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Quasi-thermal noise spectroscopy: The art and the practice
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Abstract Quasi-thermal noise spectroscopy is an efficient tool for measuring in situ macroscopic plasma
properties in space, using a passive wave receiver at the ports of an electric antenna. This technique was
pioneered on spinning spacecraft carrying very long dipole antennas in the interplanetary medium—like
ISEE-3 and Ulysses—whose geometry approached a “theoretician’s dream.” The technique has been
extended to other instruments in various types of plasmas on board different spacecraft and will be
implemented on several missions in the near future. Such extensions require different theoretical
modelizations, involving magnetized, drifting, or dusty plasmas with various particle velocity distributions
and antennas being shorter, biased, or made of unequal wires. We give new analytical approximations of the
plasma quasi-thermal noise (QTN) and study how the constraints of the real world in space can (or cannot)
be compatible with plasma detection by QTN spectroscopy. We consider applications to the missions Wind,
Cassini, BepiColombo, Solar Orbiter, and Parker Solar Probe.

1. Introduction

Thermal electromagnetic radiation, on which rely a large part of remote observations in astronomy and geo-
physics, is related to thermal fluctuations in radio engineering circuits—the so-called Johnson noise—via
the fluctuation-dissipation theorem. In the classical approximation, Nyquist’s formula [Nyquist, 1928] tells us
that a wave receiver in open circuit at the ports of an electric antenna immersed in blackbody radiation of
temperature T measures a voltage power spectrum

V2
f = 4kBTR (1)

where hf ≪ kBT (h being the Planck constant) and R = REM is the antenna radiation resistance (Figure 1,
left). However, most space missions involve electric antennas immersed in plasmas (Figure 1, right), where
the quasi-thermal motion of electric charges produces electrostatic fluctuations generally exceeding the
radiation electromagnetic field. In that case the main contribution to the measured power is the plasma
quasi-thermal noise (QTN, Figure 2). This noise represents the long-wavelength measurement limit in radio
astronomy [Meyer-Vernet et al., 2000], and it has been suggested to play a major role in the production of
nonthermal electrons in the solar wind [Yoon et al., 2016, and references therein].

In the ideal case of a plasma at equilibrium temperature T , this noise reduces to Nyquist’s formula (1) with
R = RP , the antenna resistance resulting from the plasma thermal fluctuations. If the plasma is nonthermal,
the noise is still fully determined by the particle velocity distributions provided that it is stable [e.g., Sitenko,
1967; Fejer and Kan, 1969]. This result can be generalized to a magnetized plasma and enables one to deduce
the plasma properties from the measured voltage spectrum [Meyer-Vernet, 1979]. Since these electrostatic
waves are significantly damped by the medium, the measured plasma properties are local ones, so that
QTN spectroscopy provides in situ measurements [e.g., Meyer-Vernet and Perche, 1989], contrary to the usual
spectroscopy based on electromagnetic waves, which provides remote measurements.

This technique was pioneered aboard ISEE-3 which carried the most sensitive radio receiver ever flown [Knoll
et al., 1978]. Rather ironically, the paper which pioneered the technique [Meyer-Vernet, 1979], submitted
10 days before the ISEE-3 launch, was in the process of being rejected on the grounds that the theory was too
simple for being applicable in the solar wind, when the data of the inboard radio receiver became available;
their agreement with the simple formulas proposed in the submitted manuscript prompted its immediate
acceptance. This paper also provided a logically satisfying explanation for several observations previously
interpreted as “new” emissions or instabilities, since “pluralitas non est ponenda sine necessitate” [Ockham,
1324]; the QTN explanation was soon confirmed by Hoang et al. [1980] and Sentman [1982].
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Figure 1. Simple electric antenna (two aligned wires of length L and radius a) immersed (left) in blackbody radiation
and (right) in a plasma. When LD ≪ L ≪ 𝜆 = c∕f (LD is the plasma Debye length, c the speed of light, and f the
frequency), the antenna resistances are respectively REM = 2𝜋f 2L2∕(3𝜖0c3) (Figure 1, left) and RP ≃ (2∕𝜋)−1∕2(8𝜋𝜖0fpL)−1

just below the plasma frequency fp peak and RP ≃ f 2
p (4𝜋𝜖0f 3L)−1 for f ≫ fp (Figure 1, right).

The QTN measurement technique was subsequently used in various environments using radio receivers that
had similarly not been designed for that purpose [e.g., Meyer-Vernet et al., 1998], in particular, for measuring
on ISEE-3/ICE the electron density and temperature in a comet’s tail [Meyer-Vernet et al., 1986a, 1986b], where
the electrons were too cold for the inboard particle analyzer to measure them accurately. The QTN technique
was also used on Ulysses to measure the solar wind electron properties as a function of heliocentric distance
[Hoang et al., 1992], outside the ecliptic [e.g., Issautier et al., 1998, 1999, 2008; Le Chat et al., 2011], and at 1 AU
on Wind [e.g., Salem et al., 2001; Issautier et al., 2005], as well as in planetary environments such as the Earth’s
outer plasmasphere [Lund et al., 1994], the Io plasma torus [e.g., Meyer-Vernet et al., 1993; Moncuquet et al.,
1995, 1997], and Saturn’s magnetosphere [e.g., Moncuquet et al., 2005; Schippers et al., 2013] using the RPWS
experiment on Cassini [Gurnett et al., 2004].

Figure 2. Example of QTN spectrum (V2
r , measured at the receiver’s

ports) with a wire dipole antenna in a weakly magnetized plasma
(Ulysses/URAP data in the solar wind). The main plasma parameters that
can be deduced are indicated. Fitted electron parameters, assuming an
electron velocity distribution made of a sum of a cold and a hot
Maxwellian, are n = 1.8 × 106 m−3, Tc = 1.3 × 105 K, Th∕Tc = 8, and
nh∕nc = 0.04 (with an accuracy of 1% on n and 7% on T). Note that for a
quick diagnostics, one can deduce the total electron density from the fp
peak, the cold electron temperature from (41), and the kinetic electron
temperature from (46), using V2

f
calculated via (44) with Ca from (43) and

(47) at respectively low and high frequencies.

Why is the QTN technique so well
adapted to measure the electron den-
sity and temperature? There are four
reasons for that. First of all, both proper-
ties are revealed in situ by the location
and broad spectral shape of the plasma
frequency peak (see Figure 2), just as
traditional spectroscopy reveals the
chemical composition and the temper-
ature (albeit remotely). Second, being
passive, this instrument does not per-
turb the medium, contrary to other
wave techniques. Third, since it is based
on electrostatic waves or fluctuations
of wavelength of the order or greater
than the Debye length (or the electron
gyroradius if the plasma is strongly mag-
netized) and tending to infinity close to
resonances, the technique is equivalent
to a detector of cross section larger by
several orders of magnitude than that
of classical detectors. And finally, for the
same reason, it is relatively immune to
spacecraft photoelectrons and charging
effects which affect traditional particle
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Table 1. Properties of Wire Dipole Antennas (Length L of Each Element, Radius a, and Dipole Stray
CapacitanceaCb) Used for QTN on ISEE 3-ICE/3D Radio Mapping, Ulysses/URAPb, Wind/WAVES,
Cassini/RPWS, MMO-BepiColombo/PWI-WPT, Solar Orbiter (SO)/RPW and Parker Solar Probe
(PSP)/FIELDS, and Average Debye Length in the Solar Wind at Respectively 1 AU (ISEE 3, Ulysses,
and Wind), 0.3 AU (Representative for BepiColombo and SO), 10 Rs (Closest Heliocentric Distance
of PSP), and in Saturn’s Magnetosphere at Enceladus’ Orbit (Explored by Cassini)

Property ISEE 3 Ulysses Wind Cassini BepiColombo SO PSP

L (m) 45 35 50c 10 15 6.5 2

a (mm) 0.2 1.1 0.2 14.3 0.21 14.2 1.59

Cb (pF) 45 57 20 55 50?a ?a 35a

LD (m) 10 10 10 1 5 5 0.8
aThe base capacitance can be measured accurately only after the antennas have been extended

on the spacecraft in space.
bFor Ulysses antennas (tapes of length L, width 5 mm, and thickness 0.04 mm), the radius is that

of the cylinder having the same capacitance.
cThe length indicated holds at the times when Figures 6 and 7 were acquired, i.e., before the

antenna wires were broken by dust impacts.

analyzers; in particular, since the electron density is deduced from a spectral peak, this measurement is inde-
pendent of gain calibrations. Because of its reliability and accuracy, QTN spectroscopy serves routinely to
calibrate other instruments [e.g., Maksimovic et al., 1995; Issautier et al., 2001; Salem et al., 2001].

The drawback is that contrary to the classical particle analysers, QTN spectroscopy cannot measure directly the
particle velocity distributions. Even though some moments are revealed by spectral features (see section 2),
a full measurement requires solving an inverse problem: modelize the electric antenna and the velocity distri-
bution(s) with a few parameters, calculate the corresponding QTN spectrum, and fit the theory to the data to
determine the parameters of the distribution as sketched in Figure 2. In other words, the QTN technique has
the cons and pros of a global measurement: it measures less parameters, but it can measure them faster and
more accurately. Note, too, that the technique is less adapted to measure the ions because they are revealed
at lower frequencies (section 2.8) at which the spectrum can be spoiled by the shot noise.

This shot noise, produced by the fluctuations due to collection and emission of individual electric charges by
the antenna surface, can be a real nuisance for QTN spectroscopy. It is very hard to modelize because, contrary
to the QTN, it depends on the antenna floating potential, which is badly known because the photoelectron
and secondary emissions of materials in space change significantly with aging and have different proper-
ties from those measured in the laboratory [e.g., Kawasaki et al., 2016]. This shot noise is generally negligible
for wire dipole antennas around fp [Meyer-Vernet and Perche, 1989], but this is not so when the antennas are
made of small spheres. Indeed, the shot noise is proportional to the squared voltage produced by each charge
collected or emitted (∝ a−2 for spheres of radius a since their capacitance ∝ a) and to the events’ rate, propor-
tional to surface area (∝ a2), so that the variation with a cancels out. Therefore, the shot noise on spheres does
not decrease as their radius decreases, contrary to wires whose surface ∝ a, whereas the capacitance varies
weakly with radius. This is the basic reason why spherical probes are unadaptated for QTN spectroscopy, in
addition to the fact that these probes must be supported by difficult-to-modelize booms. For all these rea-
sons, we will only consider wire antennas in this paper and will mention the shot noise only for estimating the
extent to which it may spoil QTN spectroscopy, in particular, for fat or biased antennas (see section 3.2).

Simple analytical approximations are invaluable for the preliminary design and interpretation of space exper-
iments. A number of such approximations were derived when QTN spectroscopy was not yet a recognized
technique and was used as a by-product of radio astronomy experiments [Meyer-Vernet and Perche, 1989].
This technique will now be implemented in the inner heliosphere by Solar Orbiter with shorter antennas
[Maksimovic et al., 2005; Zouganelis et al., 2007] and with specifically designed instruments in Mercury’s envi-
ronment by BepiColombo [Moncuquet et al., 2006a] and in the solar corona with Parker Solar Probe (PSP) [Bale
et al., 2016]. The properties of the wire dipole antennas used in these missions are summarized in Table 1,
together with those of some previous missions; we do not include STEREO, whose antennas’ length is too
short for implementing QTN spectroscopy except in very high-density structures [Zouganelis et al., 2010]
(see section 2.4).

MEYER-VERNET ET AL. QUASI-THERMAL NOISE IN SPACE PLASMAS 3
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Figure 3. Unfortunately, (bottom) the strawman payload of the space
agencies is different from (top) the ideal case for QTN spectroscopy,
when the spacecraft size is much smaller than the antenna length and
the antennas are thin, symmetrical and unbiased—as for ISEE 3 and
Ulysses (shown to scale between the antenna wires). Drawing by
François Meyer.

This paper is organized as follows.
Section 2 recalls the main properties
of QTN under different conditions and
gives new analytical approximations
having a wide range of applications,
in particular, for antennas of moderate
length in nonthermal plasmas. Section 3
extends the calculations made for ideal
cases (Figure 3) to antennas being
unsymmetrical or biased and to dusty
plasmas. Unless otherwise stated, units
are SI.

2. The Art

The basic shape of the QTN spectrum
can be understood from simple plasma
physics [Meyer-Vernet and Perche, 1989].
Each charged particle passing by the
antenna induces a voltage pulse. This
voltage is not Coulomb-like because the
plasma particles are “dressed” by their
mutual coupling. At time scales cor-
responding to frequencies f < fp, this
dressing takes the simple form of a
Debye sheath of scale LD, the Debye
length, so that each thermal electron

produces on the antenna a voltage pulse of duration roughly equal to the time that it remains within a Debye
length, i.e., about 1∕(2𝜋fp); the Fourier transform of such a pulse is a constant for f < fp, producing a plateau
of amplitude determined by the bulk of the electrons. In contrast, at higher frequencies, moving electrons
excite plasma waves so that their dresses become more sophisticated [e.g., Meyer-Vernet, 1993], trailing long
trains of Langmuir waves which produce the plasma frequency peak.

2.1. Basics
In the Vlasov framework, the plasma can be thought of as an assembly of independent test particles dressed
by their collective interactions which determine the plasma dielectric permittivity defining the plasma spatial
and temporal dispersion [Rostoker, 1961]. In the electrostatic limit (𝜔∕kc ≪ 1, where 𝜔 = 2𝜋f is the angular
frequency, k the wave vector, and c the speed of light), the (linear) longitudinal (E ∥ k) electric field fluctuations
in Fourier space are given from Poisson’s equation by [Sitenko, 1967]

⟨E2(k, 𝜔)⟩ = ⟨𝜌2(k, 𝜔)⟩(0)
k2𝜖2

0|𝜖L(k, 𝜔)|2
(2)

where 𝜖L(k, 𝜔) is the longitudinal dielectric function and ⟨𝜌2(k, 𝜔)⟩(0) the free space (test particle) charge
density fluctuations (in Fourier space) produced by quasi-thermal particle motions. In a weakly magnetized
plasma (𝜔 ≫ 𝜔g, the electron angular gyrofrequency), the test particles can be assumed to move in straight
lines, so that with a velocity distribution f (v)

⟨𝜌2(k, 𝜔)⟩(0) = 2𝜋e2 ∫ d3vf (v)𝛿(𝜔 − k.v) (3)

the particle number density being

n = ∫ d3vf (v) (4)

In the presence of a magnetic field B, the test particles follow helical orbits of (angular) gyrofrequency 𝜔g,
so that

⟨𝜌2(k, 𝜔)⟩(0) = 2𝜋e2
∞∑
−∞ ∫ d3vf (v)J2

n(k⟂v⟂∕𝜔g) 𝛿(𝜔 − n𝜔g − k∥v∥) (5)

MEYER-VERNET ET AL. QUASI-THERMAL NOISE IN SPACE PLASMAS 4
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where v∥ and v⟂ are the velocity components respectively parallel and perpendicular to B, and Jn are the nth
order Bessel functions of the first kind [Abramowitz and Stegun, 1965].

With an electric antenna characterized by the current distribution J(k) in Fourier space, immersed in a plasma
drifting with velocity V, the voltage power at the antenna ports at frequency f is

V2
f = 2

(2𝜋)3 ∫ d3k
|k.J|2

k2
⟨E2(k, 𝜔 − k.V)⟩ (6)

The power V2
r at the ports of a receiver of impedance Zr is deduced from

V2
r ∕V2

f = |Zr∕(Zr + Za)2| (7)

where Za is the antenna impedance.

2.2. Electric Antenna Response
For the simplest antenna, made of two aligned wires, each of length L ≪ 𝜆 and radius a ≪ [LD, L] (Figure 1),
the current distribution can be assumed to be triangular [Meyer and Vernet, 1974], so that

|k.J| = |4 sin2(k∥L∕2)
k∥L

J0(k⟂a)| (8)

where k∥ and k⟂ are the k components respectively parallel and perpendicular to the antenna direction
(see details in Schiff [1970] and Couturier et al. [1981]). In most cases of interest, the wave numbers responsi-
ble for the noise are smaller than or of the order of the plasma Debye length (or the electron gyroradius if it
is smaller), with ka ≪ 1, so that J0(k⟂a) ≃ 1 except in very dense and cold plasmas as planetary ionospheres.
An important consequence emerges from (8). Writing k∥L = kL cos 𝛼 where 𝛼 is the angle between k and
the antenna direction, one sees that whereas a short antenna (kL ≪ 1) is mainly sensitive to k parallel to the
antenna (cos 𝛼 = 1) as for electromagnetic waves, a long antenna (kL ≫ 1) is mainly sensitive to wave vectors
roughly perpendicular to its proper direction [Meyer-Vernet, 1994].

If the plasma fluctuations are isotropic in the antenna frame (which holds with V = 0 and an isotropic velocity
distribution in a weakly magnetized plasma), (6) becomes

V2
f = 8

𝜋2 ∫
∞

0
dk F(kL)⟨E2(k, 𝜔)⟩ (9)

with

F(x) = 1∕(32𝜋)∫ dΩ |k.J|2 = [Si(x) − Si(2x)∕2 − 2 sin4(x∕2)∕x]J2
0(xa∕L)∕x (10)

where Si(x) = ∫ x
0 dt sin t∕t is the sine integral function [Abramowitz and Stegun, 1965]. Two approximations

are useful:

F(x) ≃ x2∕24 for x < 1 (11)

F(x) ≃ 𝜋∕(4x) for x ≫ 1 (12)

with (11) approximating (10) better than 5% when x ≲ 1.

When the plasma fluctuations are anisotropic with a symmetry axis (for example, with a drift of velocity V
or a static magnetic field B), a different simplification arises. Since in that case the electric fluctuations are
independent of the azimuthal angle 𝜙 around the symmetry axis, (6) can be calculated as

V2
f = 1

2𝜋2 ∫
∞

0
dk ∫

𝜋

0
sin 𝜃 d𝜃 ⟨E2(k, 𝜃, 𝜔 − k.V cos 𝜃)⟩∫ 2𝜋

0

d𝜙
2𝜋

|k.J|2 (13)

where 𝜃 is the angle between k and the symmetry axis and (8) yields

∫
2𝜋

0

d𝜙
2𝜋

|k.J|2 = 8
𝜋 ∫

2𝜋

0
d𝜙

sin4(kL cos 𝛼∕2)
(kL cos 𝛼)2

J2
0(ka sin 𝛼) (14)

𝛼 being the angle between k and the antenna direction, given by

cos 𝛼 = cos 𝜃 cos 𝛽 + sin 𝜃 sin 𝛽 cos𝜙 (15)

where 𝛽 is the angle between the antenna and the symmetry axis.

MEYER-VERNET ET AL. QUASI-THERMAL NOISE IN SPACE PLASMAS 5
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If the antenna is parallel to the symmetry axis (𝛽 = 0), the QTN is given by (13) with from (8)

∫
2𝜋

0

d𝜙
2𝜋

|k.J|2 =
[

4 sin2(kL cos 𝜃∕2)|kL cos 𝜃| J0(ka sin 𝜃)
]2

(16)

On the other hand, if the antenna is perpendicular to the symmetry axis (𝛽 = 𝜋∕2), (15) reduces to
cos 𝛼 = sin 𝜃 cos𝜙, so that with the change of variable s = kL sin 𝜃 cos𝜙 in the integral (14), we find

∫
2𝜋

0

d𝜙
2𝜋

|k.J|2 = F⟂(kL sin 𝜃)∕2 (17)

F⟂(x) =
64
𝜋 ∫

x

0
ds

sin4(s∕2)
s2(x2 − s2)1∕2

(18)

= 8
x

[
2∫

x

0
dtJ0(t) − ∫

2x

0
dtJ0(t) + J1(2x) − 2J1(x)

]
(19)

where we have assumed ka ≪ 1. Equation (19) yields F⟂(x) ≃ x2 for x < 1, and F⟂(x) ≃ 8∕x for x ≫ 1.

The antenna response F⟂(x), given by (18) and (19) with x = kL sin 𝜃 sin 𝛽 , is also relevant whatever the
antenna direction in a particular case: k roughly perpendicular to the symmetry axis. Therefore, the func-
tion F⟂ was used for calculating both the quasi-thermal noise in Bernstein waves [Meyer-Vernet et al., 1993;
Moncuquet et al., 1995] (see section 2.4) and the Doppler-shifted quasi-thermal noise of ions [Issautier et al.,
1999] (see section 2.8).

2.3. Dealing With Non-Maxwellians: Generalized Temperatures
Non-Maxwellian velocity distributions are ubiquitous in space plasmas. The culprits are Coulomb collisions,
whose cross section decreases as the inverse square of the particle energy, so that, even when the bulk of
the distribution is dominated by collisions, the faster particles are not, making suprathermal tails ubiquitous
[e.g., Scudder and Olbert, 1979; Scudder and Karimabadi, 2013]. Contrary to Maxwellians which are completely
defined by two parameters (density and temperature), nonthermal distributions raise a major problem for
measuring devices because their full characterization may need an infinite number of parameters. Indeed,
60 years after the beginning of the space age, nobody knows the accurate shape of particle velocity distribu-
tions in space. This is especially true for electrons, which either cannot be detected at energies (in eV) smaller
than the absolute value of the spacecraft potential if it is negative, as occurs in inner planetary magneto-
spheres, or are strongly perturbed by this potential and by photoelectrons if it is positive, as occurs in the solar
wind [e.g., Garrett, 1981; Whipple, 1981].

Still worse, in the absence of equilibrium, the “temperature” revealed by instruments generally depends
on the measured energy range. In order to derive generic results, it is useful to characterize an isotropic
non-Maxwellian velocity distribution, depending on the speed v, by its generalized temperatures defined as
[Meyer-Vernet, 2001]

kBTq∕m = (⟨vq⟩∕cq)2∕q (20)

cq = (q + 1)!! for q even (21)

cq = 21+q∕2

𝜋1∕2

(
q + 1

2

)
! for q odd (22)

where q>−3 is an integer, m is the electron mass, kB is Boltzmann’s constant, and the scalar moment of
order q is

⟨vq⟩ = ∫ d3v vqf (v)∕n (23)

The coefficients cq are defined so that if the distribution is Maxwellian, all Tq are equal to its classical tempera-
ture. The smaller the index q, the slower the particles responsible for Tq, and for velocity distributions having
a suprathermal tail, the smaller the value of Tq. In particular

T2 = m⟨v2⟩∕(3kB) ≡ T (24)

MEYER-VERNET ET AL. QUASI-THERMAL NOISE IN SPACE PLASMAS 6
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is the classical kinetic temperature, T1 is related to the mean random speed ⟨v⟩ as

⟨v⟩ = [8kBT1∕(𝜋m)]1∕2 (25)

and T−2 is related to the Debye length LD as

LD =
[
𝜖0kBT−2∕(ne2)

]1∕2
(26)

Therefore, an instrument detecting essentially the low-energy particles (which determine the Debye length),
will find, if a Maxwellian is assumed, a temperature close to T−2, whereas an instrument measuring the flux
will find a temperature close to T1. It is therefore not surprising that a number of temperature measurements
in which a Maxwellian is assumed are inconsistent, so that new methods are being devised [e.g., Dudík et al.,
2017, and references therein].

The simplest way of representing a distribution having a suprathermal tail is the so-called kappa distribution
[Vasyliunas, 1968], which can be written

f𝜅(v) ∝
[
1 + v2∕

(
𝜅v2

0

)]−(𝜅+1)
(27)

and has been used for modeling the QTN by Chateau and Meyer-Vernet [1991]; Zouganelis [2008]; Le Chat
et al. [2009]. Since the probability for the speed to lie in the range [v, v + dv] is f𝜅(v) × 4𝜋v2dv and we

have
[

d
dv
[v2f𝜅(v)]

]
v=v0

= 0, the most probable speed equals v0. The greater the value of 𝜅, the closer is the

distribution to a Maxwellian, with f𝜅(v) → e−v2∕v2
0 when 𝜅 → ∞.

At low speeds, developing (27) in series yields f𝜅(v) ∝ 1 − (1 + 1∕𝜅)v2∕v2
0 ; hence, the Kappa distribu-

tion decreases faster with v than the Maxwellian e−v2∕v2
0 ∝ 1 − v2∕v2

0 . In contrast, at high speeds f𝜅(v) ∝
(v2∕𝜅v2

0)
−(𝜅+1); hence, the Kappa distribution decreases slower than a Maxwellian. This illustrates an inter-

esting property of Kappa distributions. Whereas at low speeds, a Kappa can be fitted by a Maxwellian of
temperature smaller than its actual kinetic temperature, its high speed power law decrease can mimic (albeit
in a narrow energy range) a Maxwellian of much higher temperature. Taking these two faces into account
can resolve a number of apparent contradictions arising when observations are interpreted with tools that
assume Maxwellian distributions [e.g., Nicholls et al., 2012].

With a Kappa distribution (27), we find from (20)

T2 =
(

mv2
0∕2kB

)
𝜅∕(𝜅 − 3∕2) ≡ T (28)

T1 = T × (𝜅 − 3∕2)
[
Γ(𝜅 − 1)∕Γ(𝜅 − 1∕2)

]2
(29)

T−1 = T × (𝜅 − 3∕2)
[
Γ(𝜅 − 1∕2)∕Γ(𝜅)

]2
(30)

T−2 = T × (𝜅 − 3∕2)∕(𝜅 − 1∕2) (31)

For example, with 𝜅 = 4, we have T−1 ≃ 0.77 × T and T−2 ≃ 0.71 × T . From (28), a finite value of the kinetic
energy requires 𝜅 > 3∕2. On the other hand, the Debye length is given by (26), (28), and (31) as [Chateau and
Meyer-Vernet, 1991]

LD =
v0

𝜔p

[
𝜅

2𝜅 − 1

]1∕2
(32)

suggesting that the Debye screening has a normal behavior even when 𝜅 approaches 3∕2, despite some
arguments to the contrary [e.g., Fahr and Heyl, 2016].

Another popular representation of nonthermal distributions is the sum of a cold (“core”) and a hot Maxwellian
of respective density and temperature nc, nh, Tc, and Th, which has one more free parameter than the Kappa
distribution. In that case we have T ≡ T2 = (ncTc + nhTh)∕(nc + nh), whereas T−1 = Tc(nc + nh)2∕[nc +
nh(Tc∕Th)1∕2]2 and T−2 = (nc+nh)∕(nc∕Tc+nh∕Th); hence, with a dilute hot Maxwellian (nh∕nc ≪ 1, Th∕Tc ≫ 1),
we have T−1 ≃ T−2 ≃ Tc, the core temperature.

A further popular representation is the sum of a cold Maxwellian (of temperature Tc) containing the bulk of
the distribution plus a hot Kappa distribution. Indeed, low-energy particles are generally collisional, whereas
faster ones are not, and many processes—including the spontaneously emitted Langmuir waves, i.e., the QTN
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Figure 4. Function F0(L∕LD) given by (37). Multiplying F0 by the
factor 27∕2(mkB)1∕2∕(𝜋3∕2𝜖0) ≃ 8.14 × 10−16 yields the QTN plateau
V2

f
normalized to [T−2∕T1∕2

−1 ], close to the square root of the “cold”

temperature (in V2 Hz−1 K−1∕2) (see equation (36)). The dashed red
line shows the approximation (38) (valid for very long antennas);
the solid red line shows the approximation F0 ≃ 0.05 (valid for
intermediate lengths).

[e.g., Yoon, 2014; Yoon et al., 2016]—tend
to generate Kappa distributions via nonlin-
earities. In that case, we have as previously
T−1 ≃ T−2 ≃ Tc.

2.4. Core Electron Temperature
As noted above, in a weakly magne-
tized plasma, the electron QTN spectrum
exhibits a generic low-frequency plateau
which is produced by electrons passing by
the antenna. This suggests that the plateau
will mainly reveal the temperature defin-
ing the Debye length. We derive below a
generic expression of this plateau, relevant
for a number of space radio instruments
and independent of the detailed shape of
the distribution, provided it is isotropic.

In a weakly magnetized plasma with an
isotropic electron velocity distribution, (3)
reduces to

⟨𝜌2(k, 𝜔)⟩(0) = (2𝜋e)2

k ∫
∞

𝜔∕k
dv v f (v) (33)

which yields for 𝜔∕kv ≪ 1

⟨𝜌2(k, 𝜔)⟩(0) ≃ 𝜋e2

k
n ⟨v−1⟩ (34)

In the same limit, we have

𝜖L ≃ 1 + 𝜔2
p ⟨v−2⟩∕k2 ≡ 1 + 1∕

(
k2L2

D

)
(35)

with LD given by (26). For a wire antenna (Figure 1), equations (2), (9), (34), and (35) yield

V2
f ≃

(
27mkB T 2

−2

𝜋3𝜖2
0 T−1

)1∕2

F0(L∕LD) (36)

F0(t) = ∫
∞

0
dy

y F(yt)
(1 + y2)2

(37)

F(x) being given by (10). The function F0(L∕LD) is shown in Figure 4. The simple expression (36) of the plateau
level is generic since it holds whatever the ratio L∕LD and the shape of the (isotropic) electron velocity
distribution.

For L∕LD ≫ 1, F(x) can be approximated by (12), so that (37) yields

F0(L∕LD) ≃ (𝜋2∕16)LD∕L for L∕LD ≫ 1 (38)

whence from (36)

V2
f ≃

(𝜋∕2)1∕2

𝜖0𝜔pL

kB T 3∕2
−2

T 1∕2
−1

≃ 3.5 × 10−14

n1∕2L

T 3∕2
−2

T 1∕2
−1

for L∕LD ≫ 1 (39)

equivalent to a result by Chateau and Meyer-Vernet [1991]. One sees in Figure 4 that the approximation (38)
(dashed red line), yielding (39), only holds for extremely long antennas. In practice, however, one expects
L∕LD ∼ 2.5–6 for BepiColombo and L∕LD ∼ 1–2.5 for Solar Orbiter in the solar wind at 0.3 AU, whereas for
Parker Solar Probe at 10 RS we have L∕LD ∼ 2–3.

MEYER-VERNET ET AL. QUASI-THERMAL NOISE IN SPACE PLASMAS 8



Journal of Geophysical Research: Space Physics 10.1002/2017JA024449

Figure 5. QTN plateau level in V2 Hz−1 with the wire dipole antenna of PSP/FIELDS (L = 2 m) in a density/temperature
plane, with the approximation (40) superimposed as red bars. The power is calculated at both (left) the antenna ports
(from (36)) and (right) the receiver ports (deduced via (7)). The variation in antenna capacitance (43) with LD makes
V2

r ∕V2
f

vary with the electron density, so that the horizontal lines (Figure 5, left) become inclined (Figure 5, right). The
orange cross sketches the density and temperature expected for PSP near perihelion. The range L∕LD < 1, in which QTN
spectroscopy becomes ineffective, is shown in grey; the blue vertical lines show the regions in which the QTN plateau
level becomes weakly dependent on temperature, making this derivation difficult.

In these cases, a much better approximation can be derived. Indeed, for 2 ≲ L∕LD ≲ 7, (37) yields F0 ≃ 0.05
within 10% (solid red line in Figure 4),which yields

V2
f ≃ 1

𝜋2𝜖0

[
mkB T 2

−2

T−1

]1∕2

≃ 4.07 × 10−17 T−2

T 1∕2
−1

for 2 ≲ L∕LD ≲ 7 (40)

With a roughly Maxwellian core temperature of Tc and a dilute halo, we have T−2∕T 1∕2
−1 ≃ T 1∕2

c , whence

V2
f ≃ 4.07 × 10−17T 1∕2

c for 2 ≲ L∕LD ≲ 7 (41)

Note that with a Kappa distribution we have

T−2

T 1∕2
−1

= T 1∕2 (𝜅 − 3∕2)1∕2 Γ(𝜅)
Γ(𝜅 + 1∕2)

(42)

yielding T 2
−2∕T−1 ≃ 0.66 × T ≃ 0.93 × T−2 for 𝜅 = 4, so that the temperature measured via the plateau

level is close to that defining the Debye length, similar to a core temperature. However, with 𝜅 = 2, we have
T 2
−2∕T−1 ≃ 0.85× T−2, so that in that case, the plateau yields a temperature smaller than the core temperature

T−2 by about 15%; this reflects the shortage of low-energy particles for kappa distributions with respect to
Maxwellians.

Figure 5 shows the levels of the quasi-thermal plateau in a density-core temperature plane with a dipole
antenna made of two colinear L = 2 m wires, for applications to Parker Solar Probe/FIELDS. The orange crosses
sketch the parameters expected at perihelion (n ≃ 7000 cm−3 and T ≃ 106 K). We show the power at both
the antenna ports, V2

f
, given by (36) (Figure 5, left) and at the receiver ports, V2

r (Figure 5, right). The temper-
ature shown on the vertical axis is T 2

−2∕T−1, very close to that of the cold Maxwellian when the distribution is
a cold Maxwellian with a suprathermal tail. We have superimposed the approximation (40) as red bars. In the
low-frequency range of the plateau, the dipole antenna impedance reduces to a capacitance [Meyer-Vernet
and Perche, 1989]

Ca ≃ 𝜋𝜖0L∕ ln(LD∕a) (43)

when L∕LD ≫ 1, so that one deduces from (7)

V2
r ∕V2

f ≃ 1∕(1 + Cb∕Ca)2 (44)
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Figure 6. Two examples of quasi-thermal noise spectra (V2
r , measured at the receiver ports) in magnetized plasmas,

showing a plateau of minima (dashed horizontal line) at the gyroharmonics nfg. (left) Wind/WAVES data in the Earth’s
magnetosphere at 8 RE . (right) Cassini/RPWS data in Saturn’s magnetosphere at 4 RS .

where Cb is the (dipole) load/stray capacitance, which lumps together the receiver input capacity and that of
the antenna erecting mechanism, including the capacity between the antenna and the spacecraft structure
(the so-called base capacity). With L = 2 m, a = 1.6 × 10−3 m, and LD ≃ 0.8 m at 10 RS, we have Ca ≃ 8.9
pF, whence with Cb = 35 pF (see Table 1), V2

r ∕V2
f

≃ 0.04. This yields a plateau level at the receiver ports
V2

r ≃ 1.7 × 10−15 V2 Hz−1, which requires a receiver sensitivity of at least a few tens of nV Hz−1∕2. These eval-
uations assume that the ion (section 2.8) and shot noise contributions are small enough, which holds in this
case, except possibly if the antennas are biased (see section 3.2).

One sees in Figures 4 and 5 that for smaller values of L∕LD, the plateau level becomes much less sensitive to
the temperature; in particular, for L∕LD ≃ 1, F0 is nearly proportional to L∕LD, so that the plateau becomes
nearly independent of the temperature and cannot be used to measure it; for still smaller lengths, the weak
dependence makes the measurement difficult, as is the case for STEREO (L = 6 m) at 1 AU.

A very interesting property is that these results also hold in a magnetized plasma if the frequency is a gyro-
harmonic. Indeed, in that case, as suggested by Meyer-Vernet et al. [1993], the magnetic field does not change
the QTN level at low frequencies. This can be proven as follows. For 𝜔 = n𝜔g, one can factorize in (5) the term∑∞

−∞ J2
n(k⟂v⟂∕𝜔g) (which is equal to unity [Abramowitz and Stegun, 1965]). Therefore, ⟨𝜌2(k, n𝜔g)⟩(0) reduces

to the value of ⟨𝜌2(k, 0)⟩(0) in the absence of magnetic field, which is given by (34). Consider now the dielec-
tric function. In a low-𝛽 plasma where transverse and longitudinal modes decouple, we can use (2) in the
electrostatic limit, and in the expression of the longitudinal permittivity [e.g., Alexandrov et al., 1984] one can
similarly factorize

∑∞
−∞ J2

n(k⟂v⟂∕𝜔g) = 1 when 𝜔 = n𝜔g, so that 𝜖L reduces to the low-frequency limit of its
unmagnetized value.

This is illustrated in Figure 6, which shows two examples of QTN spectra measured respectively by Wind/
WAVES in the Earth’s magnetosphere and by Cassini/RPWS in Saturn’s magnetosphere. One can see that the
“plateau” is in these cases the level at the gyroharmonics (except at the lowest frequencies, for which the
shot noise and other contributions are not negligible). Note that since Cassini/RPWS antennas wires are not
collinear—making an angle of 120∘—with a significant gap between them [Gurnett et al., 2004], the antenna
response should be changed accordingly [Schippers et al., 2013], using the formulas given in [Meyer-Vernet
and Perche, 1989].

As shown by Meyer-Vernet et al. [1993], the frequencies of these minima can be used to measure accurately
the modulus of the magnetic field, whereas the increased level between gyroharmonics, produced by the
QTN in Bernstein waves (having k nearly normal to B)—essentially determined by suprathermal electrons
[Sentman, 1982]—can be used to estimate their energy. The spectra shown in Figure 6 are rather similar
to those calculated by Yoon et al. [2017] for k nearly perpendicular to B (with an integration over k). Note
that these calculations are somewhat different from the estimates by Meyer-Vernet et al. [1993] who include
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Figure 7. Radio spectrogram from Wind/WAVES acquired on 5 November 1997 in the solar wind, showing solar radio
emissions perturbing the plasma QTN above the plasma frequency, whereas the fp line and QTN plateau are not
perturbed. The data are plotted as frequency versus time, with the relative intensity coded as indicated in the color bar.

the response of the antenna, so that they find the QTN between gyroharmonics to be roughly proportional to
the temperature of hot electrons and to F⟂(kL sin 𝜃) (𝜃 is the angle between the antenna and B, k corresponds
to Bernstein waves, and F⟂ is given by (18) and (19)). The factor F⟂ illustrates the interesting counterintuitive
property mentioned in section 2.2 that a long antenna (with respect to 1∕k) is mainly sensitive to electrostatic
waves having k roughly perpendicular to its proper direction, so that it can receive a large QTN in Bernstein
waves when it is oriented relatively close to the magnetic field direction. These calculations have been used
to measure the hot electron energy (from the observed power) as well as k (from the modulation with the
antenna spin angle) in the Io torus [Moncuquet et al., 1995] and in Saturn’s inner magnetosphere [Moncuquet
et al., 2005, 2006b].

2.5. Electron Total Density and Kinetic Temperature
The most basic properties of a particle velocity distribution are the total electron density and kinetic tem-
perature. In general, these properties are obtained by fitting the QTN spectrum to the data, except in the
ideal case of an antenna much longer than the Debye length immersed in an isotropic plasma, for which
these properties are revealed without any fitting (Figure 2). Indeed, the QTN spectral peak reveals the
plasma frequency—whence the electron density, and at frequencies f ≫ fp we have 𝜖L ≃ 1, so that (2), (9),
and (33) yield

V2
f ≃

32 m𝜔2
p

4𝜋𝜖0 ∫
∞

0
dvvf (v)∫

∞

𝜔∕v
dkF(k)∕k3 for f ≫ fp (45)

If fL∕(fpLD) ≫ 1, substituting F(k) ≃ 𝜋∕(4kL) in (45) yields

V2
f ≃ f 2

p kBT∕
(
𝜋𝜖0Lf 3

)
(46)

The high-frequency QTN is directly proportional to the kinetic temperature T ≡ T2 whatever the shape of the
velocity distribution. This f−3 spectrum is clearly seen on Figure 2. Note that V2

f
is deduced from the power

measured V2
r at the receiver ports by using (44) with the dipole antenna capacitance in this high-frequency

range

Ca ≃ 𝜋𝜖0L∕[ln(L∕a) − 1] (47)

Such an observation, however, requires that no radio emission perturbs the spectrum. This can be seen on
Figure 7 which shows a radio spectrogram from Wind/WAVES acquired in the solar wind during the detec-
tion of intense solar radio emissions. The power density below fp (revealed by the line of increased power),
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produced by the plasma QTN, remains unperturbed and can still be used to deduce the cold electron temper-
ature (see section 2.4), but the power is strongly perturbed above fp and cannot be used for measuring the
kinetic temperature.

The total electron density can be deduced from the location of the plasma frequency peak. However, this peak
can be shifted from fp by several effects. First of all, even in the absence of Doppler shifts, the spectral peak
may be slightly shifted from fp, by an amount which depends on the antenna length (via the factor F(k) in (9)
as shown by Meyer-Vernet and Perche [1989]), on the distribution of hot electrons and on the frequency and
time resolution, as shown in the following section.

2.6. Hot Electrons
Since electrons interact with waves of phase speed equal to their proper speed, and the phase speed of
Langmuir waves 𝜔∕k → ∞ when 𝜔 → 𝜔p, the shape of the plasma frequency peak is determined by high
speed electrons; the closer the frequency to fp, the higher the speed of electrons producing the power. This
property is illustrated by the extreme behavior of the “square” velocity distribution f (v) ∝ H(v0−v), the Heavi-
side step function, which produces no QTN peak at fp because of the lack of electrons having the proper speed
to interact with the waves [Chateau and Meyer-Vernet, 1989].

Detecting very high energy electrons via QTN spectroscopy therefore requires two receiver properties which
may be difficult to conciliate: a high-frequency resolution (to measure accurately the peak shape) and a high
temporal resolution (because the spacecraft/plasma relative motion and the turbulence make the electron
density near the antenna, whence fp, change rapidly with time).

To illustrate this point, consider an electron velocity distribution made of a sum of isotropic distributions fi .
From (33), we have

⟨𝜌2(k, 𝜔)⟩(0) = (2𝜋e)2

k

∑
i

Bi(k) (48)

where

Bi(k) = ∫
∞

𝜔∕k
dv v fi(v) (49)

The imaginary part of the longitudinal dielectic function 𝜖L(k, 𝜔) is then

Im(𝜖L) =
2𝜋2e2𝜔

𝜖0mk3

∑
i

fi(𝜔∕k) ≡ IL (50)

For 𝜔∕kv ≫ 1, the real part of 𝜖L can be approximated by

Re(𝜖L) ≃ 1 −
(
𝜔2

p∕𝜔
2
) (

1 + k2⟨v2⟩∕𝜔2
) ≡ RL (51)

whose nearly real zero is

kL ≃ 𝜔

(
𝜔2∕𝜔2

p − 1
)1∕2

∕
(⟨v2⟩)1∕2

(52)

The contribution of this zero to the integral (9) (using (2)) can be calculated by writing RL ≃ (k − kL)𝜕RL∕𝜕k for
k ≃ kL at f ≃ fp, with from (51)

𝜕RL∕𝜕k ≃ −2kL⟨v2⟩∕𝜔2
p ≡ −R′

L (53)

Therefore, (2) and (9) yield for f = fp + Δf with Δf ≪ fp

V2
f ≃ 8

𝜋𝜖2
0

F(kLL)
k2

L

⟨𝜌2(kL, 𝜔p)⟩(0)
R′

L(kL, 𝜔p)IL(kL, 𝜔p)
(54)

Substituting (48), (50), and (53) yields the shape of the QTN peak

V2
f ≃

8 mvphF(𝜔pL∕vph)
𝜋𝜖0⟨v2⟩ ⎡⎢⎢⎣

∑
i ∫ ∞

vph
dv v fi(v)∑

i fi(vph)

⎤⎥⎥⎦ (55)

where

vph ≃ 𝜔p∕kL ≃
(⟨v2⟩fp∕2Δf

)1∕2 ≃
[
(3kBT∕2m)(fp∕Δf )

]1∕2
(56)
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and in (55) and (56), ⟨v2⟩ and T (the kinetic temperature) concern the whole velocity distribution. One sees
from (55) that the noise at frequency f = fp + Δf is produced by electrons moving faster than vph given by
(56). The detailed shape of the peak is governed by the value of 𝜔pL∕vph (determining F given by (10)) and by
the electron population fi that dominates the bracket in (55). If f (v) ≃ fi(v) for v ⩾ vph, the same population i
dominates both the numerator and the denominator of this bracket, which simplifies to

[…] ≃ ∫
∞

vph

dv v fi(v)∕fi(vph) (57)

Hence, in that case the amplitude and shape of the QTN peak depend only on the shape of the component i
of the distribution and not of its relative density.

Consider the case when at speeds v ≳ vph, the distribution can be approximated by a hot Kappa halo given by
(27) with density nh and temperature Th = (mv2

0∕2kB)[𝜅∕(𝜅−3∕2)]. With, for example, nh∕n = 0.05, Th∕T = 10
and 𝜅 = 5, one can verify that this holds when Δf∕fp ≲ 0.1 (when the core is Maxwellian). The bracket in (55)
then reduces to

[…] ≃
kBTh

m
𝜅 − 3∕2

𝜅

[
1 + 3T

4Th(𝜅 − 3∕2)
fp

Δf

]
(58)

When Δf∕fp > 3T∕[4Th(𝜅 − 3∕2)], which holds with the above parameters when Δf∕fp > 0.02, the bracket in
(58) reduces to unity in order of magnitude, so that (55) and (58) yield

V2
f ≃

8 mvphF(𝜔pL∕vph)
3𝜋𝜖0

Th

T
𝜅 − 3∕2

𝜅
(59)

An interesting property emerges from (59). In this exterior part of the peak (0.02 < Δf∕fp < 0.1 with the
above parameters), the power is not only independent of the density of the halo; it is also similar for a Kappa
halo and a Maxwellian halo (𝜅 → ∞), if they have similar most probable speeds (v0 = [(𝜅 − 3∕2) × Th∕𝜅]1∕2,
from (28)). Let us estimate the amplitude of the peak in this frequency range. We have from (56) and (26)

𝜔pL

vph
≃ L

LD

(
T−2

T

)1∕2 (
2Δf
3fp

)1∕2

(60)

For Δf∕fp ≃ 0.05 (which lies in the range determined above) and L∕LD < 5, (60) yields 𝜔pL∕vph < 1, so that
F(𝜔pL∕vph) ≃ (𝜔pL∕vph)2∕24 and (59) and (56) yield V2

f
∕T 1∕2 ≃ 5 × 10−16 for L∕LD ≃ 5.

Closer to fp (Δf∕fp < 0.02 in our example), the right-hand side term of the bracket in (58) becomes dominant,
which means that vph is such that the electrons producing the noise are in the speed range where the hot
kappa distribution (27) behaves as a power law velocity distribution f (v) ∝ v−p with p = 2(𝜅 + 1). In that case,
(58) yields

[…] ≃
3kBT

4 m𝜅

fp

Δf
(61)

which no longer depends on Th (nor nh), and we get from (55), (56), (11), (60), and (61)

V2
f ≃

(mkBT)1∕2

63∕2𝜋𝜖0𝜅

T−2

T
L2

L2
D

( fp

Δf

)1∕2

(62)

so that the power increases strongly very close to fp, as (fp∕Δf )1∕2, yielding a peak located at fp. This contrasts
with the behavior for a Maxwellian halo (𝜅 → ∞), in which case the bracket (58) equals kBTh∕m, so that (55)
yields

V2
f ≃

8 mThvph

3𝜋𝜖0T
F(𝜔pL∕vph) (63)

Equation (63) shows that when Δf → 0 (vph → ∞), V2
f

→ 0, so that the noise peak is shifted above fp

[Meyer-Vernet and Perche, 1989], at the value of Δf for which vphF(𝜔pL∕vph) is maximum.

Let us use these results to determine whether QTN spectroscopy can be used to measure the solar wind
superhalo electrons, which have a nearly isotropic power law velocity distribution at energies exceeding
E0 ≃ 2 keV [e.g., Wang et al., 2012]. Using vph given by (56), we see that these electrons are revealed
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at frequencies fp +Δf with Δf∕fp < (3∕4) × TeV∕E0 ≃ 4 × 10−3 if T ≃ 10 eV. Such an observation also requires
that the fp fluctuations produced by turbulent density fluctuations [e.g., Wang et al., 2012] occurring during
the measurement of the peak do not broaden it by more than Δf , which imposes a constraint on the time
resolution that may be difficult to conciliate with the frequency resolution (because of the Nyquist-Shannon
theorem). Using (62) with 𝜅 = p∕2 − 1, we obtain for p = 7 and L∕LD = 5, V2

f
∕T 1∕2 ≃ 10−16(fp∕Δf )1∕2. For

Δf∕fp ≃ 4 × 10−3, this yields V2
f
∕T 1∕2 ≃ 1.4 × 10−15 V2 Hz−1, i.e., about 4 × 10−13 V2 Hz−1 for T ≃ 105 K. Since

(1∕Δf ) ∫ fp+Δf

fp
df [fp∕(f − fp)]1∕2 = 2, a receiver with this frequency resolution should measure twice this power,

i.e., V2
f
≃ 10−12 V2 Hz−1.

It is interesting to note that such a very high noise level, corresponding to QTN produced by superhalo
electrons, could be erroneously interpreted instead as due to plasma instabilities.

2.7. Flat-Top Distributions
Flat-top distributions are observed in various media, under conditions when all particles are accelerated up to
a similar energy, for example, via an electrostatic field present in a restricted region. Such velocity distributions
have been observed in particular in the Earth’s magnetosheath [Feldman et al., 1982], the Earth’s magnetotail
around magnetic reconnection regions [Asano et al., 2008], and downstream of strong interplanetary shocks
[Fitzenreiter et al., 2003].

Compared to Maxwellians or Kappas, for which the bulk of the distribution has a relatively similar shape,
flat-top distributions have a large excess of medium energy particles, and the “temperatures” defined in
(20)–(22) with q < 0 generally exceed the kinetic temperature T2, contrary to distributions with suprather-
mal tails. For example, the distribution studied by Chateau and Meyer-Vernet [1989], f (v) ∝ [1 + (v∕v0)8]−1,
which can approximate distributions measured in the Earth’s magnetosheath, has T−2 = 1.24 × T with
T ≡ T2 = mv2

0∕3kB, so that the Debye length largely exceeds that of a Maxwellian of similar temper-
ature. Since in this case T−1 = 1.11 × T , we have T−2∕T 1∕2

−1 = 0.95 × T 1∕2
−2 , so that the temperature

deduced from the plateau level using (40) is close to that defining the Debye length. However, since
T 2
−2∕T−1 = 1.37 × T this temperature exceeds by nearly 40% the kinetic temperature T revealed by the

high-frequency QTN using (46)—a behavior which strongly contrasts with that of a Kappa distribution. There-
fore, although the QTN diagnostics cannot reveal the full flat-top shape, it can nevertheless give a strong hint
of such a shape.

2.8. Ions
Because of their large mass (small characteristic frequency), ions generally play a minor role in the QTN at
frequencies of the order of magnitude of the plasma frequency, except when the Doppler shift of their fluc-
tuations puts them in this frequency range—a case often encountered in the solar wind. Since Ulysses spin
axis was close to the solar direction, the equatorial antennas were oriented approximately perpendicular to
the solar wind velocity. The contribution of the solar wind ions to the QTN has been calculated in this case
[Issautier et al., 1999] and used to estimate the ions properties [Issautier et al., 1998]. We derive below a few
additional properties that may be useful for other missions.

Equations (2), (3), and (13) show that if the drift speed is much larger than the ion average speed; the main
contribution to the integral in (13) stems from the values of 𝜃 satisfying 𝜔 ≃ kV cos 𝜃. Hence, if the antenna is
parallel to the drift speed, we deduce by substituting k cos 𝜃 = 𝜔∕V into (16) that the ion QTN is proportional
to the factor [sin2(𝜔L∕2V)∕(𝜔L∕V)]2, which oscillates with frequency and goes to 0 at frequencies that are
multiples of V∕L. Such variations have been observed on Wind/WAVES [Tong et al., 2015].

An important simplification arises when 𝜔LD∕V ≫ 1, which holds around the plasma frequency in the solar
wind for PSP at 10 RS (𝜔pLD∕V ≃ 20). In that case, the QTN contribution due to the ions is given by

V2
f ions ≃

8meV3𝜔2
p

𝜋𝜖0L2𝜔4
sin4

(
𝜔L
2V

)
antenna ∥ V (64)

V2
f ions ≃

meV2𝜔2
p

𝜖0L𝜔3
antenna ⟂ V (65)

Comparing with (41), one sees that the ion contribution to the QTN is expected to be negligible whatever the
antenna direction for PSP at perihelion.
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3. QTN in Real Life

Now that QTN spectroscopy has been admitted in the exclusive club of recognized in situ measurement
techniques, it is essential to ensure that it is not used loosey-goosey, under conditions which might lead to
incorrect results. We therefore discuss below some constraints of real life in space which are (or are not) com-
patible with accurate measurements by QTN spectroscopy and derive some results that may be useful for
practical applications.

3.1. Unequal Booms
When the antenna wires are too thin, they can be broken by dust impacts. This happened several times for the
Wind/WAVES dipole antennas, which now have arms of unequal length. We consider below an antenna made
of two wires of respective lengths L1 and L2, aligned along the z axis and longer than the gap between them
(we do not consider the effect of a gap since this has been calculated by Meyer-Vernet and Perche [1989]).

The Fourier transform of the current distribution becomes

Jz(k) =
1

k2
z

[
eikz L1 − 1

L1
+ e−ikz L2 − 1

L2

]
(66)

Hence, with an isotropic velocity distribution, the QTN is obtained by replacing in (9) F(kL) by G(kL1, kL2)
given by

G(kL1, kL2) =
1

4k

(
L1 + L2

L1L2

){
g(kL1) + g(kL2) − g[k(L1 + L2)]

}
(67)

g(x) = cos x − 1
x

+ Si(x) (68)

where Si is the sine integral function. In the particular cases of respectively short and long antennas, (67) and
(68) yield

G(kL1, kL2) ≃
k2(L1 + L2)2

96
if kL1, kL2 ≪ 1 (69)

G(kL1, kL2) ≃
𝜋

8k

L1 + L2

L1L2
if kL1, kL2 ≫ 1 (70)

Therefore, for short antennas, the unequal arms of lengths L1, L2 are equivalent to a symmetric antenna made
of wires of length the average length, La = (L1 + L2)∕2, whereas for long antennas, the unequal arms are
equivalent to an antenna of length the inverse of the average of the inverse lengths, Lg = 2L1L2∕(L1 + L2).
In the frequent case when the antenna is short compared to the electromagnetic wavelength c∕f , but long
with respect to LD, this property suggests a quick method for determining separately the lengths of the two
antenna arms when they have been broken, using both a known radio emission as the galactic noise and the
QTN in a known plasma. Indeed, in that case, (69) shows that the reception of electromagnetic waves depends
on the arithmetic mean La, whereas (70) shows that the QTN depends on the geometric mean Lg; this enables
one to determine both Lg and La, from which one can deduce directly L1 and L2. When the booms are not long
enough to use the approximation (70), one must use the exact expression (67).

3.2. Fat and/or Biased Antennas
To be adequate for thermal noise spectroscopy, electric antennas must not only be long enough (albeit not
too long [Meyer-Vernet et al., 2000]), they must also be thin enough. There are two basic constraints on the
radius of electric antennas. First it must be small compared to the Debye length; otherwise, the approximation
k⟂a ≪ 1 in Eq. (8) does not hold true, producing additional resonances—a problem only encountered in
dense planetary ionospheres; a further problem arises in that case (see section 4). The second constraint is due
to the shot noise, since fat antennas may collect or emit so many electrons that the corresponding shot noise
may exceed the quasi-thermal noise. Since each electron collection or emission from or to the ambient plasma
produces a voltage pulse of rise time ∼ (2𝜋fp)−1 (∼ (2𝜋fph)−1 for photoelectrons of plasma frequency fph)
and a generally much longer decay time, 𝜏d , due to the discharge of the antenna, the shot noise has a f−2

spectrum for (2𝜋𝜏d)−1 < f < fp(the squared Fourier transform of a Heaviside function). In practice, if the
electron collection is not much affected by the antenna electric potential Φ (which requires the condition
e|Φ| ≪ kBTe), the shot noise below the plasma frequency at the antenna ports can be approximated by

V2
shot ≃ 2|Ie0| × e∕C2

a𝜔
2 ≃ 2 × 10−16(a∕L)[ln(LD∕a)]2T 1∕2

1 (fp∕f )2 (71)

MEYER-VERNET ET AL. QUASI-THERMAL NOISE IN SPACE PLASMAS 15



Journal of Geophysical Research: Space Physics 10.1002/2017JA024449

for a < LD < L[from equation (25) and the formulas by Meyer-Vernet and Perche, 1989], where Ca ≃ (i𝜔Za)−1 is
the dipole antenna capacitance and Ie0 is the electron current on one antenna arm when Φ = 0. Comparing
with the expression (40) of the QTN, (71) yields

V2
shot∕V2

QTN ≃ 4.9 × 𝜏(a∕L)[ln(LD∕a)]2(fp∕f )2 (72)

with 𝜏 = T 1∕2
1 T 1∕2

−1 ∕T−2, which equals unity for a Maxwellian electron distribution, whereas 𝜏 ≳ 1 when the
distribution has a suprathermal tail; for example, with a Kappa distribution we have 𝜏 = (𝜅 − 1∕2)∕(𝜅 − 1).
With the parameters listed in Table 1 and 𝜏 ≃ 1, (72) yields V2

shot∕V2
QTN ≃ 0.4 × (fp∕f )2 for SO and

V2
shot∕V2

QTN ≃ 0.14 × (fp∕f )2 for PSP at perihelion. As noted above, these results assume the frequency to be
smaller than fp and to exceed the inverse of the decay time 𝜏d ≃ RCa of the antenna potential pulses pro-
duced by electron impacts and emission, so that these pulses are roughly step-like; here R is the low-frequency
antenna resistance due to its discharge by photoelectron emission and plasma collection [Henri et al., 2011];
at smaller frequencies the shot noise is smaller by the factor 𝜔𝜏d .

The expression (71) of the shot noise also assumes both that the electron collection is not much affected
by the antenna electric potential Φ, and that this potential is the floating potential for which the electron
collection current is mainly balanced by the photoelectron emission current or by the ion current if the latter
is larger. This may not be the case if the antenna is biased since in that case the change in antenna potential
may change significantly the number of elementary charges transferred from and to the antennas, whereas
the bias current, Ib, also contributes to the shot noise. Indeed, since each individual charge transfer to the
antenna contributes additively to the shot noise, positive and negative current pulses do not cancel out and
they all contribute to the fluctuations.

Let us first consider the case when the ambient medium is the solar wind. In this case, the photoelectron
current Iph0 typically exceeds the plasma electron current Ie0 by 1 order of magnitude (here the subscript “0”
stands for the currents on an antenna arm when Φ = 0). Hence, the antenna potential Φ floats at a few times
the photoelectron temperature Tph(eV), in order that the ejected photoelectron current

Iph ≃ Iph0 × e−Φ∕Tph(eV) (73)

balances the collected electron current

Ie ≃ Ie0 × (1 + Φ∕Te(eV)) (74)

where we have assumed Maxwellian distributions with Φ∕Te(eV) ≪ 1 since Tph ≪ Te [Whipple, 1981]. In that
case, the shot noise (71) is increased by the factor Ie∕Ie0 ≃ (1+Φ∕Te(eV)). This result also holds in the presence of
secondary electron emission Isec since in that case |Isec|+ |Iph| = |Ie| (neglecting the smaller ion current). Note
that we have neglected the shot noise produced by the photoelectrons returning to the antenna because at
frequencies f < fpthe corresponding pulse duration (≃ 1∕(2𝜋fph)) is much shorter than 1∕(2𝜋f ).

If the antenna is biased with a bias current Ib (per antenna arm), the shot noise (71) becomes

V2
shot ≃ (|Ie| + |Iph| + |Ib|)e∕C2

a𝜔
2 (75)

since it is proportional to the total number of elementary charges transferred from or to the antenna per
time unit, and the contribution of the bias current to the shot noise is estimated by assuming that the
corresponding impedance is essentially due to the antenna capacitance. Since Ib = |Iph| − |Ie|, we deduce

V2
shot ≃ 2e × Max(|Iph|, |Ie|)∕C2

a𝜔
2 (76)

Consider the case when, due to the bias, the antenna potential becomes much smaller than both Tph(eV) and
Te(eV), so that |Iph| ≃ |Iph0| and |Ie| ≃ |Ie0| ≪ |Iph|. In that case (76) shows that the bias increases the shot noise
(71) by the approximate factor |Iph0∕Ie0|, which amounts to about 1 order of magnitude in the solar wind; such
a bias would make the shot noise largely dominant over the QTN for SO and of the same order of magnitude
as the QTN for PSP. On the other hand, biasing the antenna in order to increase its positive potential Φ would
increase the shot noise by a smaller factor. Note that the above estimates assume the antenna photoelectron
current to be given by (73), even at small heliocentric distances because—contrary to the spacecraft PSP
[Ergun et al., 2010]—the antennas, whose radius is smaller than the photoelectron Debye length, are not
expected to be surrounded by a potential barrier reflecting the emitted photoelectrons.

Consider now dense planetary environments, when the plasma ion current dominates the photoelectron
current. In that case, since |Ii0∕Ie0|≃ (meT1i∕miT1e)1∕2 ≪ 1, the antenna potential floats to a negative value
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of order a few times the plasma electron temperature in order to decrease the plasma electron current
Ie ≃ Ie0 × e−|Φ|∕Te(eV) sufficiently to balance the plasma ion current given by Ii ≃ Ii0 × (1 + |Φ|∕Ti(eV)) for
Φ∕Ti(eV) ≪ 1 [Whipple, 1981]. In that case, the shot noise (71) is decreased by the factor Ie∕Ie0 ≃ e−|Φ|∕Te(eV) .

With a bias current, the shot noise is given by (75) and (76) with |Iph| replaced by |Ii|. In that case, if because
of the bias, the potential |Φ| becomes much smaller than both Ti(eV) and Te(eV), we have |Ii| ≃ |Ii0| and|Ie| ≃ |Ie0| ≫ |Ii|, so that Max(|Ii|, |Ie|) ≃ |Ie0| and the shot noise is thus given by (71). In contrast, a bias making
the antenna potential more negative would decrease the shot noise.

3.3. Dusty Plasmas: Quasi-thermal Noise of Charged Dust Grains
Virtually every plasma contains dust particles [Shukla and Mamun, 2002]. They can affect plasma waves in two
ways. First, when dust grains impact solid surfaces at high speed, they are vaporized and partially ionized, as
well as the material of the impacted surface; this produces an expanding plasma cloud which affects the ambi-
ent electric field, whereas some plasma particles are recollected by the spacecraft or antennas; these processes
can be detected by radio receivers and are currently used for dust detection [e.g., Meyer-Vernet et al., 2016, and
references therein] complementary to dedicated dust detectors [e.g., Auer, 2001]. Second, since dust grains
carry electric charges [e.g., Mann et al., 2014], their motion produces an electric field, which can be detected
by the electric antennas. We consider below the latter mechanism and assume that the concentration of dust
grains is small enough that they do not affect the plasma dielectric function [Verheest, 1996].

In order to compare this mechanism to impact ionization, consider the charge carried by a dust particle of
radius rd and floating potential Φd

q ≃ 4𝜋𝜖0rdΦd (77)

where Φd equals a few times the temperature (in eV) of the particles that govern the grains’ charging, i.e.,
photoelectrons in the solar wind or ambient electrons in dense planetary environments. Beware that (77) no
longer holds when the grain’s size is smaller than the Landau radius (the distance at which the mutual electro-
static energy of two plasma electrons equals their thermal energy), because of both the grains’ polarization
and the charge quantization [e.g., Meyer-Vernet, 2013].

Comparing q with the charge involved in impact ionization for a grain of mass md impacting at speed vd ,
Q ≃ 0.7mdv3.5

d(km/s) [McBride and McDonnell, 1999; Lai et al., 2002], we have

q∕Q ≃ 0.015 × r−2
d(μm)v

−3.5
d(km/s)Φd (78)

Equation (78) generally yields q∕Q ≪ 1, except for submicron particles moving slowly, for example, nanodust
that have not yet been accelerated, such as freshly produced nanodust in the solar wind or nanodust in inner
planetary magnetospheres.

Let us now compare the number of dust particles affecting the electric antennas in dipole mode for both
mechanisms. The rate of passing-by dust particles affecting the antennas exceeds the impact rate on their
surface by the large factor LD∕a, of order of magnitude 104 for the cases listed in Table 1 (we do not consider
the impacts on the spacecraft, which are generally not efficiently detected in dipole mode). These numbers
suggest that the electric noise produced by dust grains passing by the antennas may be worth considering.
Such a measurement via a time domain sampler has been discussed by Meuris et al. [1996]. We consider below
the possibility of such a measurement via a wave receiver, i.e., the quasi-thermal noise produced by dust grains
moving around the antennas.

In order to derive order of magnitude estimates, we consider a simple case: dust grains of charge q and
isotropic velocity distribution fd(v). From equations (2), (9), and (33), their QTN is given by

V2
f d =

32q2

𝜖2
0

∫
∞

0
dk

F(kL)
k3|𝜖L(k, 𝜔)|2 ∫

∞

𝜔∕k
dv v fd(v) (79)

where F(x) is given by (10). We now make the further simplifying assumption that the grains have a similar
speed Vd , so that their distribution can be approximated by

fd(v) = nd𝛿(v − Vd)∕
(

4𝜋V2
d

)
(80)
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nd being their number density. Substituting (80) into (79) yields

V2
f d =

8ndq2

𝜋𝜖2
0 Vd

∫
∞

𝜔∕Vd

dk
F(kL)

k3|𝜖L(k, 𝜔)|2
(81)

Since Vd is much smaller than the electron thermal speed, we can use the approximation (35) of 𝜖L in the
integral (81), which reduces to 𝜖L ≃ 1 since kLD ≫ 1 in the integration range. This yields the QTN of this dust
distribution

V2
f d =

8ndq2L2

𝜋𝜖2
0 Vd

∫
∞

𝜔L∕Vd

dx
F(x)

x3
(82)

Using the approximations (11) and (12), we deduce in particular

V2
f d =

2ndq2V2
d

3𝜖2
0 L𝜔3

for 𝜔L∕Vd ≫ 1 (83)

V2
f d =

ndq2L2

3𝜋𝜖2
0 Vd

ln(Vd∕𝜔L) for 𝜔L∕Vd ≪ 1 (84)

For example, a concentration nd ≃ 103 cm−3 of nanodust of radius a few nanometers moving at Vd ≃ 15 km/s
relative to the Cassini spacecraft in Enceladus’ plume [Hill et al., 2012] should produce from (83) a QTN power
of order of magnitude V2

f d
≃ 10−10 V2 Hz−1 near 1 kHz. This level is expected to largely exceed the shot noise

due to plasma particle impacts because of the strong electron depletion [Hill et al., 2012].

4. Concluding Remarks

We have provided a number of new tools for implementing QTN spectroscopy in space plasmas, which are
generally not in thermal equilibrium and are sometimes dusty, inboard various missions. In particular, we give
an exact generic expression of the cold electron temperature and of its measurement via the QTN plateau
(36); we also give a generic analytical approximation (40) of this plateau valid for practical antenna lengths in
space and provide an application for PSP at perihelion. The QTN plateau level is all the more generic, given
that we have proven that it still holds in presence of a magnetic field. We also give new analytical approxima-
tions of the QTN peak shape and level in several practical cases, and study the conditions in which the solar
wind super halo might be measured by this technique. Concerning flat-top distributions, we suggest a simple
method to infer them by comparing the low- and high-frequency QTN levels. Finally, we give new analytical
approximations for the QTN due to ions in the solar wind and show that this component is expected to be
negligible for PSP at perihelion.

In order to adapt the method to various practical situations in space, we have considered antennas made
of two wires of different lengths, as occurs on Wind after damaging of the antennas by dust impacts, and
suggest a new method for determining separately the lengths of the dipole arms. We also consider fat and/or
biased antennas, showing that biasing might considerably increase the shot noise in the solar wind, possibly
spoiling QTN measurements. Finally, we have estimated the QTN produced by the motion of dust grains near
the antennas, yielding a new method to measure grains when their speed is not high enough for producing
significant impact ionization. This result may be applied for detecting nanodust in the Enceladus plume, where
the plasma shot noise is expected to be small because of the strong electron depletion (due to capture of
most plasma electrons by the grains) [Hill et al., 2012], so that the dust QTN noise may dominate the spectrum
at low frequencies.

Further extensions will be necessary in the near future to implement QTN spectroscopy on the CubeSat
projects [e.g., Swartwout, 2013; Saint-Hilaire et al., 2014] in the Earth’s ionosphere. Even though collisions are
negligible at normal CubeSat altitudes, they should be taken into account at lower altitudes (the E region);
such an extension has already been considered [Meyer and Vernet, 1975; Martinovic et al., 2017]. Another sim-
ple extension which has already been considered [Meyer-Vernet and Perche, 1989] is the accounting of the
gap between antenna arms due to the presence of the satellite if its diameter is not small compared to the
antenna length. A much more difficult problem is that the negative floating potential of the antenna, of mod-
ulus greater than the electron temperature (in eV), will produce a sheath depleted of electrons around the
antenna, of width several Debye lengths [Laframboise, 1966], because the antenna radius will not be small
compared to the Debye length (typically a fraction of centimeter). A detailed study of the impedance of a wire
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dipole antenna in the Earth’s ionosphere has shown that this effect can be approximately taken into account
at frequencies f > fp by making a simple extension of the theory [Meyer and Vernet, 1975], putting in series the
impedance of an antenna of radius comparable to that of the sheath, G (the antenna radius plus a few Debye
lengths), and that corresponding to the capacitance of a vacuum sheath (𝜋𝜖0L∕ ln(G∕a)). However, at frequen-
cies f < fp, a new effect arises: the local plasma frequency in some region of the depleted sheath equals the
frequency f , yielding resonances with associated noncollisional losses [Meyer-Vernet et al., 1977]. This effect
produces a strong increase of the antenna resistance [Meyer-Vernet et al., 1978] (and therefore of the QTN) and
requires a major extension of the theory to be accounted for.

Other extensions will be necessary for applications in the inner solar system. The electron distribution close
to the Sun is expected to have significant anisotropies, in particular, due to the suprathermal electrons
focused along the magnetic field—the so-called strahl [e.g., Marsch, 2006]. The effects of electron temper-
ature anisotropies on the QTN at low and high frequencies have been estimated by Meyer-Vernet [1994],
whereas the effects of the electron bulk speed on the QTN cutoff at the plasma frequency have been con-
sidered by Issautier et al. [1999]. However, the effects of drift or focusing of suprathermal electrons, which
is an important topic, has not yet been studied. And since Nature always turns out to be subtler than we
imagine, the future diagnostics will most probably require further and as yet unanticipated extensions of the
QTN theory.
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