encounter, we may neglect
collisions — a huge simpli6cation, so that the velocity dis-
tribution of each particle species equals a constant following
particle trajectories. Under the form of what is sometimes
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called Jeans’ theorem (Chandrasekhar, 1942), this means
that we can calculate here the velocity distributions as func-
tions of the constants of motion of the particle trajectories.
In the spirit of our simple model, let us suppose that the dis-
tributions are isotropic in the frame rotating with the planet,
so that they depend only of the value v of the velocity, but
not on its direction. In this case, if the distribution of a par-
ticle species is f0(v) at z = 0, then its value at altitude z is
simply f(v)=f0(v0), where the speeds v and v0 are related
by energy conservation, that is, mv2=2+W =mv20=2, where
W is the increase in potential energy between the altitudes
0 and z; this holds for particles of mass m following trajec-
tories connecting these altitudes. Since particles are pulled
towards the equator, all trajectories connect to z=0, so that
the velocity distribution is given by

f(v; z) = f0[(v2 + 2W=m)1=2]: (9)

A small but non-trivial aside is in order here. The value
of the magnetic 6eld does not enter explicitly because the
distribution is isotropic, so that energy conservation is suf-
6cient to calculate it. However, we have implicitly used the
fact that the magnetic 6eld is increasing with z — as the
potential energy does — which ensures a simple mapping
of particle orbits; we will return to this point in Section 7.

5.1. Keeping the plasma neutral

As already mentioned, the light electrons are hardly
a9ected by the centrifugal component which pulls the ions
towards the equator; the corresponding charge imbalance
produces an electric 6eld parallel to the magnetic lines,
whose direction ensures that the electrons are also pulled
towards the equator. This electric 6eld adjusts itself for pre-
serving charge quasi-neutrality. In the spirit of our simple
model, let us suppose that both species have similar energy
distributions at z = 0 and opposite charges. The parallel
electric force on the ions is then one-half of the centrifugal
component and acts in the opposite direction; in this way,
the total parallel force on ions is halved and is equal to the
force acting on electrons. Consequently, the total potential
energy of each species is just half the centrifugal potential
(4)

W ≈ Wc=2 ≈ 3mi�2z2=4: (10)

Two comments are in order here. Firstly, if the situation
were more complicated — as often occurs in practice — the
electrostatic force would be a priori unknown, and should
be calculated from the condition that the plasma must be
quasi-neutral. Secondly, the electrostatic 6eld is implicit in
the hydrodynamic picture handling the plasma as a single
(neutral) 4uid. When electrons and ions are viewed as two
separate (charged) 4uids, the electric 6eld serves to balance
the electron pressure force: this yields the above value of
the potential if the temperatures are equal.

5.2. Trapped Maxwell distributions

Let us assume Maxwell–Boltzmann distributions of tem-
perature T at z = 0, that is

f0(v)˙ exp(−mv2=2kBT ) (11)

for a species of mass m. Eq. (9) tells us that the distribution
at z is then given by

f(v; z) = exp(−W=kBT )× f0(v) (12)

which is just the initial Maxwellian with the same temper-
ature and a number density n multiplied by the Boltzmann
factor:

n˙ exp(−W=kBT ): (13)

It is indeed well known that kinetic collisionless theory with
Maxwellian distributions yields this canonical law, as hydro-
dynamic equations do. With the potential energy (10), we
haveW=kBT=z2=2H 2 with H given in (5), yielding a Gaus-
sian density pro6le — as found in the hydrodynamic pic-
ture; (as noted above, the factor of 2 in the argument of the
exponential compared to Eq. (8) comes from the non-zero
electron temperature.)
But what happens if the distributions are no longer

Maxwellian?

5.3. Trapped Kappa distributions

Let us assume that the distributions at z=0 are of the form

f0(v)˙
[
1 +

mv2

(2� − 3)kBT0

]−(�+1)

; (14)

namely a Kappa distribution, which we have now expressed
for convenience in terms of the kinetic temperature T0 =
m〈v2〉=3kB for a species of mass m. At altitude z, we have
from (9)

f(v; z)˙
[
1 +

mv2 + 2W
(2� − 3)kBT0

]−(�+1)

(15)

which can be rearranged to give

f(v; z) = t−(�+1) × f0(v× t−1=2) (16)

with

t = 1 +
W

(� − 3=2)kBT0
: (17)

Applying dimensional arguments to Eq. (16), it is clear that
the kinetic temperature of the new distribution — propor-
tional to the mean of v2 — will be t times greater than
that of the initial distribution f0. The particle number den-
sity is deduced in the same way: since it is proportional to∫ +∞
−∞ dv v2f(v), a simple change of variables shows that it
must di9er from the initial value by the factor t−(�+1)× t3=2.
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Fig. 5. Vertical density and temperature pro6les given by kinetic colli-
sionless theory with a Kappa velocity distribution (� = 3), compared to
the pro6les obtained with a Maxwellian (� → ∞, dotted lines); the latter
case is equivalent to the isothermal hydrodynamic picture.

Therefore:

• the number density falls with distance as

n˙ t1=2−�; (18)

• the kinetic temperature rises as

T ˙ t ˙ n�−1; (19)

�= 1− 1
� − 1=2

: (20)

Substituting the potential energy (10) into (17), t can be
written as

t = 1 +
z2

(2� − 3)H 2 (21)

with the “scale height”

H =
[
2kBT0

3mi�2

]1=2
: (22)

Finally, therefore, the density decreases less rapidly than
a Gaussian beyond a few scale heights — just as the dis-
tribution falls o9 less steeply than a Maxwellian — while
the temperature rises (Fig. 5). The latter result may appear
surprising: we are accustomed to relations of the form T ˙
n�−1 with index �=1 (isothermal), 5=3 (adiabatic), or some-
where between, but no smaller than unity. The kinetic heat
4ux is zero, since the distributions are isotropic (in the ab-
sence of collisions, there is no collisional heat 4ux); and
yet the temperature rises as the density falls. Why is this
so? How is heat transferred? In fact, no heat need be fur-
nished, and, anyway, there no 4ow. The apparent paradox
lies in trying to apply concepts involving thermodynamics
and 4ow to a situation without local equilibrium nor 4ow;
we will return to this point in Section 5.5. The above result
may also appear surprising from the kinetic point of view:
one might think naTively that, since particles lose kinetic en-
ergy as they rise, they should get “colder” in going upwards.
This is not so because the attractive force 6lters the parti-
cles, letting only the most energetic ones escape (Scudder,

1992). In the Maxwellian limit (� → ∞), one recovers the
isothermal Boltzmann pro6le because in that case all parti-
cles are 6ltered similarly: the potential energy loss en route
to z does not change the slope of the energy distribution, so
that the kinetic temperature remains constant (see Fig. 6).

5.4. How does velocity :ltration work?

Another way of understanding this e9ect is to consider a
superposition of twoMaxwellian distributions at z=0: a cold
one of density nC and temperature TC, plus a hotter one of
density nH and temperature TH assumed to contribute negli-
gibly to the pressure, so that the kinetic temperature of the
whole distribution at z = 0, equal to (nCTC + nHTH)=(nC +
nH), is roughly TC. Now consider an altitude z such that
the hot particles hardly “see” the potential energy change
W , while the cold ones will consider it as huge, namely,
kBTC�W�kBTH. In that case, the 6ltration is very sim-
ple: each Maxwellian distribution is transformed according
to Eq. (12) with its own constant temperature, so that the
cold and hot densities vary very di9erently: the hot density
hardly decreases because its Boltzmann factor remains close
to unity, but the cold density plummets, as its Boltzmann
factor does; this yields a mean temperature at z roughly equal
to TH. With such a large di9erence in cold and hot tempera-
tures, the e9ect seems trivial and the temperature rise from
TC to TH occurs at great altitudes. Indeed, for the mean tem-
perature to be of order TH, the hot pressure should exceed
the cold one, that is, nHTH ¿nC exp− (W=kBTC)× TC; this
requires the potential energy W to be signi6cantly greater
than kBTC, which occurs at altitudes of several times the
scale height corresponding to the cold temperature.
In fact, the above distribution is not realistic and actual

velocity distributions di9er signi6cantly from a Maxwellian
already at speeds of, say, two or three times the most prob-
able speed (see Fig. 1), so that the temperature rise starts
at rather low altitudes. This is illustrated in Fig. 5, which
shows the density and temperature pro6les calculated for the
Kappa distribution (� = 3) plotted in Fig. 2, together with
the canonical isothermal pro6les.
Although actual distributions do have suprathermal tails,

their shape is not necessarily Kappa like. What happens in
that case? In fact, the rise in temperature as the density falls
is expected to be a generic property of distributions having
suprathermal tails and subjected to a con6ning force, as
illustrated in Fig. 6 (Scudder, 1992). And it can be proved
analytically that this property is shared by all distributions
made of a superposition of Maxwellian ones (Meyer-Vernet
et al., 1995).

5.5. A recipe for >uid a:cionados

We have seen how the ubiquitous non-Maxwellian tails
in particle velocity distributions do change the large-scale
structure of bound environments: the temperature of each
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Fig. 6. Velocity 6ltration by an attracting potential well (see Scudder, 1992). En route to altitude z, all particles experience the same energy reduction
W , so that the 6nal energy distribution is simply a shifted version of the original. Left-hand side: With a Maxwell distribution, the slope is unchanged
and so does the temperature. Right: With a suprathermal tail, whose slope decreases as energy increases, the shifted distribution has a slighter slope than
the original at any energy, so that its kinetic temperature is greater.

particle species rises substantially, while its density falls o9
less rapidly than a Gaussian. For doing so, we have used
a kinetic approach which — even without collisions — is
somewhat complex, and yet, we made gross simpli6cations.
Introducing into the picture the usual complications that Na-
ture obligingly provides would be far from easy, even with
the modern numerical aids; this is the price of doing away
with the 4uid picture. But need this be so?
With an isotropic velocity distribution, the momentum

equation of hydrodynamics applies since the pressure is
scalar. And look at Eq. (19): it may be thought of as a formal
generalisation of the usual adiabatic relation. This leads us
to anticipate that trapped Kappa distributions might be pic-
tured in 4uid language by using the simple hydrodynamic
equations closed by the relation p ˙ n�, with the proviso
�¡ 1. Let us see this explicitly. With electrons and ions
having similar distributions and temperatures, we may han-
dle them as a single 4uid of total pressure p = 2nkBT , so
that, with p˙ n�, the hydrodynamic pressure equation (6)
reads

d
dz

(
n
n0

)�

=− n
n0

× 3mi�2z
2kBT0

(23)

which is easily integrated to yield

n˙
[
1 +

1− �
2�

z2

H 2

]1=(�−1)

(24)

with the “scale height” given in Eq. (22). This is equivalent
to the kinetic result, with � related to � by Eq. (20).
We conclude that in this case, trapped Kappa distribu-

tions can be handled with 4uid tools — albeit formally —
by putting p˙ n� in the hydrodynamic equations. A more
general analysis can be found in Scudder (1992). Equations
of state having this form are sometimes used in empirical
4uid models to 6t the observations, and are supposed to
make up for some unknown heat transport or source. It is
satisfying that we now emerge with a proper justi6cation for
doing so, thereby being happily dispensed from imagining
an ad hoc heat source or abstruse heat transport mechanism.
Reassuringly, in the limit � → 1 — equivalent to � → ∞
in kinetic language — we recover the isothermal equation
of state—equivalent to Maxwell distributions in kinetic
language.
As we noted, the result found above is extremely surpris-

ing from a conventional 4uid point of view. First of all, since
the usual adiabatic relation holds only following the motion
of a 4uid parcel, it should not apply to the static structure
considered here. Secondly, with a scalar pressure and no
heat 4ux, the normal 4uid picture leads to the adiabatic in-
dex � = 5=3 for particles having three degrees of freedom;
one may formally obtain smaller values of � by assuming
more degrees of freedom; but this yields �¿ 1.
What happens if one insists in using hydrodynamic equa-

tions with �¿ 1, as usual? One sees from Eq. (24) that in
that case the density — and thus also the temperature —
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become negative beyond some distance. Such an unphysi-
cal model can be found in the literature, in the context of
Saturn’s magnetosphere (Barbosa, 1993, Eqs. (33)–(35).
It is reassuring that, in contrast, the kinetic picture does
necessarily produce �¡ 1 because of the ubiquitous supra
thermal tails.

6. Complications

In trying to highlight the essential physical concepts, I
have so far assumed one single ion species, similar isotropic
velocity distributions for electrons and ions, and considered
a case when the mapping of particle trajectories in phase
space was somehow trivial. In practice, however, planetary
environments are far more complicated, and these compli-
cations cannot be ignored for generating viable models. The
detailed calculations require numerical analysis, and the 6-
nal result will ultimately depend on the mixture which goes
into the computer kitchen. Let us try to anticipate on phys-
ical grounds how these complications will change the main
picture.

6.1. Di?erent temperatures

Electrons are so light that when one of them “collides”
with an ion — in the Coulomb sense — it rebounds with
virtually the same energy. Therefore, collisions between
electrons and ions are still less e9ective to equalise their
temperatures than are collisions between like particles
to make each distribution Maxwellian. This is why elec-
trons and ions have often very di9erent temperatures, say
Te and Ti. How does this complication alter the above
results?
Both species must in that case be handled separately,

even in the 4uid picture. Since they do have similar num-
ber densities — neutrality oblige — their pressures are
proportional to their temperatures. With di9erent ion and
electron pressures, the electric 6eld no longer acts to
equalise the forces on ions and electrons; rather it makes
these forces proportional to the pressure ones — thus to
the temperatures. This holds for the potential energies, too,
yielding Wi=We =Ti=Te. Now, since ions and electrons have
opposite electrostatic energies, the total potential energy of
ions is related to the centrifugal one as Wi = Wc − We; we
thus have

Wi=Ti =We=Te =Wc=(Ti + Te): (25)

Hence, the ratio of the potential energy to the temperature
is similar for both species, and is equal to the ratio of Wc=2
(the centrifugal potential of a particle having the average
mass) to the average of the ion and electron temperatures.
A similar result holds in the kinetic picture, if both species

have similar distributions except for the di9erence in tem-
perature. Consider Kappa distributions of the form (14) at
the equator, for both electrons and ions. We have seen that

for each species, the density and temperature pro6les depend
only on the ratio of the potential energy W to the tempera-
ture at the equator T0. Thus, since the ion and electron den-
sities are everywhere equal, so are the corresponding ratios,
whence Wi=T0i =We=T0e. Using Wi =Wc −We, we deduce
a result similar to (25). (Note that, by virtue of the relation
T ˙ n�−1 and of charge neutrality, the ratio of the ion and
electron temperatures is everywhere equal to its value at the
equator.)
Finally, therefore, if electrons and ions do have di9erent

temperatures, the results of the simple model still hold, pro-
viding the temperature at the equator is taken as the average
of those of ions and electrons.

6.2. Anisotropic distributions

The magnetic 6eld introduces a fundamental anisotropy
into the problem. Consider, for example, the origin of parti-
cles populating a plasma torus. Whatever the details of the
creation process, the ultimate source is ionisation of neutrals
orbiting at Kepler’s speed in the planet’s equatorial plane. As
each new born ion is acted on by the magnetic 6eld, it starts
gyrating around it and is put in co-rotation with the planet;
it thus acquires a gyro-speed equal to the di9erence between
the co-rotation speed and the Kepler’s one; because the re-
sulting ring-shaped velocity distribution is highly unstable,
this is expected to be ultimately converted into a spread in
energy perpendicular to the magnetic 6eld; for oxygen ions
at Io’s orbit, this amounts to nearly 300 eV — a value much
greater than the parallel thermal energy.
This process, among others, tends to produce velocity

distributions having di9erent temperatures in the directions
parallel and perpendicular to the magnetic 6eld. In that case,
we must take account of the approximate invariance of the
particle magnetic moment in the co-rotating frame, so that
the distributions depend not only on the energy of the parti-
cles, but also on their magnetic moment, given by the ratio
of the perpendicular kinetic energy mv2⊥=2 to the value B of
the magnetic 6eld.
The simplest way of generalising our simple model is to

assume that the distributions at z = 0 are of the form

f0(v)˙

[
1 +

mv2||
(2� − 3)kBT0||

+
mv2⊥

(2� − 3)kBT0⊥

]−(�+1)

;

(26)

that is, a Kappa distribution expressed as a function of the
kinetic temperatures in the directions parallel and perpen-
dicular to the magnetic 6eld, for a species of mass m. With
all trajectories at z connecting to z = 0 (since both the po-
tential energy and the magnetic 6eld are increasing with z),
the distributions evolve along 6eld lines as f(v||; v⊥; z) =
f0(v0||; v0⊥) with conservation of energy and magnetic
moment, whence

m(v2|| + v2⊥)=2 +W = m(v20|| + v20⊥)=2; (27)

v2⊥ = v20⊥ × B=B0: (28)
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Substituting into f0 the speeds v0|| and v0⊥ as functions of
v|| and v⊥ and rearranging the terms, we 6nd the following
simple generalisation of the isotropic result (16):

f(v||; v⊥; z)˙ t−(�+1) × f0(v|| × t−1=2; v⊥ × t−1=2 × b1=2)
(29)

with

t = 1 +
W

(� − 3=2)kBT0||
; (30)

b= B0=B+ T0⊥=T0||(1− B0=B): (31)

We deduce as previously the density and temperature pro-
6les from dimensional analysis:

n˙ t1=2−�=b; (32)

T|| ˙ t ˙ (nb)�−1; (33)

T||=T⊥ ˙ b: (34)

Thus, the temperature variation found previously still
holds, but only for the parallel temperature; this is not
surprising since the centrifugal e9ect 6ltering the parti-
cles acts in that direction. As z increases, the magnetic
6eld rises, and the perpendicular temperature gets closer to
the parallel one. The anisotropy also changes the density
pro6le, making it steeper when the perpendicular temper-
ature is greater than the parallel one. It is reassuring that
these results reduce to those of our elementary model if
either the distribution is isotropic or the magnetic 6eld is
constant.
In theMaxwellian limit (� → ∞), T⊥ still comes closer to

T|| as z increases, but the parallel temperature remains con-
stant (see Huang and Birmingham, 1992). Note in passing
that when the particle thermal energy is not small compared
to their co-rotation energy, the average mirror force result-
ing from the anisotropy plays a role. When the magnetic
and spin axes do not coincide, this e9ect shifts slightly the
equilibrium position. And if ions and electrons have di9er-
ent anisotropies, an additional electric 6eld arises to cancel
the charge imbalance that this di9erence tends to produce,
as 6rst shown by AlfvUen and FTalthammar (1963). Finally,
in that case the problem of determining the accessibility of
trajectories in phase space becomes rather tricky (Chiu and
Schulz, 1978), and its solution requires subtle techniques
(Liemohn and Khazanov, 1998).
Looking at Fig. 5 and comparing to Eq. (32), we see that

for the anisotropy to have a signi6cant e9ect, b should di9er
from 1 by a substantial factor, which requires that both the
temperature anisotropy at the equator and the magnetic 6eld
variation be substantial.

6.3. A mixture of ions

In contrast to the interplanetary medium which is mainly
made up of protons and electrons, planetary environments

are often a rich mixture of various species. How does this
alter the picture? In that case, the electric 6eld compensating
for the electron lightness can be estimated by handling the
ion mixture as a single “average” ion species of mass 〈m〉
and charge 〈Z〉e, whose centrifugal potential energy 〈Wc〉
is given by substituting the mass 〈m〉 in Eq. (4). Let us
assume that all species have similar energy distributions with
the same temperature (if this is not so, the results can be
generalised as outlined in Section 6.1). Since in that case the
electric 6eld acts to equalise the forces on electrons and ions,
the potential energy of electrons, We, is equal to that of the
average ion, 〈Wc〉−〈Z〉We, whenceWe=〈Wc〉=(1+〈Z〉). The
electrostatic potential energyWi of an ion of charge Zie is of
opposite sign and Zi times greater, that is,−Zi〈Wc〉=(1+〈Z〉).
The total potential energy of that ion of mass mi is thus
given by

Wi = 〈Wc〉 ×
[

mi

〈m〉 −
Zi

1 + 〈Z〉
]
: (35)

This result has several interesting consequences. First, we
see that for ions lighter than average, the bracket may be
very small and even negative. This means that not only are
lighter species ineQciently trapped — a rather trivial result
— but their density can even rise with distance when the
electrostatic force dominates. We will return to this point
later.
Consider now ions being heavier than average. In that

case, the 6rst term in the potential energy (35) dominates,
making it roughly (mi=〈m〉)1=2 times greater than average,
so that the density pro6le decreases faster than average: the
heavier the ion, the more it is bound. This result, however,
as the one above, is not a privilege of non-Maxwellian dis-
tributions (see Angerami and Thomas, 1964). But consider
the temperature, which is proportional to the parameter t
(Eq. (17)) relative to that ion: as soon as the potential en-
ergy term dominates in the expression of t — in practice
this occurs beyond a few scale heights of that species —
the ion temperature (proportional to t, thus to Wi) becomes
proportional to its mass: the heavier the ion, the greater the
potential energy, and therefore the more e9ective the 6ltra-
tion making the temperature rise.
Finally, therefore, the kinetic calculation makes an in-

teresting prediction: the temperature of non-Maxwellian
ions heavier than average should increase as their poten-
tial energy, proportional to their mass: for example, in
a proton-dominated environment, oxygen ions should be
16 times hotter than average — a result 6rst noted by
Scudder (1992) in a quite di9erent context: 6ltration by the
solar gravitational 6eld.

7. When gravitation dominates the picture

While gravitation is negligible suQciently far from plan-
ets, this is not so at closer distances. One must then take into
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account the gravitational potential energy in addition to the
centrifugal one, that is

WC+G =−m�2(r cos )2=2− mMG=r + constant (36)

for a particle of mass m at radial distance r and latitude ,
in a frame of reference rotating with the planet, where we
no longer restrict ourselves to small latitudes (Fig. 4). At
6rst sight, this should enable one to determine the particle
distributions along magnetic 6eld lines in a straightforward
way. In fact, it turns out that the problem is not that sim-
ple, because along 6eld lines going farther than the “Roche
distance” rc de6ned in (3), the net acceleration has not ev-
erywhere the same direction. To see this, we substitute in
(36) the equation of a 6eld line crossing the equator at dis-
tance L, r = L cos2 , and calculate the derivative of WC+G

with respect to r or to ; one sees that if L ¿ rc, then the
potential energy has a maximum (one on each side of the
equator) separating the foot side of the line — where par-
ticles are attracted towards the planet — from the equator
side — where particles are pulled towards the equator. Only
particles having suQcient energy are able to cross this point.
Therefore, a careful analysis of particle orbits is necessary
to determine the velocity range of particles capable of reach-
ing a given position when starting from the “source” region
where the boundary conditions are de6ned (see for example
Goertz, 1976; Lemaire, 1976). As already mentioned, this
problem is especially tricky if the velocity distributions are
anisotropic (Liemohn and Khazanov, 1998).
A considerable simpli6cation arises close enough to the

planet that gravity is strongly dominant. In that case, gravity
con6nes particles near the planet in much the same way as
the centrifugal force does near the equator. Therefore our
simple model applies, just replacing the centrifugal potential
increase by the gravitational one

WG =−mMG(1=r − 1=r0) (37)

r0 being the reference level near the foot of the 6eld line,
where the velocity distributions are assumed to be known.
This reference level is taken as the altitude where the
medium is dilute enough that the mean free paths just ex-
ceed the scale heights. One must keep in mind that the
formal similarity between the centrifugal and gravitational
problems holds only for isotropic distributions (or when the
magnetic 6eld variation can be neglected): indeed, while
the magnetic 6eld value increases away from the equator,
it decreases away from the planet, so that the calculations
should be modi6ed because of the accessibility problems
already mentioned.
With this proviso, the simple results found for plasma

tori hold in planetary plasmaspheres, as in other grav-
itationally bound environments. And indeed, velocity
6ltration has been recently proposed to explain the strong
temperature rise with altitude observed in the outer plasmas-
phere of the Earth, where the plasma density drops abruptly
to the near void of the magnetospheric cavity (Pierrard and
Lemaire, 1996).

At altitudes z suQciently close to a body of radius R that
the distances may be approximated by r0 ≈ R and r ≈ R+z,
the gravitational potential (37) reduces to WG ≈ mMGz=R2.
In that case, comparing to the centrifugal value (4), we
see that the formulae derived for centrifugal binding also
hold for gravitational binding providing z2=H 2 is replaced
by z=HG with the gravitational scale height

HG =
kBT0

mMG=R2 : (38)

8. A kinetic picture of winds

We have so far considered bound structures shaped along
closed magnetic 6eld lines. Consider now the particles chan-
nelled along open 6eld lines emerging from polar regions.
As we noted, although collisions are generally important in
the close vicinity of the body, they may be neglected be-
yond the distance where the mean free paths exceed the
scale height; this is taken as the reference level — referred
to as the “exobase” in the kinetic jargon; in the Earth’s en-
vironment, this corresponds to an altitude, in round 6gures,
of 1000 km.

8.1. Simple picture of a planetary polar wind

Particles following open magnetic 6eld lines can escape
from the body if their kinetic energy at the exobase does
exceed their binding potential energy. This problem recalls
Jeans’ theory of neutral gas evaporation (Jeans, 1954) with,
however, a crucial di9erence: as emphasised by Dessler and
Cloutier (1969) in the 6rst kinetic study of what is generally
referred to as the “polar wind”, the light ions are not bound
at all, because they are pulled outwards by an electric force
which exceeds the gravitational attraction. This comes about
because the electrostatic 6eld preserving charge neutrality
in static equilibrium halves the gravitational attraction on
the “average” ion (for equal temperatures), as discussed in
Section 6.3. Since the dominant ion just above the Earth’s
“exobase” is oxygen — of mass 16mp, the outward electric
force is equal to 8mpMG=r2. Now consider light ions, such as
protons; since the gravitational attraction on them is 8 times
smaller than this electrostatic force, they are pushed out-
wards by a net force equal to 7mpMG=r2: this is the essence
of the “polar wind”.
At this point, the 4uid and kinetic pictures should agree,

although the key role of the electric 6eld emerges less clearly
in the 4uid scheme. But this is not the whole story. One
might think that this acceleration of light ions should stop at
some altitude where the heavy ions responsible for the large
electric 6eld no longer dominate the composition. Indeed,
the density of oxygen ions falls o9 rapidly outwards since
their large mass makes their scale height (38) very small;
and as soon as protons dominate, the electric force should
reduce to one-half the gravitational attraction on them, so
that they should no longer be pulled outwards. In fact, it



258 N. Meyer-Vernet / Planetary and Space Science 49 (2001) 247–260

turns out that this is not so because this reduced electro-
static 6eld was calculated for a static equilibrium, and is no
longer valid when a wind is blowing. Indeed, if the elec-
trostatic force were reduced to half the gravitational attrac-
tion on the protons at altitudes where they dominate, then
the corresponding potential energies would be too small to
correct the tendency of electrons to escape faster than ions
because of their greater random speed. Thus the source of
the wind would charge positively. To ensure charge equi-
librium, the electric 6eld must be great enough to bind the
electrons suQciently strongly to make their outward 4ux
balance the proton one.
We conclude that the electrostatic 6eld remains large,

even beyond the altitude where protons become dominant
(Lemaire and Scherer, 1973). In addition, since the bulk
speed increases outwards, the proton density must decrease
with altitude to preserve a constant 4ux; this extends the
region where heavy ions dominate the composition. The net
result is that the electric 6eld keeps the large value calculated
above out to about 5000 km altitude.
Let us try to estimate the wind speed V . To a 6rst ap-

proximation, the bulk kinetic energy of the protons comes
ultimately from the gain in potential energy between the
exobase and the altitude of 5000 km, that is

V 2=2 ≈ 7MG(1=r0 − 1=r): (39)

Putting the exobase at 1000 km above the planetary surface
and substituting the mass of the Earth (6:× 1024 kg) and its
radius (6:4×106 m), we 6nd a wind speed of about 16 km=s.
It is gratifying — but not necessarily signi6cant — to see
that this value is in the range of proton speeds observed
in the Earth’s polar wind. We have neglected the thermal
contribution to the energy balance and the bulk speed at
r0, but this hardly changes the 6nal result since the kinetic
energy of the wind directed motion is much greater than
these contributions. Consider nowwhat happens to the heavy
ions. We have seen that the net force acting on them (as on
the electrons) is directed inwards; but those having a kinetic
energy greater than the potential energy at the exobase can
escape; so, the oxygen leaks away, with a bulk speed much
smaller than its thermal speed.

8.2. Pushing the wind with a suprathermal electron tail

How does the shape of the particle velocity distribu-
tions enter into this picture? We have seen that the elec-
trostatic 6eld tends to trap the electrons, so that only those
having a kinetic energy greater than their potential energy
at the exobase can escape; in other words, the high-speed
particles are responsible for the lion’s share of the electron
4ux. Thus if the electron velocity distribution has an ex-
cess of energetic particles — even a small one — this tends
to increase substantially the escaping electron 4ux, thereby
charging the atmosphere positively. As a consequence, the
electric 6eld rises in order to trap more electrons and keep
their escaping 4ux equal to the proton one. And in turn

this greater electric 6eld accelerates the protons outwards,
thereby increasing the wind speed. A similar e9ect has been
proposed in the context of the solar wind — which in a
sense is simpler because a single ion species dominates the
composition (see Maksimovic et al., 1997b; Meyer-Vernet,
1999).
It is worth noting that all these results must be taken

with a pinch of salt: we have made gross simpli6cations in
trying to extract the essence of the physics. More realistic
calculations and numerical aids are necessary to build viable
models (see for example Pierrard, 1997).

9. Final remarks and questions

To preserve the reader’s morale, we have swept under
the carpet a number of disturbing — albeit fundamental —
questions.
First of all, the concept of temperature lies at the heart

of classical macroscopic physics. But what does it mean in
the absence of thermodynamic equilibrium? Indeed, all our
instinctive and academic knowledge of it is based on some
kind of local equilibrium. In the kinetic picture, the temper-
ature quanti6es the variance of the statistical distribution of
velocities as T =m〈v2〉=3kB, v being the speed in the frame
where the mean velocity is zero. But in contrast to the equi-
librium case where this quantity (together with the num-
ber density and mean velocity) is suQcient to characterise
the distribution, here the temperature is merely one partic-
ular moment among others. Suppose we wish to compare
our calculations with observation, which would be quite le-
gitimate — and even eminently desirable. What should we
do? Unfortunately, with non-Maxwellian distributions, the
measured temperature depends on the measuring device be-
cause most detectors are sensitive to a very restricted ve-
locity range and have bias which depend on the particle
velocity; many detectors turn out to merely measure an ap-
proximation of one moment of the distribution, whose rela-
tion to the kinetic temperature depends on the distribution
itself. Worse still, many devices are built under the hidden
assumption of equilibrium and one is at risk of being fooled
by deeply ingrained prejudices. (An apt example of the prej-
udices of the author of this paper is provided in the caption
of Fig. 6, where we deduce in a cavalier way the tempera-
ture behaviour from the slope of the logarithm of the energy
distribution; in fact, this reasoning would be correct only
with a Maxwellian, and our excuse is that we used it only
for illustrative purposes.)
This brings us to a second question: is the temperature

increase resulting from velocity 6ltration a privilege of the
kinetic temperature, or does it hold also for other related
quantities — which would make this e9ect more funda-
mental? The answer is yes: with a Kappa distribution, rela-
tion (19) found between density and temperature holds for
any generalised “temperature” Tq de6ned from any scalar
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moment of the distribution, Mq =
∫
d3v vqf(v) as

kBTq

m
=
[
Mq

nCq

]2=q
(40)

where Cq is de6ned below, so as to make all Tq equal to
the bona 6de temperature if the distribution is Maxwellian
(Meyer-Vernet et al., 1995). The moment M0 = n is the
number density, and M2 is proportional to the pressure, so
that T2 is the usual kinetic temperature; here the moments
are de6ned in the frame where the mean velocity is zero,
and

Cq = (q+ 1)!!(q even); (41)

Cq = (2q=2+1=
√
�)[(q+ 1)=2]!(q odd) (42)

where q¿ − 3. The larger the index q, the greater the
speed of the particles being responsible for that “temper-
ature”. In this way, the mean random speed is related to
T1 as 〈v〉 = (8kBT1=�m)1=2, while the mean-square speed
is 〈v2〉 = 3kBT2=m; the Debye length, which depends on
the mean-square inverse speed, is related to T−2 as LD =
(&0kBT−2=ne2)1=2 (see Meyer-Vernet, 1993); this enables
one to generalise to arbitrary distributions these canonical
formulae normally used for Maxwellians.
It is somewhat reassuring that the temperature increase

produced by velocity 6ltration is not a privilege of the ki-
netic temperature de6ned from the spread in particle speeds.
This means that devices having di9erent bias — as those
measuring the Debye length or the random 4ux of particles
— should 6nd a similar “temperature” increase as an ideal
device measuring the bona 6de kinetic temperature. In the
particular case of Ulysses in the Io plasma torus, the mea-
sured electron “temperature” was in fact roughly T−2.
We have discussed the e9ects of suprathermal tails in

velocity distributions because, as a rule, space plasmas
have too much suprathermal particles. But what would
happen if some distribution would manage by what-
ever tortuous means to have less fast particles than a
Maxwellian? The reasoning of Fig. 6 would then suggest
a temperature decrease with altitude for a bound struc-
ture. Could such tricky e9ects be observed in special
cases?
Finally, just as the 4uid models of space plasmas can be

criticised because the closure schemes are often inadequate
due to the rarity of collisions, so the kinetic collisionless
picture might be criticised because the medium is not fully
collisionless. This brings up one more question. How are
the e9ects discussed in this paper altered when collisions are
not fully negligible? A reassuring point is that these e9ects
are based on supra thermal particles, which are minimally
a9ected by collisions — by virtue of the strong increase of
the particle free path with energy. But this latter property
suggests that the simple picture of all particles being colli-
sionless beyond the same level (the “exobase”, de6ned from
the mean free path), may be oversimpli6ed (see Brandt and
Cassinelli, 1966). More generally, the transition from the

fully collisional feet of the 6eld lines to the virtually col-
lisionless plasma encountered farther out is far from being
properly understood. A correct picture should involve some
hybrid scheme (see Dorelli and Scudder, 1999) or simula-
tions (Pantellini and Landi, 2000), and this might reserve a
number of ingenious surprises.
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