Solar wind acceleration in exospheric models: electric field and heat flux

Nicole Meyer-Vernet

LESIA, Observatoire de Paris, CNRS, UPMC, Université Paris Diderot; 5 Place Janssen, 92190 Meudon, France

18-19/06/2009 - Mini-symposium Solar Wind Solar-terrestrial Centre of Excellence

nicole.meyer@obspm.fr http://www.lesia.obspm.fr/perso/nicole-meyer/ Why use exospheric models?

The basic solar wind problem (Parker 1958 $\rightarrow \dots$)

Mean free path in the heliosphere

Coherent orbits versus collisional processes

 $m_{e} << m_{p}$ Quasi-neutrality requires electric field

Forces on electrons balance

Electric force on electrons $eE \sim -\frac{1}{n} \frac{\partial (nkT_e)}{\partial r} \sim -kT_e \times \frac{1}{n} \frac{\partial n}{\partial r}$ $eE\ell \sim kT_e \ell / \mathcal{H} \sim kT_e$ mean free path since $\ell \sim \mathcal{H}$

collision time: $\ell / v_{\text{the}} \sim \text{dynamic time:} (eE/m_e v_{\text{the}})^{-1}$

particle coherent orbits play a major role

Exospheric models: kinetic without collisions above exobase $(\ell \sim 2)$

- propose a simple solution to the basic problem of fluid models, by considering particle orbits:
- Vlasov eq. \Rightarrow $f(r_0, v) \Rightarrow f(r, v)$
- calculating the electric field that ensures zero electric charge and current
- ✓ and deducing the heat flux (and the temperature variation):
- include non-equilibrium velocity distributions
- \Rightarrow can produce fast wind

Note: by construction (Vlasov equation):

- fulfill moment equations
- close infinite hierarchy by calculating heat flux

Effect of electric field on particle orbits

and relation to hydrodynamic (Parker) wind

Effect of electric field on particle orbits Electric potential at the base \Rightarrow outward electric field $m_{e} << m_{p} \frac{k_{B}T_{0}}{m_{p}MG/2r_{0}} \ll 1 \Rightarrow$ protons tend to be confined $\frac{k_B T_0}{m_e M G/2r_0} \gg 1 \quad \Rightarrow \text{ electrons tend to escape}$ sun exobase $k_{\rm B}T/m_e >> k_{\rm B}T/m_p$ $(\ell \sim 24)$ \Rightarrow electric force $eE > m_{\rho}M_{\odot}G/2r^2$: otherwise escaping electron flux >> escaping proton flux

(Lemaire Scherer 1971 \Rightarrow beginning of successful exospheric models)

 \Rightarrow electric potential: $e \phi_0 > + k_B T_e$

Note: similarly, $k_{\rm B}T/m_e >> k_{\rm B}T/m_p$ is the reason why a probe in plasma charges negatively at potential $|e \phi_0| > k_B T_e$

Effect of electric field on particle orbits: electrons

Electrons are pulled inward by the electric field

- 3 kinds of electron orbits
 trapped
 ballistic
- escaping

- *eE*

Electrons don't behave as a single fluid

Effect of electric field on particle orbits: electrons

at distance *r*. $f(v) \sim f_0[(v^2 + 2(\psi_0 - \psi)/m)^{1/2}]$

• $r \sim r_0$: $\psi >> kT_0 \Rightarrow$ For ballistic+trapped (main contribution to T): $T \sim T_0$ if Maxwellian \Rightarrow T nearly constant (as hydrodynamic wind) c.f. E. Parker

•
$$\Gamma >> \Gamma_0$$
: $\psi << [kT_0, \psi_0] \Rightarrow T \sim constant + \frac{1}{r^{4/3}}$ (Meyer-Vernet &Issautier 1998)
escaping non-escaping

Effect of electric field on particle orbits: protons

Compare electric and gravitational force at large distances where $\mathcal{P} \sim r/2$

 $eE \sim kT_{o}/\mathcal{H} \Rightarrow electric/gravitational = eE/(m_{p}M_{\odot}G/r^{2}) \sim 2kT_{o}/(m_{p}MG/r) \sim 2 \text{ at } 1 \text{ AU}$

Historical "matter starting from the Sun, ... subjected to an acceleration of several times note: solar gravitation, could reach the Earth in a couple of days"(G. Fitzerald 1892) 5 years before 1897 J.J. Thompson's paper on "Cathode rays"

Effect of electric field on particle orbits

Coronal holes: small density ⇒ large free path

 \Rightarrow exobase r_0 ($\ell \sim \mathcal{P}$) closer to the Sun

 \Rightarrow greater electric potential

& greater wind speed

May explain why fast wind comes from coronal holes

Note: Playing with particle masses

 $m_{e} << m_{p} \Rightarrow$ Electrostatic field set up to ensure electric quasi-neutrality accelerates protons outwards

Now, imagine a plasma with $m_e = m_p$ (example: electrons/positrons)

MASS UNIT: 4 CONSTANT:

Exospheric/Kinetic $\Rightarrow E = 0 \Rightarrow$ No transonic wind with collisions

similar result as fluid nearly adiabatic (or polytrope with γ large enough)

Velocity distributions

Mean collisional free path: $\ell/2 \sim 1$

But for Coulomb collisions: $\ell(v) \propto v^4$

Suprathermal particles are collisionless

Trajectory of an electron (N-body simulation) Beck & Meyer-Vernet 2008

Velocity distributions

outside the scope of fluid models

Non-thermal processes ⇒ Kappa-like velocity distributions should be ubiquitous in space plasmas

Suprathermal particles are collisionless

Velocity distributions

...and indeed Kappa's are ubiquitous!

solar wind

- electrons: Maksimovic & al 1997, 2006
- ✓ **IONS:** Gloeckler & al 1992, Collier & al 1996

magnetospheres

- ✓ **Earth:** Bame et al 1967, Vasyliunas 1968, Gloeckler&Hamilton 1987, Christon&al 1989
- Jupiter ions: Krimigis & al 1981, Hamilton & al; 1981, Kane 1991, Kane & al 1992, Collier & al 1995
 electrons: Meyer-Vernet & al 1995, Steffl & al 2004
- ✓ Saturn: protons: Krimigis & al; 1983
- ✓ Uranus: Krimigis & al 1986, Neptune: Mauk & al 1991

solar corona ?

- Solar wind suprathermal electrons remnants of coronal ones? Olbert 1981
- Production of suprathermal particles (temperature grad., waves, turbulence) Roussel-Dupré 1980, Owocki & Scudder 1983, Vinas & al 2000, Vocks 2002, Vocks & Mann 2003
- Observational inferences: Dufton et al. 1984, Owocki & Ko 1999, Pinfield et al. 1999, Esser & Edgar 2000, Chiuderi & Chiuderi-Drago 2004, Doyle et al. 2004, Ko 2005

Temperature near r₀ with a Kappa distribution

How the velocity distribution changes with altitude

Temperature increases near base of the wind

Note: velocity filtration might explain "coronal heating" if non-Maxwellian velocity distribution in chromosphere (Scudder 1992, Pierrard et al. 2003, 2004)

Heat flux with a kappa distribution

Corona

heat flows from cold to hot!

"IF I LEARNED ANYTHING IN MY LONG REIGN, IT'S THAT HEAT RISES"

Olbert 1981, Shoub 1983, 1988, Scudder 1992, Pantellini & Landi 2001, Dorelli & Scudder 1999, 2003

Heat flux with a kappa distribution

Smaller $\kappa \Rightarrow$ more escaping electrons if same potential

Olbert et al., 1981, Scudder 1992, Maksimovic et al., 1997, Meyer-Vernet & Issautier 1998, Meyer-Vernet 1999), Pierrard et al., 2001, Lamy et al., 2003a,b; Zouganelis et al., 2004, 2005

Wind acceleration

Depending of one's language or prejudices, one can argue that the wind is pushed either by:

• pressure gradient
$$V \frac{dv}{dr} = -\frac{1}{\rho} \frac{dP}{dr} - \frac{M_{\odot}G}{r^2}$$

since T does not decrease fast

- heat flux
- electric field
- Note: Two-fluid polytrope wind $(P \propto \rho^{-\gamma}) \Rightarrow e\phi = kT \gamma/(\gamma-1)$ if $\gamma/(\gamma-1) >> 5/2$: $Q \sim nVe\phi$

Wind acceleration

With Maxwellian:

wind pushed by pressure/electric field/heat flux similar to hydrodynamic (Parker) wind

- With suprathermal electrons (Kappa distribution)
 - greater pressure force
- greater electric field
- greater heat flux
- \Rightarrow greater wind speed

Maksimovic et al. 1997, Meyer-Vernet 1999, Pierrard et al. 2001, Lamy et al. 2003, Zouganelis et al. 2004, 2005

Effect of collisions comparison with kinetic with collisions

Effect of collisions

Exospheric model calculates trajectories neglecting collisions

Nevertheless, produces results similar (qualitatively) to kinetic model with collisions!

This is because exospheric models include (implicit) collisions

Indeed, trapped particles would not exist without collisions

Solar wind exospheric models assume trapped particles in quasi-equilibrium with ballistic (Lemaire & Scherer 1971 ...)

Without trapped particles, one cannot impose both electric neutrality and equality of escaping electron and ion fluxes ⇒ no wind

Conclusion

Exospheric models Lemaire & Scherer 1971 + generalizations to:

- transsonic
 suprathermal electrons
 Parker spiral
- can produce fast wind from suprathermal electrons in corona
- include implicit collisions
- should include scattering (waves) to limit temperature anisotropy and heat?

Velocity distributions in chromosphere and corona?

- Solar "nanoflares" (c.f. Parker 1988) produce not only waves, shocks, turbulence, jets, but also suprathermal particles
- Needed: measure velocity distributions in chromosphere and corona
 - ✓ spectroscopy
 - √ solar probe (in situ)

