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On Natural Noises Detected by Antennas in Plasmas 

N. MEYER-VERNET 

Observatoire de Meudon, Section d'Astrophysique, 92190 Meudon, France 

A formal generalization of the Nyquist formula for an antenna in a possibly anisotropic equilibrium 
plasma is presented along with practically useful expressions derived from it. It is shown that this can 
explain some preliminary results of the recent three-dimensional radio mapping experiment (SBH) on the 
ISEE 3 spacecraft. 

1. INTRODUCTION 

Several types of natural noises (i.e., detected by passive 
experiments) have been observed in situ in the ionosphere and 
magnetosphere. Most of the interpretations [for example, 
Shaw and Gurnett, 1975; Christiansen et al., 1978] invoke non- 
equilibrium processes, since the particle distribution functions 
are generally non-Maxwellian. 

However, in some cases of practical interest, described in the 
present paper, the thermal noise itself can actually be mea- 
sured. 

This thermal noise has been previously calculated, by as- 
suming [Andronov, 1966] or deriving [De Pazzis, 1969; Fejer 
and Kan, 1969] Nyquist formula for an antenna in an isotropic 
plasma. The present paper contains a generalization to an 
antenna in a possibly anistropic plasma. This derivation is 
basically analogous to that by Fejer and Kan [1969], but it 
directly uses the fluctuation-dissipation theorem, so that it 
avoids formulating explicitly the plasma dielectric tensor, 
and consequently the antenna resistance. 

Some practical applications to geophysical plasmas are dis- 
cussed, and it is shown that it can, in particular, successfully 
explain some results of the recent three-dimensional radio 
mapping experiment on ISEE 3. 

2. THERMAL NOISE MEASURED BY AN ANTENNA 

The voltage measured by a receiving passive antenna, in 
open circuit, is obtained in the usual way as 

f J(r) V(t)= E(r,t).-•-o dr (1) 

where E (r, t) is the field to be measured, and J(r)/1o the 
normalized current distribution in emission conditions. (In 
fact, in a magnetoactive plasma, as the dielectric permitivity 
tensor satisfies e•j(k, co, Bo) = ej• (-k, co, - Do), the application 
of the reciprocity theorem [Ginzburg, 1964], giving (1), shows 
that the current must be taken in a medium where the static 

magnetic field Do has been reversed; this has no practical 
consequences in most applications.) 

The autocorrelation of V(t) is 

1# (V(t•)V(t:)) = •oo: dr• dr: J(r•) < E(r•, t•)E(r:, t:) > J(r:) 
If the medium is homogeneous and stationary, the quadratic 
space-time correlation function depends only on r = r• - r: 
and t = h - t:. Hence, Parseval theorem gives the following 
spectral density: 

where the usual convention of sommation on indices is im- 

plied, and 

v: = f (V(t•)V(t• + t)) e •t dt 

J(k) = f J(r) exp (-ik.r) dr 
(2') 

Eo(k, co)= f dt dr < E,(r•, t•)E•(r• + r, t• + t) 
> exp [i(cot- k.r)] 

(J(r) and E(r, t) are taken as real). 
In an equilibrium plasma, the tensor of the spectral distribu- 

tion of the electric field fluctuations in the medium is given, in 
the classical limit (high temperature), from the fluctuation- 
dissipation theorem, as [Sitenko, 1967] 

Eta(k, co) = ix T [A/,-' - •-"1 (3) 

where 

A,•(k, co) = co: 7 - •' + •,•(k, co) (4) 
(X, c, eo are the Boltzmann constant, velocity of light, and 
vacuum permittivity; and T is the plasma temperature; ratio- 
nal unit system). 

Substituting (3) in (2) and interchanging the dummy indices 
give 

-2xT f dk lm {J,*(k)A,•-'(k, co)Jj(k)} (5) Vco: = (2•r)%co Io: 
(where Im denotes the imaginary part). 

On the other hand, the antenna resistance is given, by the 
usual emf method, as 

R_-_ 1 1o: Re(f drE(r).J(r• 
-1 

(2•r)•1o: •Re(f dkE(k). J(k)*) 
where E(r) is the field of the harmonic source J(r) (antenna 
current, e-t'øt), thus satisfying 

^ (k, (k) = - i 
J(k) 

_ if Vo,: - Io: (2•r)8 dkJt(k)E,•(k, co )J•*(k) 
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where ̂ (k, co) is the tensor written in (4). So, we obtain 
(2) 

-1 f R = (2•r)Seocolo: dk Im {J•*(k)A•-•(k, co)J•(k)} 
5373 

(6) 
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Substituting (6) in (5) gives 

V,,? = 2x TR (6') 

which is the usual Nyquist formula. The factor 2, instead of 4, 
in the well-known formula stems from the definition (2') of Vofi 
[see, for example, Papoulis, 1965]. 

We stress that, owing to the hypotheses involved, this deri- 
vation is strictly valid for any antenna immersed in an homog- 
eneous stationary, and possibly anisotropic, equilibrium 
plasma and in the absence of external fields. It permits the 
calculation of the thermal noise by using (6'), together with 
previous theoretical derivations of the antenna resistance R. 

If the plasma is not in equilibrium, (3) and thus (6') are not 
valid, and, in the general case, the calculation is not straight- 
forward; if the plasma is stable, one can use (2) and insert the 
proper expression for the tensor Eu(l•, w), taking account of 
the actual particle distribution function [Sitenko, 1967], like in 
Grabowski and Slavik [1976], for example (whose derivation is 
restricted to a two-element-point-dipole antenna). In some 
special cases, (7) can be generalized; we will return to this 
point in section 3. 

The other restrictive hypothesis is the plasma homogeneity; 
the calculation is thus strictly valid for the so-called grid 
antenna. In practice, the antenna is surrounded by a sheath, 
which may modify the result: for example, it is known [Meyer- 
Vernet et al., 1978] that an electron-depleted sheath (typical 
for ionospheric applications) may increase the high-frequency 
resistance by several orders of magnitude, below the electron 
plasma frequency; on the other hand, in some magnetospheric 
or solar wind applications, the photoelectron noise may play 
a part. 

Finally, we note that a relative velocity V between the an- 
tenna and the plasma, does not change (6'); of course, in this 
case, R must be calculated by performing the transformation 
•o --• o• - k.V (nonrelativistic case) in (6). 

3. APPLICATIONS TO AN EQUILIBRIUM ELECTRON PLASMA 

Isotropic plasma. In an isotropic plasma (dielectric permit- 
tivities longitudinal eL and transverse er), the tensor Eu de- 
couples in the well-known two parts 

Eu(k, •o)= 2xT 
+ (7) 

For a small magnetic antenna, k.J(k) = 0; and putting (7) in 
(2) shows explicitly that the longitudinal term does not con- 
tribute and the measured noise will be negligible. 

On the other hand, for a small electric antenna, the first term 
is dominant, and one expects a noise band, peaking in the 
vicinity (and above) the plasma frequency, due to the contri- 
bution of the first Landau pole of ,•, and of the others. The 
noise bandwidth and amplitude depend on the antenna length, 
owing to the hctor J(k) in (2) (increasing the antenna length 
decreases the width); a small residual noise is also expected 
below the plasma frequency, due to the contribution of the 
other Landau poles. 

To be more explicit, consider a short iliamental antenna 
with triangular current distribution, operating at frequencies 
near the electron plasma frequency. The calculation of R has 
been performed by Kuehl [ 1967] (and later generalized to finite 
antenna's radius [Sch• 1970]); this involves a numerical in- 
tegration in k, like (6), using the usual expression of the 

permittivity, with the Fried and Conte function (the so-called 
kinetic description). 

In the special case when small values of k give the dominant 
contribution in the integral giving R, the so-called hydro- 
dynamic approximation can be used. This leads to the follow- 
ing explicit expression [Balmain, 1965]: 

R = 21koLF(koL)}/[rr,oooL(oo•/ooo •' - 1)] (8) 

where ko = (oo'•/ooo '• - 1)'/"/(3)•/'•LD, LD, L and •oo/2•r are, 
respectively, the Debye length, antenna half-length, and 
plasma frequency; F is defined in Appendix 2 (12'), and the 
term { }--, •r/4 in the limit kpL --. 

This concerns a iliamental antenna. For an antenna con- 

sisting of two small spheres, approximate calculations are 
performed in Appendix 1. 

An interesting feature of these results is that if L/Lo >> 1 
and oo/ooo >> 1, the expected noise power-spectrum varies as 
o0 -a for the filament antenna and as w-" for the two-spheres 
antenna. This could be easily verified by experiments. 

Anisotropic plasma. For an anisotropic plasma the tensor 
Eo(k, oo) takes a much more complicated form, which makes 
the resistance calculations more difficult. For the short ilia- 

mental antenna, R has been calculated by Nakatani and Kuehl 
[1976] (kinetic description); they give some numerical results 
for parameters typical of laboratory plasmas, in the case of a 
dipole parallel to the static magnetic field. 

When the hydrohynamic with tensor pressure (or full adia- 
batic) approximation of eu is valid for calculating the resis- 
tance, one can use results by Meyer and Vernet [1974], which 
give also the variation with antenna orientation. For condi- 
tions typical of ionospheric experiments, this approximation 
gives correct results [Meyer-Vernet, 1978] for frequencies near 
the plasma and upper hybrid frequencies. 

In the general case, this approximation must be taken with 
caution: it involves both an asymptotic expansion excluding 
the vicinity of the gyrofrequency harmonics and a truncated 
series expansion for low values of k; it should not be valid in 
many magnetospheric applications when, in particular, the 
antenna length is of the order of the Debye length. 

4. APPLICATIONS TO HIGH-FREQUENCY NOISES 
IN GEOPHYSICAL PLASMAS 

Let us explain the previous results to interpret some data of 
the recent three-dimensional radio mapping experiment on 
ISEE 3 [Knoll et al., 1978] in the solar wind. Neglecting the 
anisotropy, the relevant parameters are f•, = oo•,/2rr • 2.4 104 
Hz; T • 10 • øK; L = 45 m (cylindrical dipole); thus L/Lo • 10 
(and the antenna radius r = 2.10 -4 m satisfies r/Lo << 1). 

Of course, an obvious objection to thermal noise calculation 
is that the plasma is not in equilibrium. Broadly speaking, the 
actual electron distribution function can be described as a bi- 

M axwellian one (with the colder component containing the 
main part of the total kinetic energy). In the close vicinity of 
the plasma frequency, the presence of the hot component is 
expected to change considerably the noise level [see, for ex- 
ample, Fejer and Kan, 1969]. However, as shown in Appendix 
2, the presence of the hot component (described in Feldman et 
al. [1975], for instance) does not change the noise levels very 
much for 0o/%, >> 1, L/Lo >> 1. 

Figure 1 shows an example of the measured noise spectrum 
2Voo'•: the curve drawn is the actually measured noise, multi- 
plied by the factor (1 + Z/Zo) '• which arises from the finite 
impedance Zo of the measuring device (input capacity: 40 pF), 
where Z is the antenna impedance. (In the main part of the 
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Fig. 1. Comparison between the measured noise level brought to 
the open circuit antenna terminals (2V•2), and the theoretical thermal 
noise level (for fp = 24 kHz and two electron temperatures l05 and 1.5 
l05 øK, respectively). 

us calculate an order of magnitude of the expected thermal 
noise in these cases: take parameters fp = 3.10 • Hz, T = l04 
øK, L = 20 m and neglect (unrealistically) the anisotropy and 
the nonthermal electrons. We obtain, for a filament dipole ((8) 
and (6')), a noise peaking (slightly above the plasma fre- 
quency) at about 2V• 2 • 3 X 10-•4V • Hz -•. For the two- 
spheres antenna, equations (10) and (6') give a noise peaking 
at about 2 V• 2 •10-•a• Hz -• (slightly above the plasma 
frequency). In both cases these figures are of the same order of 
magnitude as the data or, at least, not negligible as compared 
to them. 

This suggests that it should be interesting to perform a more 
correct calculation (taking account, in particular, of the ani- 
sotropy) to be sure that the nonthermal contribution is always 
as important as implicitly assumed by the above authors, for 
these low-level noises. 

Finally, it is worth noting that the quantity 2V, o•/L •-, which 
is the result generally quoted by experimenters, has no intrinsic 
physical meaning except in the limit L--, 0, which is not at all 
achieved for the thermal noise in the above examples. For 
instance, in the case drawn in Figure 1, 2V• •- is expected to 
behave approximately in 1/L. 

CONCLUSION 

Contrary to what is generally assumed by space experiment- 
ers, the thermal contribution to the noise measured in passive 
experiments should not be overlooked. We have shown that 
approximate calculations of the thermal noise can explain 
some preliminary results of the recent three-dimensional radio 
mapping experiment on ISEE 3. 

curve, •o/•op >> 1 and Z is calculated as in a vacuum; nearer 
to •op, the hydrodynamic approximation has been used: since 
its validity is very questionable with our parameters for calcu- 
lating lm (Z), the corresponding data points are shown with- 
out explicit error bars.) 

On the same figure is drawn the theoretical noise 2V• •-, 
calculated from (8) and (6') with T = 10 • øK and 1.5 105 øK, 
and fp deduced from the 2fp line shown in Figure 2. One sees 
that the agreement is good. At high frequencies, the law w -a is 
a good fit to the data and the amplitude could even serve as a 
temperature measuring device. This is of interest, since such a 
passive noise measurement is generally not recommended to 
measure the thermal population's parameters (Pottelette et al. 
[1977], for example). 

Figure 2 shows an example of the data variation. In some 
cases (which are probably related to a variation in the non- 
thermal electrons), a line at 2fp appears, but the main part of 
the spectrum is only slightly modified. The data in Figure 1 are 
those of curve 1 of Figure 2, where no such nonlinear feature 
appears. It is important to note that in these examples the 
immediate vicinity of fp does not fall in the frequency range of 
the receiver. Of course, these are preliminary results, and a 
more detailed interpretation should be made taking in account 
such features as, for example, the relative bulk velocities (be- 
tween the satellite and the plasma, and/or the different com- 
ponents of the distribution function), and including the imme- 
diate vicinity of the plasma frequency. 

Incidentally, we remark that some low-level noises have 
been previously reported in the magnetosphere [Christiansen et 
al., 1978; Shaw and Gurnett, 1975], for example, and tenta- 
tively ascribed by these authors to nonthermal processes. Let 

1 o '1/• 

Fig. 2. Noise levels at the receiver input measured at three con- 
secutive times, 2000 s apart. The 2fp line (f• • 24 kHz) appears on 
curve 2 (•2000 s after curve 1) and curve 3 (•2000 s after curve 2). 
The line does not appear on curve 1, which corresponds to the same 
data as used in Figure 1. 
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APPENDIX 1: THE PAIR OF SPHERICAL PROBES 

IN A WARM ISOTROPIC PLASMA 

In the case of an antenna constisting of a pair of small 
spherical probes, approximate values of R can be obtained as 
follows. 

Let 2/_. be the distance between the probes (on the Z axis) 
and let us neglect the individual probe dimension, and assume 
an exp (-i cot) time dependence. 

The charge distribution is written as 

Q b(x) b(y) [b(z - L) - b(z + L)) 

thus in Fourier space, 

•(K) = -Q2i sin (k,L) 

In the so-called quasi-static approximation, expected to be 
valid here for most applications (it retains the longitudinal 
part in (6)), the potential is given, in Fourier space: 

= 
•o• dK, co)K: 

The resistance is obtained as 

R = Re t[V(0, O, L)- V(O, O,- L)]/-icoQ} 

The K integration is easily performed in spherical coordinates 
and reduces to 

R= -1 Im dk sin(2kL) a':co•o • dk, co) 1 - 2kL (9) 
The calculation of R requires a numerical integration; how- 
ever, inspection of (9) leads to some approximate results. 

First, using approximations of the Fried and Conte [1961] 
function as in Kuehl (1966), gives the high and low frequencies 
limiting values 

R • cop/;ra/a2;/aeocoaLD CO/COp >> 1 L/LD >> 1 

R • l/(2a')a/aeocovLa CO/COp << 1 L/Lb >> 1 

These are very different from those relevant for a iliamental 
antenna [Kuehl, 1966]; of course, both formulations are equiv- 
alent only in the limit L -• 0 (except for a factor 4 which stems 
from the difference in effective lengths). 

Second, in the hydrodynamic approximation, (9) gives 

R= Ii _ sin (2kpL) l/ 2k •,L 6•'•ocoL D:k p (10) 
for co/coy > 1. 

We note that, as expected, this reduces in the limit L -• oo, to 
2 times the corresponding result for one single sphere [Fejer, 
1964]; and, in the limit L -• 0, to 4 times the corresponding 
limit for the filament. We note also that the derivation above is 

valid only for small spheres radii: in particular, it assumes 
implicitly the condition k• << I (where R is the radius of one 
individual sphere). 

APPENDIX 2: THE HIGH-FREQUENCY NOISE LIMIT FOR 
A BI-MAXwELLIAN ELECTRON DISTRIBUTION FUNCTION 

Let us consider a bi-Maxwellian electron distribution func- 

tion (with parameters cove, T•, k = 1, 2, cop• >> corn, T: > T•) in 
an isotropic plasma. Equation (7) can be generalized as [Si- 
tenko, 1967] (neglecting the EM part) 

EtAk, co) - 2X ktk• eocok' [•i': • r• lm (e•:•) (11) 

with 

•,. = 1 - • Z'(co/(2'/:kLv•cop•))/(2k: Lv•:) (Lo• is the Debye 
length for the population k, Z is the plasma dispersion func- 
tion [Fried and Conte, 1961 ].) 

For the iliamental antenna (0Z direction, half-length L) with 
triangular current distribution, i.e., in Fourier space, 

J(k) = Z41o sin: (kzL/2)/(kz:L) 

(2) and (11) reduce to 

fo • F(kL) Vofi- 8X dk Im ) ß ':•oco l e,.l: • r• (•,.•) (12 
where 

F(x) = [Si (x) - 0.5 Si (2x) - 2 sin 4 (x/2)/x]/x (12') 

(Si is the sine integral). The calculation of (12) for arbitrary 
parameters requires numerical integration. A similar ex- 
pression has been evaluated by Fejer and Kan [1969] in the 
close vicinity of the plasma frequency. We shall evaluate (12) 
in another limiting case, namely, for high frequencies. 

It is easily seen that if the condition co/co•(Tx/T:) •/: >> 1 is 
satisfied, then [e•,[: is of order 1 when the integrand in (12) is 
not negligible, and thus (12) can be approximated by 

vo? 
ß exp (- •'•:)F[coL/((2)•/:cop•La•'•)] 

Then, if L/Lm >> 1 (and thus (co/cov•)(L/Lo•) >> 1 for k = 1, 
2), the function F can be replaced by its approximation for 
large arguments, giving finally 

eoLcoa • T•cop•: (13) 
Thus with typical parameters such as COpl:/COp:: > 20, Tx/T: 

• 1/6 [see, for example, Feldman et al., 1975], the noise is 
approximately given by the 'thermal' contribution (wvx, Tx), 
for frequencies and antenna lengths satisfying 

• T(••/: L >> I >> 1 
•pl LD1 
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