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Tool kit for space

plasma physics

Most of the Universe is made of plasma. And yet, plasmas are very rare on
the Earth, where solids, liquids and gases – the three primary states of mat-
ter – are ubiquitous (Fig. 2.1). These states are the result of a competition
between thermal energy and intermolecular forces. In solids, the latter win,
maintaining the atoms and/or molecules at nearly fixed positions, whereas ther-
mal energy merely produces vibrations around these positions [9]. In gases on
the contrary, thermal energy wins, making the particles almost completely free.
Liquids are in between: the intermolecular forces are sufficiently strong to re-
sist compression, but sufficiently weak to enable deformation and flow; it is not
surprising that this intermediate state is less well understood than the other
two [19].

Common experience and elementary physics tell us that we may transform
a solid into a liquid by heating it; this weakens the bonds between molecules so
that they may move slightly, enabling matter to change shape. This requires an
amount of energy per molecule somewhat smaller than the binding energy. If the
energy furnished exceeds the binding energy, the bonds break out completely,
producing a gas of free atoms and/or molecules.

The plasma is the next state: the fourth, reached by furnishing enough
energy to break the atoms themselves, or rather to kick off at least the outer
atomic electron, producing a mixture of electrons and ions. For doing so, one
has to heat or to compress, to bombard with energetic radiation or particles, or
to subject the medium to high electric fields, as we shall see in more detail in
Section 2.4. One (or several) of these ionisation agents acts in most regions of
the Universe.

But (generally) such is not the case in the thin atmospheric layer of the small
planet Earth, where human beings live. This medium is not ionised because
it is a very special place: it is relatively cold; it is protected from the solar
ionising radiation by an atmosphere; and when an atom happens nevertheless
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42 Tool kit for space plasma physics

Figure 2.1 Solids, liquids and gases abound on the Earth, but most of the
Universe is made of plasma: the fourth state of matter. (Production of vapour;
drawing by Jean Effel, La Création du Monde, 1971, copyright Adagp, Paris,
2007.)

to be ionised, the particle concentration is so high that ions and electrons meet
frequently enough to recombine into neutral atoms. This is why our everyday
experience of plasmas is so limited: we can see them occasionally in lightning,
in some flames, inside fluorescent tubes or neon signs, but most of the visible
plasmas lie farther away and are seen in sky displays, in auroras, comets and
stars.

This chapter introduces briefly some tools of plasma physics that are essential
for understanding the solar wind and its interaction with objects. In addition
to introducing classical concepts, we give some hints on two subjects that lie at
the frontier of traditional plasma physics: non-Maxwellian distributions, which
are ubiquitous in the heliosphere – fooling our intuition and raising questions
still unanswered – and ionisation processes. The aim is to furnish a tool kit for
dealing with the major processes at work in the heliosphere, with the necessary
limitations – in space and scope – of such a kit. We have privileged insight, at
the expense of rigor and completeness. More may be found in several excellent
texts, for example [17], [6], [10], [4], [18], [16] and [7].

2.1 What is a plasma?

In any gas there are always a few atoms or molecules that manage to lose one
electron, producing some small degree of ionisation. Being ionised is therefore
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What is a plasma? 43

not sufficient to qualify as a plasma. A useful definition may be instead that a
plasma is:

• a gas1 containing charged particles (together with neutral ones), which

• is quasi-neutral

• and exhibits collective behaviour.

We will explain these three properties below. For simplicity, we consider a
plasma made of electrons (charge −e, mass me) and one species of singly charged
ions (charge +e, mass mi) of equal concentrations n. We do not consider com-
plex plasmas containing a large quantity of heavily charged ions or of dust
particles, which are rare in the heliosphere. We also assume the particles to be
non-relativistic and non-degenerate; relativistic and degenerate plasmas will be
discussed briefly later.

The concentration n is the average number of electrons (or ions) per unit
volume. This assertion assumes implicitly that there are many particles in
any volume considered, i.e. we shall consider spatial scales L greater than the
average distance between particles, whose order of magnitude is

〈r〉 ∼ n−1/3 (average distance between particles). (2.1)

The temperature T characterises the agitation of the particles. In thermal
equilibrium, the particles’ velocities along each space co-ordinate (x, y, z) are
Gaussian distributed around zero (in the frame where the bulk of them is at
rest), with mean square values 〈v2

x〉 = 〈v2
y〉 = 〈v2

z〉 = kBT/m for a particle
species of mass m; in this case, the average kinetic energy per particle is

m〈v2〉/2 = 3kBT/2. (2.2)

However, an important property of space plasmas is their frequent lack of ther-
mal equilibrium, even locally. Not only may electrons and ions have different
bulk velocities and temperatures, but the particles’ velocities may not be Gaus-
sian distributed. In that case, one may still formally define a kinetic temperature
for each particle species from (2.2), even though it is not a thermal equilibrium
temperature. We shall return later to this point, which has basic applications in
the solar corona (Section 4.6) and the solar wind (Section 5.5 and Problem 5.7.6).
Meanwhile, we will assume that, even in the absence of thermal equilibrium, the
particles have a typical random speed of the order of magnitude of

√

kBT/me,i

(for the electrons and ions respectively).2

1This restrictive definition is adequate for space plasmas. We do not consider plasma
crystals [15].

2This assumption is not as trivial as it might seem. Consider for example a power law
velocity distribution, so that the probability for the speed to lie in the range [v, v + dv] varies
as v−α (with α > 0) for v1 < v < v2, with v1 ≪ v2. The most probable speed is v1,
whereas you can show as an exercise that the mean square speed – from which the kinetic
temperature is defined – is of the order of magnitude of v1 or v2 depending on whether α
is greater or smaller than 3, and the median speed is still very different. This example is
extreme, since power law distributions are par excellence scale-free, but it is not academic
since many processes produce similar distributions, as we shall see later in this book.
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44 Tool kit for space plasma physics

For each species of (non-relativistic and non-interacting) particles of number
density n and mass m, the pressure is determined by the average random kinetic
energy as

P = nm〈v2〉/3 = 2wth/3 pressure (v ≪ c) (2.3)

where wth is the energy density of the particles; this is just the average flux of
momentum along one space direction. This is equivalent to

P = nkBT (2.4)

with the kinetic temperature defined in (2.2). This definition of the pressure
does not require the particles to be necessarily in thermal equilibrium. Note that
in the simple plasma defined above (in which electrons and ions have the same
number density n), the total particle pressure is the sum of the pressure of
electrons and ions, that is P = 2nkBT , where T is their kinetic temperature (or
the average of them if they are not equal).

2.1.1 Gaseous plasma

For an assembly of charged particles to qualify as a gas, the particles must
move freely, which means that random motions should largely overrun mutual
interactions. The latter involve the Coulomb force; for two particles of charge
±e distant by r, the energy of interaction is of modulus e2/4πǫ0r. The plasma
thus behaves as a gas if the energy of interaction of two particles distant by
the average interparticle distance 〈r〉 is much smaller than the average kinetic
energy per particle, i.e.

e2/4πǫ0〈r〉 ≪ kBT.

Substituting 〈r〉 ∼ n−1/3, and introducing the coupling parameter Γ defined as
the ratio of the average energy of interaction to kBT , we deduce the condition

Γ ≡ n1/3e2

4πǫ0kBT
≪ 1 (gaseous plasma). (2.5)

In the solar wind, Γ is of the order of magnitude of 10−8 − 10−7 at 1 AU, and
varies weakly with heliocentric distance.

2.1.2 Quasi-neutrality

Debye shielding

Since charges of opposite signs attract each other, whereas charges of like signs
repel each other, the Coulomb force tends to establish electric neutrality. The
random agitation, however, mixes the particles, destroying this neutrality. The
competition between both effects produces small regions that are non-neutral.
The hotter the plasma, the greater the agitation and therefore the larger the
maximum size of the non-neutral regions. On the other hand, the denser the
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medium, the greater the Coulomb force that keeps the plasma neutral, and
therefore the smaller the size of the non-neutral regions.

To estimate this size, consider a region of size L in which the electrons are
strongly depleted, so that it contains a total electric charge of order of magnitude
Q ∼ ne×L3. This produces an electric potential at the boundary of the region,
of order of magnitude

φ ∼ Q/ (ǫ0L) ∼ neL2/ǫ0.

For random agitation to produce spontaneously such a structure, the corre-
sponding energy per particle ∼ kBT must be at least equal to the potential
energy per particle eφ, i.e. kBT ≥ ne2L2/ǫ0. We deduce (in order of magni-
tude) the maximum size of non-neutral regions

LD =

(

ǫ0kBT

ne2

)1/2

, (2.6)

the so-called Debye length.
Detailed calculations show that indeed when a charge is put in an equilib-

rium plasma, it attracts ambient charges of opposite signs and repels charges of
like signs, so that it is surrounded by a region of size LD where the attracted
particles are concentrated and the repelled ones are depleted, producing a charge
distribution that shields the electrostatic field of the original charge. More pre-
cisely, the electrostatic potential at distance r of a charge q in an equilibrium
plasma is

Φ(r) =
q

4πǫ0r
e−r/LD ∗ (2.7)

where LD∗ = LD/
√

2 (because electrons and ions both contribute to the shield-
ing). At distances r ≪ LD, the electric potential around the charge q is nearly
the Coulomb one, whereas at r ≫ LD, the charge is completely shielded by the
charges of the ambient plasma, and the potential vanishes. Thus the plasma is
quasi-neutral at scales greater than LD.

This holds also for the charges of the plasma itself, and we have here a
first hint as to a fundamental plasma property: its collective behaviour. Any
charge in the plasma is ‘dressed’ by the other ones – a dressing of far-reaching
consequences.

Numerically, LD ≃ 69
√

T/n in SI units, which comes to about 10 m in the
solar wind at 1 AU from the Sun (n ∼ 5 × 106 m−3, T ∼ 105 K). Therefore,
we have not to worry about the quasi-neutrality of the solar wind, except when
dealing with scales smaller than tens of metres – a problem that occurs in the
environment of space probes (Section 7.2).

It is worth noting that the Debye shielding requires several conditions to be
met:

• a region of size LD must contain many particles, i.e. nL3
D ≫ 1; with the

definition (2.5) of Γ and the expression (2.6) of LD, this condition reads:
(4πΓ)

3/2 ≪ 1;
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46 Tool kit for space plasma physics

• the electric disturbance produced by the charge q on the ambient particles
must not be greater than their average kinetic energy, otherwise they are
not capable of shielding it;

• the charge q is at rest;

• the plasma is in thermal equilibrium.

Non-equilibrium plasma

The latter condition is in practice rarely met in space plasmas. Consider first the
case of partial equilibrium, namely when the different particle species are each in
equilibrium but at different temperatures. Since the quasi-neutrality is ensured
by the Coulomb force and destroyed by the random agitation, Debye shielding
is mainly produced by the less agitated particles, so that LD is determined by
the colder species.

In complete absence of equilibrium, the shielding is mainly provided by the
slower particles of each species. More precisely (Problem 2.5.1), if the charge
produces a sufficiently small perturbation, then the shielding length LD∗ is
determined by the average of 1/v2 for each species, as

1/L2
D∗ = 1/L2

De
+ 1/L2

Di
(2.8)

with

1/L2
De ,i

= ne2〈v−2〉e,i/ (ǫ0me,i) (2.9)

where the subscripts e and i stand for electrons and ions respectively. At equilib-
rium at temperature T , 〈v−2〉 = m/ (kBT ), so that the shielding length reduces
to LD∗ = LD/

√
2 with LD given in (2.6).3

In essence, Debye shielding is not determined by the random kinetic energy
of the particles, but by the average of the inverse of that kinetic energy.

Non-linear shielding

What happens when, in addition to the plasma not being in equilibrium, the
electric disturbance produced by the charge is large, i.e. the Coulomb potential
energy is not small compared to the kinetic energy? In that case, we shall
see later that the particles produce a different contribution to the shielding,
depending on whether they are attracted or repelled.4 The resulting distribution
of the attracted particles then depends on the geometry of the problem (see for

3For each species of mass m and temperature T, 〈v−2〉 =
∫ ∞

0
dve−mv2/2kB T /

∫ ∞

0
dvv2e−mv2/2kB T .

4This is so because in order to shield the charge q, repelled particles have just to decrease
their number density, which can be achieved by a mere deviation of their trajectories; attracted
particles, on the other hand, have to increase their number density in order to shield the charge
q, which requires some of them to change their incoming trajectories into closed orbits around
q – a performance that requires collisions and cannot be achieved in the absence of equilibrium.

From:   Basics of the Solar Wind   © N.  Meyer-Vernet  2007   Cambridge University Press Corrected proofs



What is a plasma? 47

example [11] and [8]). We shall return to this point in Section 2.3, and shall see
examples of application in Section 7.2, when calculating the electric charge of
objects immersed in the solar wind.

Shielding of a moving charge

What happens if the charge q is moving? The answer depends on the value
of its speed v compared to the most probable speeds of the plasma particles,
whose order of magnitude is (kBT/me,i)

1/2 for respectively electrons and ions.
Because electrons are much lighter than ions, these speeds satisfy the inequality
vthi ≪ vthe. If the speed v ≪ vthi, then the plasma electrons and ions are fast
enough to keep up with the charge motion, so that the shielding is not affected.
On the other hand, if vthi ≪ v ≪ vthe, then the plasma electrons are still fast
enough to keep up with the charge motion, but the ions move too slowly to
do so. In that case, the shielding is provided by the electrons only. Finally,
if the charge q moves faster than the electrons (and the ions), then the bulk
of the plasma particles cannot catch up with it, and therefore cannot shield it.
Instead, the charge motion produces plasma waves, a novel kind of dressing to
which we shall return in Section 2.3.

Timescale for shielding

This disappearance of Debye shielding (or rather its transformation into a new
kind of dressing) occurs when the charge moves fast from the point of view of the
electrons. A related problem is what happens when a charge q is suddenly put
in a plasma initially at equilibrium. The plasma particles will take some time
to distribute themselves in order to provide shielding. How long? Electrons,
moving faster than ions, are the first to shield the charge. For doing so they
must travel a distance of the order of LD. At the most probable speed vthe,
this takes the time τ ∼ LD/vthe. With the expression (2.6) of LD and vthe ∼
(kBT/me)

1/2, we find τ ∼
(

ǫ0me/ne2
)1/2 ≡ 1/ωp, where ωp is the so-called

(angular) plasma frequency, a basic plasma parameter to which we shall return
later.

We get here a second hint as to the collective behaviour of plasmas. Not only
are the charges dressed, but this dressing is highly dynamic, with a timescale of
the order of magnitude of 1/ωp.

This has an important implication. Consider an electromagnetic wave inci-
dent on a plasma. The variable electric field of the wave tends to destroy the
plasma quasi-neutrality. But if the wave frequency is smaller than the plasma
frequency, the disturbance has a timescale large enough that the plasma par-
ticles are capable of catching up with it and of restoring the quasi-neutrality.
If they succeed, the electric field is cancelled and the wave does not propagate
in the plasma. We shall see in Section 2.3 that, indeed, electromagnetic waves
propagate in a plasma only at frequencies greater than the plasma frequency.
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2.1.3 Collisions of charged particles

We now come to a further plasma property, which concerns collisions between
particles.

Collisions serve to achieve equilibrium. They determine not only the time
required to restore thermal equilibrium after a perturbation, but also the trans-
port coefficients which control the response of the medium to various gradients
in macroscopic properties:

• the diffusion coefficient, which determines the transport of particles in
response to a gradient of concentration;

• the viscosity, which determines the transport of momentum in response to
a gradient of velocity;

• the thermal conductivity, which determines the transport of heat in re-
sponse to a gradient of temperature;

• the electric conductivity, which determines the transport of electric charge
in response to an electric field.

The collisions thus play an important role, and a major difference between
plasmas and neutral gases is the cross-section for particles’ collisions. This
has profound implications for plasma behaviour, which contradict the intuition
acquired with neutral gases.

A reminder on collisions in neutral gases

Collisions between neutral particles have much in common with those of billiard
balls. Macroscopic neutral particles collide when they come into contact, namely
when they come closer than about their physical size. More precisely, two
spheres of radius r collide when their centres come closer than 2r, so that their
cross-section for collision is the area of a circle of radius 2r, i.e. 4πr2. The
‘size’ of an atom or a molecule relevant for collisions is not so clear-cut as
the one of a billiard ball since the interaction involves induced dipoles in the
distribution of electrons, a distribution determined by quantum mechanics. So,
the cross-section for collisions between neutral atoms or molecules is somewhat
greater than the ‘billiard ball’ value (taking for r a typical atomic size – see
Section 2.4.1), but not by more than one order of magnitude. This yields the
crude estimate

σcol ∼ 10−19 m2. (2.10)

As in the case of billiard balls, most collisions between neutral atoms and
molecules result in a large variation in momentum and energy (Fig. 2.2, left).

The mean collisional free path of particles is the average distance they have to
travel in order to undergo one collision. A particle of cross-section σcol travelling
a distance l encounters all the particles contained in a cylinder of section σcol
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Figure 2.2 Collisions between neutral particles (left panels) and between
charged particles (right panels). Collisions between neutrals occur, crudely,
when they come into contact, and generally produce a large change in trajec-
tory (top left panel). In contrast, charged particles interact even at large (but
smaller than LD) distances, via the Coulomb force (top right panel). The cor-
responding trajectories are sketched in the bottom panels.

Figure 2.3 The collisional free path is the average distance travelled by a par-
ticle to undergo one collision. A particle of cross-section σcol for collisions with
particles of concentration n has the free path lf = 1/ (nσcol).

and length l (Fig. 2.3), i.e. n × σcol × l particles of number density n. The
collisional free path lf corresponds to one collision, i.e.

lf = (nσcol)
−1 collisional free path. (2.11)

Near the surface of the Earth, the typical distance between particles is about
3×10−9 m, so that with the cross-section (2.10), the mean free path for collisions
is of the order of magnitude 1 µm.

The collision frequency is the inverse of the average time between two col-
lisions, that is the time for travelling the distance lf . With a relative speed v,
this yields

νcol = v/lf = nvσcol. (2.12)
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Collisions between charged particles and neutrals

The cross-section for collisions between electrons and neutrals is given in order
of magnitude by the above value (2.10). Because of their small mass, electrons
move much faster than neutrals, so that the relative velocity is about their
most probable speed vthe ≃ (2kBT/me)

1/2. Hence the frequency of collision of
electrons with neutrals of concentration nn is given by substituting v ∼ vthe

and the cross-section (2.10) in (2.12), which yields

νen ∼ 5 × 10−16 nn

√
T , (2.13)

a result we shall use in the context of planetary ionospheres (Section 7.1).
For collisions of ions with neutrals, the induced dipoles play a more impor-

tant role, and the cross-section depends somewhat on the particle energy. At
a small enough temperature (as for example near comets), the cross-section is
proportional to the inverse of the relative speed, and a useful approximation for
the frequency of collisions of ions with neutrals of concentration nn is

νin ∼ 3 × 10−15 nn

√

mp/mi. (2.14)

Coulomb collisions

The mutual interaction of charged particles is basically very different. Consider
two charges approaching each other (Fig. 2.2, right-hand panel). Since they
interact via the Coulomb force, each ‘encounter’ generally deviates their trajec-
tories, provided the particles come closer than the Debye length. (Farther away,
the charges are shielded by the ambient plasma and no longer interact.) Each
such encounter may thus be considered as a ‘collision’.

What is the distance of closest approach required to produce a large pertur-
bation in trajectory? Whatever the relative sign of the charges (in Fig. 2.2 the
two charges are of like sign), the perturbation is large if the potential energy of
interaction is at least equal to the average kinetic energy, i.e. e2/4πǫ0r ≥ kBT ,
hence if the distance of closest approach is smaller than

rL ≡ e2

4πǫ0kBT
(Landau radius) (2.15)

in order of magnitude. Any encounter closer than this distance will result in a
large perturbation in trajectory. We deduce that the effective cross-section for
collisions producing a large perturbation is σC ∼ πr2

L, and the corresponding
free path is

lf ∼
(

nπr2
L

)−1
(mean free path for large perturbations). (2.16)

What happens if the plasma is not in equilibrium? We may apply the same
reasoning, but now kBT has to be replaced by the kinetic energy of the particle,
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mv2/2, for a particle of (relative) speed v and (reduced) mass m. The effective
distance for collisions producing a large perturbation is therefore in that case

ref =
e2

4πǫ0 × mv2/2
∝ v−2.

An important result emerges: the faster the particle, the smaller the cross-
section for collisions ∼ πr2

ef ∝ v−4. Hence, fast particles undergo very few
collisions. We shall return later to this point, which has basic consequences
for plasma behaviour. Another interesting result is that if electrons and ions
have similar temperatures, their collision cross-sections are similar, so that they
have similar mean free paths. Since the collision frequency varies as v/lf and
electrons (being much lighter) move much faster, they have a much greater
collision frequency.

How frequent are these close encounters producing large perturbations?
Most particle encounters occur at distances of closest approach of the order
of magnitude of the average distance between particles 〈r〉 ∼ n−1/3. From the
expression (2.15) of rL and the definition (2.5) of the coupling parameter Γ, we
have

rL/〈r〉 = Γ. (2.17)

Since Γ ≪ 1, the distance rL for producing a large perturbation is much smaller
than the average interparticle distance, so that close encounters are very rare.
Most encounters occur at much larger distances, resulting in small perturba-
tions, so that the trajectory of charged particles is made of a succession of small
deviations, rather than the zigzag path of neutrals (Fig. 2.2, bottom).

Figure 2.4 illustrates this property in a more realistic way. It shows the
trajectory (projected on a plane) of a typical electron in a plasma with Γ = 0.02,
from a numerical simulation [1] handling 2 × 106 particles in a box of size 102

times larger than the average distance between electrons.

Mean free path for collisions of charged particles

As a result of the numerous encounters at large distances, the cross-section for
collisions of charged particles is greater than the value πr2

L, which takes into
account only the rare close encounters producing a large perturbation.

Consider the simple case of an electron that passes near a positive ion, with
impact parameter p and velocity ve and undergoes a small deviation (Fig. 2.5).
Because of the large ion mass, we suppose it to be at rest. Most of the deviation
of the electron takes place in the part of its trajectory where it is closest to
the ion, i.e. at a distance of order of magnitude p from the ion, namely as it
travels a distance of about p on each side of the ion, i.e. the distance 2p parallel
to ve; this takes the time δt = 2p/ve. In this part of the path, the Coulomb
force on the electron is F⊥ ≃ e2/4πǫ0p

2, roughly perpendicular to the original
electron velocity ve. During the time δt, this force produces a change δv⊥ in the
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Figure 2.4 Typical trajectory (projected on a plane) of an electron in a plasma
with Γ = 0.02, from a numerical simulation [1]: a box of size 110 arbitrary units
contains 2×106 Maxwellian particles (electrons and ions); the trajectory shown
is that of an electron having roughly the most probable speed. The mean free
path (2.22) is nearly equal to the size of the box. (Courtesy A. Beck.)

Figure 2.5 An electron of velocity ve passing at distance p from an ion (of
negligible velocity) and undergoing a small deviation.

electron velocity (perpendicular to ve) given by meδv⊥ ≃ F⊥δt. Rearranging,
this yields5

δv⊥ = ve × rLe/p with rLe =
e2

4πǫ0 × mev2
e/2

. (2.18)

Statistically, the deviation may be in either sense with equal probability;
hence the individual deviations do not add, but their squares do, as in a random
walk. We thus calculate the mean total variation 〈∆v2

⊥〉 during a given time
∆t, by integrating over encounters of various impact parameters p occurring
during this time. From (2.18), each encounter of impact parameter p produces
δv2

⊥ = (verLe/p)
2. The number of encounters of impact parameter in the range

5An exact calculation turns out to yield the same result.
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[p, p + dp] (crossing the area 2πpdp) during the time ∆t is dN = nve × 2πpdp×
∆t, so that

〈∆v2
⊥〉 =

∫

δv2
⊥ × dN = 2π nr2

Le v3
e∆t

∫

dp/p. (2.19)

For impact parameters p < rLe, the deviation is large, contrary to our assump-
tion, whereas for p > LD the charges do not interact because of Debye shielding.
Hence the integral (2.19) must be calculated in the range rLe < p < LD, which
yields the factor ln(LD/rLe).

The collision frequency is the inverse of the time ∆t needed to produce a
large deviation, i.e. to produce 〈∆v2

⊥〉 ≃ v2
e . Substituting this value into (2.19)

yields the collision frequency 1/∆t between electrons and (singly charged) ions

νei ≃ nve × 2πr2
Le ln(LD/rLe) (2.20)

whence the collisional free path

lf ≃
[

n × 2πr2
Le ln(LD/rLe)

]−1
. (2.21)

The mean value at equilibrium may be estimated by replacing mev
2
e/2 by the

average kinetic energy 3kBT/2. From (2.15) and (2.18), we have rLe ≃ 2rL/3
and LD/rLe ≃ 3/

(

4
√

πΓ3/2
)

, so that (2.21) yields the mean electron free path
for collisions

lf ≃
[

n × (4π/3) r2
L ln(1/Γ)

]−1
(2.22)

where rL is given by (2.15) and Γ by (2.5).6 One can verify (Problem 2.5.2)
in Fig. 2.4 that for a typical electron the velocity direction indeed changes
significantly when the particle has travelled a distance given roughly by (2.22).
This equation yields approximately (in SI units)

lf ≃ 109

ln (1/Γ)
× T 2

n
. (2.23)

Comparing (2.22) with (2.16), we see that the cumulative effect of the numerous
small deviations decreases the free path (and increases the collision frequency)
by a factor of order of magnitude ln(1/Γ). For typical space plasmas that we
shall encounter in this book, this factor lies approximately between 10 and 20.

In the solar wind at 1 AU from the Sun, we have n ∼ 5 × 106 m−3 and
T ∼ 105 K, so that the typical distance between particles is about 5 mm, whereas
the mean free path is about 1 AU; collisions are thus very rare in the solar wind.

We considered for simplicity an electron encountering a singly charged ion.
For an electron encountering an ion of charge Ze, the Coulomb force is greater
by the factor Z, and therefore so is the radius rL, producing an electron-free
path smaller by the factor 1/Z2.

6We have approximated ln(0.6/Γ) by ln(1/Γ), which yields a very small error since Γ ≪ 1.
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Timescales for equilibrium

The scales 1/νei and lf represent respectively the average time and distance for
an average electron to change significantly the direction of its velocity due to the
collisions with ions. Because of the large difference in mass between electrons
and ions, this barely changes the particle energy.

Consider now collisions between electrons themselves. The calculation is
slightly different since one can no longer assume one particle to be at rest, but
we can make the calculation in the frame of the particles’ centre of mass (using
the reduced mass me/2), and the collision frequency is of the same order of
magnitude. The major difference is that for particles of like mass, the collision
now changes also the particle energy. Hence the values of νei and lf calculated
above represent respectively (in order of magnitude) the collision frequency and
the free path of electrons for change in speed direction (because of encounters
with ions and electrons) and in energy (because of encounters with electrons).

Consider now the collisions between two ions. The result is the same as for
collisions between two electrons, just replacing the electron properties by those
of ions. Hence, if the temperatures are similar, the mutual collision frequency
of ions is smaller than the above value by a factor equal to the ratio of their
most probable speeds, that is about (me/mi)

1/2, whereas the free path is the
same as above.

Photon mean free path versus particle mean free path

It is interesting to compare the effective cross-section of electrons for colli-
sions with charged particles σC , which is about one order of magnitude greater
than πr2

L (because of the numerous large-distance encounters), with the effec-
tive cross-section of electrons for interaction with photons (the Thomson cross-
section), given in (1.11). From (1.12) and (2.15), the ratio of both cross-sections
is

σC

σT
>

(

rL

re

)2

≃
(

mec
2

kBT

)2

(2.24)

where we have substituted the so-called classical electron radius re =
e2/

(

4πǫ0mec
2
)

. This ratio is much greater than unity for non-relativistic plas-
mas. Hence, plasmas interact more with plasmas than with radiation, and
photon mean free paths in plasmas are generally much greater than charged
particle free paths.

2.1.4 Plasma oscillations

Consider a volume of plasma that is initially quasi-neutral, and imagine that
you displace all the electrons along the x axis by a distance x (Fig. 2.6). This
produces a charge per unit volume equal to ±ne in two slabs of width x at the
extremities; the electric field is equal to that between two capacitor plates of
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Figure 2.6 When electrons (in a plasma of density n) are displaced by x, the
charge separation produces the electric field of a capacitor whose plates carry
the charge of the electrons (or ions) contained in a plasma slab of width x, i.e.
±nex per unit area.

charge per unit area ±nex, i.e

E = nex/ǫ0.

Each displaced electron is subject to a force −eE along x, and moves according
to

me∂
2x/∂t2 = −eE ⇒ ∂2x/∂t2 = −ω2

px

with

ωp =

(

ne2

ǫ0me

)1/2

(plasma (angular) frequency). (2.25)

This is the motion of a harmonic oscillator of (angular) frequency ωp.
Charge separation in a plasma therefore makes electrons oscillate at the

(angular) frequency ωp. Ions, being much heavier, would oscillate more slowly
(by the factor (mi/me)

1/2), so that at the scale of the frequency ωp, they barely
move. Numerically, the plasma frequency is

fp =
1

2π

(

ne2

ǫ0me

)1/2

≃ 9
√

n plasma frequency (2.26)

in SI units, i.e. with fp in Hz and n in m−3. In the solar wind at 1 AU
from the Sun, we have fp ∼ 2 × 104 Hz; we shall see a direct illustration of the
plasma frequency in Section 6.4. In the Earth’s ionosphere (see Section 7.1), the
plasma frequency is a few 106 Hz; electromagnetic waves of higher frequency are
reflected, a property which enabled early long-distance radio communications.

This oscillating behaviour holds under two conditions. First, the collisions
between particles should not suppress the plasma oscillations. This requires the
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56 Tool kit for space plasma physics

electron collision frequency to be much smaller than the plasma frequency. If
the (gas) plasma is nearly completely ionised, this condition is always met since
ωp ∼ vthe/LD, so that we have approximately

νei

ωp
∼ LD

lf
≃ Γ3/2 × ln(1/Γ) (2.27)

which is much smaller than unity in a gaseous plasma (Γ ≪ 1). On the other
hand, in a weakly ionised plasma, the collective behaviour requires that the col-
lision frequency of electrons with neutrals be smaller than the plasma frequency,
which requires the degree of ionisation to be large enough.

The second hypothesis made is that electrons move as a whole, i.e. that their
random agitation is negligible. During a period of plasma oscillation ∼ 1/ωp,
the agitation displaces an electron by a distance equal to the most probable
speed ∼ (kBT/me)

1/2 times 1/ωp, i.e. the distance LD. Hence, the plasma bulk
oscillations occur only at scales much greater than the Debye length. It is only
at such scales that a large number of particles can contribute cumulatively to
produce a collective behaviour. We shall see in Section 2.3 that the electron
random motion makes the plasma oscillations propagate as plasma waves, and
also damps them if the scale becomes comparable with (or smaller than) the
Debye length.

The origin of that collective behaviour is very different from the one in a
neutral gas. In a neutral gas, the coupling between particles is due to their
mutual collisions. In a plasma, the coupling is due to the mean electric field
produced by particles. The collective behaviour therefore requires that the close
encounters yielding large perturbations to this mean field be rare enough.

2.1.5 Non-classical plasmas

Quantum degeneracy

The above estimates are based on the assumption that the plasma behaves
classically. If the concentration of particles is too high, however, their distance
may involve scales so small that quantum effects act. Basically this is because,
from Heisenberg’s uncertainty relations, localising the particles in a small region
∆x gives them a momentum ∆p ∼ h̄/∆x. If the density is high, then ∆x is
small, and the corresponding ∆p yields a high energy.

Let us estimate this effect. Pauli’s exclusion principle tells us that two
plasma particles (which are fermions) cannot be in the same quantum state;
hence each particle must be localised within a region of size smaller than about
half the average interparticle distance, i.e. ∆x ∼ n−1/3/2. A compression at
density n therefore produces the momentum p ∼ h̄/∆x ∼ 2h̄n1/3 per particle.
The corresponding energy is p2/ (2m) ∼ 2h̄2n2/3/m per (non-relativistic) parti-
cle of mass m. Because of the small electron mass, this energy is much greater
for electrons than for ions.

Hence, compressing a plasma gives to each electron an energy of about
2h̄2n2/3/me, where n is their number density. A detailed calculation confirms
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this order of magnitude estimate; the exact values are pF = h̄
(

3π2n
)1/3

for the
momentum, whence the so-called Fermi energy WF = p2

F /(2me):

WF = h̄2(3π2n)2/3/(2me). (2.28)

The greater the particle density, the smaller the region that is available to an
electron, and the higher the resulting Fermi energy. If the Fermi energy becomes
greater than kBT , then the total energy is determined by the Fermi energy in-
stead of kBT , and the electrons are said to be degenerate. This occurs if the
temperature is smaller than WF /kB ≡ TF , the so-called Fermi temperature. In
that case, the Fermi temperature (instead of the kinetic temperature) deter-
mines the particle pressure, the coupling parameter Γ and the Debye length, so
that these quantities become independent of the kinetic temperature, and only
depend on the density.

We shall not encounter degenerate plasmas in this book, except when de-
termining the limits of stellar (see Section 3.1) and planetary masses (see Sec-
tion 7.1), which involve the Fermi energy.

Relativistic particles

Finally, to determine whether the particles are relativistic, we have to compare
the average kinetic energy ∼ kBT (or kBTF if they are degenerate) with the
rest mass energy mc2.

For relativistic particles, the Fermi energy and temperature must be cal-
culated with the relativistic energy–momentum relation. In particular if the
particles are ultra-relativistic (v ≃ c), the energy of a particle of momentum p is
W ≃ pc (instead of p2/2m), so that the electron Fermi energy is now WF ≃ pF c
(instead of p2

F / (2me)). The Fermi energy of ultra-relativistic particles therefore
varies as n1/3 instead of n2/3.

Likewise, the pressure of ultra-relativistic particles is 1/3 of their energy
density (instead of the factor 2/3 relevant in the non-relativistic case). We shall
not encounter relativistic plasmas in this book (but only individual relativistic
particles), but we shall use the pressure of photons (which are par excellence
relativistic particles) when studying the solar interior (Section 3.1) and the
dynamics of heliospheric dust grains (Section 7.4).

2.1.6 Summary

Gaseous plasmas have Γ ≪ 1, i.e. the (Coulomb) interaction energy of the par-
ticles is much smaller than the kinetic energy. The slow decrease with distance
of the Coulomb force has two major consequences. First, any particle interacts
simultaneously with a large number of particles and modifies the medium so
that each particle may be regarded as being ‘dressed’ by the other particles.
This dressing makes plasmas quasi-neutral on large spatial (L > LD) and tem-
poral (t > ω−1

p ) scales, and produces a collective behaviour. Second, the particle
collisional free path increases strongly with speed, so that fast particles tend to
be nearly collisionless.
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58 Tool kit for space plasma physics

2.2 Dynamics of a charged particle

In this section, we consider briefly the dynamics of a charged particle in electric
(E) and magnetic (B) fields which are given a priori, i.e. which are negligibly
modified by the moving charge itself. Most of the results will therefore be
applicable to a small minority of particles which do not affect the bulk of the
plasma, for example cosmic rays. The coupling between the magnetic field and
the bulk plasma will be considered later.

Magnetic fields are ubiquitous in the Universe, and we shall focus on them.
But why is this so? Indeed, relativity theory tells us that electric and magnetic
fields are symmetrical in that they transform into each other upon a change of
reference frame.

2.2.1 The key role of the magnetic field

As we shall see below, the key role of the magnetic field stems from two facts:

• plasmas (made of electric charges) are ubiquitous in the Universe, whereas
magnetic charges (the so-called magnetic monopoles) are absent,

• one generally considers non-relativistic (V ≪ c) changes of reference
frames.

The absence of magnetic monopoles7 – whereas electric charges are ubiqui-
tous – is at the origin of the asymmetry in Maxwell’s equations:

▽ · E = ρe/ǫ0 ▽×E = −∂B/∂t (2.29)

▽ · B = 0 ▽×B = µ0J +
(

1/c2
)

∂E/∂t (2.30)

which contain electric charges (ρe) and currents (J), but no magnetic charges
and currents.

We have seen that plasmas are quasi-neutral on large-scales, so that the
large-scale electric field nearly vanishes in the reference frame where the plasma
is at rest. On the other hand, positive and negative electric charges moving
differently yield electric currents, which produce magnetic fields.

Consider a plasma of (non-relativistic) bulk velocity V with respect to a
‘laboratory’ frame R, where the electric and magnetic fields are respectively E

and B. The fields in the plasma frame R′ are given by the Lorentz transforma-
tions as

E′ = E + V × B B′ = B − V × E/c2 (2.31)

where we have neglected terms of order V 2/c2. Since we have E′ = 0 in the

7You would get a magnetic charge if you could separate the two poles of a bar magnet.
If these magnetic monopoles do exist, they have not yet been detected, which sets an upper
limit on their concentration; see for example [13].
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plasma frame R′, the fields in the frame R are from (2.31)

E = −V × B B = B′ + V × (V × B) /c2 ≃ B′, (2.32)

again neglecting terms of order V 2/c2.8

Hence the magnetic field plays a privileged role: it is independent of the
reference frame; in contrast, the electric field depends on the reference frame
and is nearly zero in the plasma frame.9 The latter therefore appears as a natural
reference frame, and the Faraday concept of magnetic field lines acquires a basic
physical meaning since if two points are connected by a field line in this frame,
they are so connected in another reference frame (for non-relativistic Lorentz
transformations). Magnetic field lines – the pillars of magnetohydrodynamics –
have still more interesting properties, which we shall study in the next section.

Another basic property of B is that it is a pseudo-vector, since its sense
depends on the usual convention of right-handed co-ordinate systems. If one
changes the co-ordinate system according to x → x′ = −x (a reflection about
the origin, making the co-ordinate system left-handed), the components of true
vectors (as a velocity or a force) transform as v′

x = −vx, leaving the physical
direction of the vectors unchanged. The Lorentz force F = qv × B is also a
true vector, so that the inversion of the co-ordinate changes the components of
both F and v; therefore it does not change the components of B, whose physical
direction is thus reversed. Formally, the magnetic field is analogous to a vortex.
Mirror asymmetry plays a key role in magnetic field generation, and we shall
encounter applications of this property in Sections 3.3 and 4.2.

2.2.2 Basic charge motion in constant and uniform fields

The basic equation of motion for a particle of charge q and velocity v subjected
to the fields E and B is

d (mv)

dt
= q (E + v × B) (2.33)

with the relativistic mass

m = γm0 γ =
(

1 − v2/c2
)−1

(2.34)

where m0 is the particle rest mass and γ the Lorentz factor.

Uniform magnetic field

If E = 0 and B is constant, the Lorentz force reduces to qv×B, perpendicular
to the velocity; it produces a curvature of the particle path, but no change in

8We shall sometimes consider particles moving individually at relativistic velocities, but
we shall not consider reference frames moving at relativistic velocities with respect to the bulk
plasma.

9By ‘nearly zero’, we mean of amplitude small with respect to | V × B |, and on a large
scale.
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60 Tool kit for space plasma physics

Figure 2.7 Components of the velocity parallel and perpendicular to the mag-
netic field; v⊥ = v sin θ, where θ is the so-called pitch angle.

Figure 2.8 Gyration of a charge in a magnetic field (pointing out of the paper).

the speed v and thus in the relativistic mass m. Therefore in this case the
motion of a relativistic particle is the same as that of a non-relativistic particle
of (constant) mass m = γm0. Since the force vanishes along B, v‖ is constant;
since v is constant too, so is the angle θ between v and B (Fig. 2.7). On the
other hand, in the plane ⊥ B, the force produces a circular motion of radius
rg and (angular) frequency ωg = v⊥/rg, given by equating the acceleration
qv⊥B/m to the centrifugal acceleration v2

⊥/rg, so that

rg =
mv⊥
| q | B

(Larmor radius) (2.35)

ωg =
| q | B

m
((angular) gyrofrequency) (2.36)

with particles of negative (positive) charge gyrating in the direct (opposite to
direct) sense. Hence the magnetic field generated by the particle is opposite to
the imposed field (Fig. 2.8): the plasma is diamagnetic.

The Larmor radius (or radius of gyration) and the gyrofrequency (or cyclotron
frequency) set the scales below which the individual particle gyration plays an
important role. Numerically, the cyclotron frequency is fg = ωg/2π ≃ 2.8 ×
1010B in SI units for electrons (and smaller by the factor me/mp for protons).
In the Earth’s environment, the Larmor radius is about a few centimetres for
electrons and 1 m for protons; it is greater by more than five orders of magnitude
in the solar wind.

The resulting path is a helix of constant pitch around a magnetic line of
force. Since particles having the same value of mv/q and pitch angle have the
same trajectory, high-energy particles (see Section 8.2) are often quantified by
their so-called rigidity defined as pc/ | q | (with p = mv), expressed in volts
since it has the dimension of energy per charge.
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Figure 2.9 A force F ⊥ B accelerates the particles along one half of the orbit
and decelerates them along the other half. This makes the Larmor radius
(rg ∝ v/B) greater near the bottom of the orbit than near the top (when
F is downwards), which deforms the orbit, producing a drift. A gradient of B
in the direction ⊥ B has a similar effect.

Electric field or applied force

How is this trajectory changed if the electric field does not vanish? Let E⊥

be the electric field in the direction ⊥ B in some frame R. Consider now the
reference frame R′ moving at velocity

VD =
E × B

B2
(2.37)

with respect to R. In R′ the electric field ⊥ B is E′
⊥ = E⊥ +VD ×B = 0, since

from (2.37) VD × B = −E⊥. Hence the motion in the plane ⊥ B reduces to
the gyration found above. Going back to the frame R, the motion in the plane
⊥ B is therefore the superposition of the gyration found above and a drift of
velocity VD given by (2.37). This velocity is the same for all charged particles,
making the plasma move as a whole.

This drift velocity may be interpreted in either of two ways. The first way is
that it produces a Lorentz force qVD ×B which balances the electric force qE⊥,
so that for an observer moving at VD the electric field has been transformed
away. The other interpretation is sketched in Fig. 2.9. The force qE⊥ accelerates
the particle during the part of the circular orbit where it moves in the same sense
as the force, and decelerates it when it moves the other way. Hence the particle
gyrates faster (thus with a greater Larmor radius) near the bottom of the orbit
than near the top (when the force is downwards), producing a drift to the left
when the gyration is clockwise; reversing either B, the force or q reverses the
drift.

This result can be applied to other forces by replacing in (2.37) qE by a
general force F, which therefore produces a drift

VD = (F/q) × B/B2. (2.38)
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2.2.3 Non-uniform magnetic field

The magnetic field is generally non-uniform. If the non-uniformity is weak,
namely if the field does not change much over a distance equal to the gyro-
radius (or during a time equal to the inverse of the gyrofrequency), the motion
can be approximated by the gyration found above, around a point which is
moving. This instantaneous centre of gyration is called the guiding centre of
the particle. We calculate below its motion by considering separately the varia-
tion in magnetic field strength perpendicular and parallel to the magnetic field
direction.

Drift produced by a variation of B ⊥ B

If the magnetic field strength varies in the direction ⊥ B, the magnetic field
lines are curved, which forces the particles to follow curved paths along B.
If the radius of curvature of the field line is Rc, the centrifugal force on a
particle of parallel velocity v‖ is F = mv2

‖/Rc, pointing opposite to the centre
of curvature. This effective force produces a drift velocity given by (2.38). The
particle gyration produces an additional drift because the gradient in B causes
the Larmor radius (rg ∝ 1/B) to be larger during one half of the orbit than
during the other half, which deforms the orbit. This has a similar effect as
an applied force (Fig. 2.9) and produces an additional drift velocity. If the
magnetic field is essentially produced by exterior currents, we have ▽×B = 0,
whence 1/Rc =| ▽⊥B | /B, where the symbol ▽⊥ denotes the component of the
gradient in the direction ⊥ B, and ▽⊥B points towards the centre of curvature.
Finally one finds a total drift velocity equal to

VD =

(

mv2
⊥

2
+ mv2

‖

)

B ×▽⊥B

qB3
. (2.39)

For a particle of energy W , we have in order of magnitude VD ∼ W | B×▽⊥B |
/qB3 ∼ W/ (qBRc). Electrons and ions drift in opposite senses, producing an
electric current.

Variation of B ‖ B

Consider now a magnetic field oriented primarily along z with approximate
cylindrical symmetry, and whose strength varies along B. Let us assume for ex-
ample dB/dz > 0 (Fig. 2.10). Magnetic flux tubes, whose surface is everywhere
parallel to B, have approximate cylindrical symmetry, and since the magnetic
flux is a constant along a flux tube (because ▽ ·B = 0), the field lines converge
towards positive z, i.e. the radial component Br < 0 . Hence the Lorentz force
has a component along z

Fz = | qv⊥ | Br (2.40)

which has the same sign as Br (here negative) whatever the sign of q (since the
gyration speed v⊥ changes of sense as q changes of sign).
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Figure 2.10 When the magnetic field strength varies along B, the Lorentz force
on a gyrating particle has a component that decelerates (accelerates) it when it
moves towards increasing (decreasing) B.

Hence, the motion is slowed down if the charge moves towards stronger B,
and is accelerated if the charge moves towards smaller B. From ▽ · B = 0, we
have Br = − (r/2) dB/dz at distance r,10 which we substitute into (2.40) with
r = rg = mv⊥/qB to yield the force ‖ B

F‖ = −µ ▽‖ B (2.41)

where the symbol ▽‖ denotes the component of the gradient in the direction of
B, and

µ =
mv2

⊥/2

B
(magnetic moment). (2.42)

Magnetic moment

The force (2.41) is the usual force on a small diamagnetic magnet lying in a
gradient of magnetic field strength. Similarly, the drift velocity produced by a
gradient of B in the direction ⊥ B (ignoring the effect of curvature) corresponds
to a force that may be written from (2.38)–(2.39) as F⊥ = −µ ▽⊥ B.

The quantity µ is called the magnetic moment of the particle. Indeed, the
gyration of the charge averaged over one gyration corresponds to an electric
current I =| q | / (2π/ωg); since the loop area is s = πr2

g and ωgr
2
g = mv2

⊥/qB,
the magnetic moment (2.42) is equal to µ = I × s; furthermore, since opposite
charges gyrate in opposite senses, the sense of the current is independent of
the sign of q. Hence, in average over one rotation, the particle gyration is
equivalent to a current loop of magnetic moment µ given by (2.42) and pointing
always opposite to B (Fig. 2.11). This illustrates the already mentioned plasma
diamagnetism.

The potential energy of a magnetic dipole in a magnetic field B is −µ · B,
and the corresponding force is formally ▽ (µ · B) = − ▽ (µB) since µ points
opposite to B; hence the result found above that the force is −µ▽B in a (weak)
gradient of magnetic strength suggests that µ = constant. In fact, one may prove

10To prove this, draw a cylinder of radius r and length dz along the z axis. The outward
magnetic flux crossing its bounded surface is (2πrdz) Br + πr2 [Bz (z + dz) − Bz (z)], which
is equal to zero since ▽ · B = 0.
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Figure 2.11 Magnetic moment produced by the gyration of a charge in a mag-
netic field. Whatever the sign of the charge, the current has the same direction
and is equivalent (in average over one gyration) to a magnetic moment opposite
to the imposed magnetic field.

a stronger result: the magnetic moment of a particle gyrating in a magnetic field
remains nearly constant in both space and time when the magnetic field varies
slowly at the scale of the gyration. Note that, for a relativistic particle, the
conserved quantity is instead the magnetic flux Br2

g across the loop, so that
the invariant is the quantity γµ rather than µ. This invariance is an example
of Lenz’s law: electrical circuits change their currents in order to counteract
externally caused changes of the enclosed magnetic fluxes.

Magnetic mirrors

This has an important consequence. When a particle is moving towards increas-
ing magnetic field strength (converging magnetic field lines), the Lorentz force
slows down the motion along B. The perpendicular energy mv2 sin2 θ increases
with B, keeping µ constant; since v remains constant because energy is con-
served, θ increases, until θ = π/2; at this point the particle is reflected back
towards the weaker field. A region of increasing magnetic field thus acts as a
mirror for charged particles.

Particles may therefore be trapped between two regions of strong magnetic
field. This occurs close to magnetised planets having a dipolar magnetic field,
where the increasing magnetic field strength in both hemispheres mirrors parti-
cles (see Appendix and Problem 2.5.3). Such particles may be viewed as small
magnets (of magnetic moment pointing locally opposite to B), which are re-
pelled by the large ‘magnet’ responsible of the planetary magnetic field. When
approaching the planet’s positive pole (with their own positive pole pointing
ahead) they are repelled back towards the planet’s negative pole. Since they
approach it with their negative pole ahead, they are again repelled, and keep
on oscillating between the poles.

So the particles not only gyrate around field lines, but also bounce between
regions of high magnetic field. Furthermore, the transverse gradient and curva-
ture of the field lines produces a drift velocity given by (2.39). With a dipolar
magnetic field, B × ▽⊥B is in the azimuthal direction, making the particles
drift in longitude (Fig. 2.12).
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Figure 2.12 Charged particles can be trapped in the magnetic bottle formed by
a dipolar planetary magnetic field. Their motion is the superposition of three
components: the gyration around a field line, the bounce between magnetic mir-
rors in opposite hemispheres, and an azimuthal drift produced by the transverse
magnetic field gradient.

2.2.4 Adiabatic invariants

The near invariance of µ is a particular case of adiabatic invariance, associ-
ated to periodic generalised co-ordinates of Hamiltonian systems [12]. When
a parameter varies slowly at the scale of the period, the action integral varies
much less than this parameter, and is called an adiabatic invariant – by analogy
with thermodynamics where adiabatic processes are generally slow. A classical
example is the oscillating pendulum, whose adiabatic invariant is the energy
divided by the frequency; indeed, if one changes slowly the length of a pen-
dulum, the frequency varies in proportion to the energy. The same holds for a
particle gyrating in a magnetic field. Since the particle motion has three degrees
of freedom, there may be three adiabatic invariants if the system has several
periodicities.

In this way, a particle trapped in a dipolar magnetic field has three adiabatic
invariants associated to the three periodic motions:

• the gyration around magnetic field lines (speed v⊥, period T1 ∼ rg/v⊥),
whose adiabatic invariant is µ, given by (2.42),11

• the bounce between mirror points (speed v‖, period T2 ∼ r/v‖ ≫ T1,
where r is the distance to the planet), whose adiabatic invariant is the
integral of the longitudinal momentum mv‖ along the path between mirror
points,

• the azimuthal drift produced by the gradient in magnetic field strength
perpendicular to B (speed VD given by (2.39), whence in order of mag-
nitude VD ∼ mv2

⊥/ (qBr) ∼ v⊥rg/r, period T3 ∼ r/VD ≫ T2), whose
adiabatic invariant is the magnetic flux across the area encircled by the
drift path.

11Or rather γµ, if the particles are relativistic.
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This adiabatic invariance has a number a consequences. It enables parti-
cles to remain trapped for a long time on the same magnetic shell in dipolar
planetary magnetic fields; this is responsible for the long life of radiation belts
around planets. We shall apply these concepts to the trapping and acceleration
of particles in the contexts of magnetospheres (Section 7.3) and cosmic rays
(Section 8.2).

2.2.5 Summary

Charged particles gyrate around magnetic field lines, keeping their magnetic
moment invariant when the magnetic field varies weakly at the scale of the
gyration. A weak longitudinal increase in magnetic field strength acts as a
magnetic mirror. A force, or a weak transverse magnetic gradient, produces a
small transverse drift.

2.3 Many particles: from kinetics
to magnetohydrodynamics

A plasma is made of a large number of particles. In classical mechanics, the
state is defined by the position r and velocity v of each particle at time t, and
the evolution is determined by the equation of motion of each particle. To make
the problem tractable, one has to decrease the number of variables. This is done
by making averages, in two main ways:

• the kinetic description retains some microscopic properties by considering
as the basic quantity the velocity distribution (for each particle species);
basically, this amounts to replacing the equations of motion for each par-
ticle by a differential equation on the velocity distribution,

• the fluid description deals with a few macroscopic quantities as the mean
density of particles (or of mass), the mean velocity, the pressure or the
temperature, etc., which represent averages over the velocity distribution
(for each particle species); basically, this amounts to replacing the velocity
distribution – a function generally defined by an infinite number of param-
eters – by a few parameters, which is permissible only near thermodynamic
equilibrium.

2.3.1 Elements of plasma kinetics

We define the particle velocity distribution12 so that the number of particles in
the volume element [x, x + dx],[y, y + dy],[z, z + dz], and with velocities in the
range [vx, vx + dvx],[vy, vy + dvy], [vz, vz + dvz] at time t is

d6N = f (r,v, t) × d3r × d3v (2.43)

12Beware that there are many subtleties in this definition, as discussed for example in [6].
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where

d3r = dxdydz (2.44)

d3v = dvxdvydvz (2.45)

are the volumes in the space of positions and the space of velocities, respectively.
A position r and velocity v thus correspond to a ‘point’ in a phase space of six
dimensions [x, y, z, vx, vy, vz], which we denote [r,v].13

This description is more complete than the fluid description which deals with
averages of f as

n =

∫

d3v f (v) (particle density) (2.46)

V ≡ 〈v〉 =

∫

d3v f (v) × v/n (velocity) (2.47)

and higher-order moments, for each species of particles; we have not written
explicitly the dependence in r and t, to simplify the notations. These moments
are macroscopic quantities defined in the ordinary space of three dimensions
[x, y, z].

A reminder: the Maxwellian distribution

In the special case of thermodynamic equilibrium at temperature T , statistical
mechanics tells us that, as we already noted, the velocity is Gaussian distributed
along each co-ordinate (in the frame where the mean velocity vanishes), as

f (v) = Ae−mv2

x /(2kB T ) × e−mv2

y /(2kB T ) × e−mv2

z /(2kB T )

= A exp[−mv2/(2kBT )] (2.48)

for particles of mass m, where A = n [m/ (2πkBT )]
3/2 to ensure the normalisa-

tion (2.46). This is the Maxwell–Boltzmann distribution.

Beware that the probability for the speed v =
(

v2
x + v2

y + v2
z

)1/2
to lie in the

range [v, v + dv] is not f (v) dv but

f (v) × 4πv2dv (2.49)

since this range corresponds to a volume of velocity space equal to that of a
spherical shell of radius v and width dv, that is d3v = 4πv2dv. Throughout
this book, the notation f (v) (which reduces to f (v) when the distribution is
isotropic) denotes the distribution defined by (2.43).

With the Maxwellian distribution (2.48), the distribution in speeds (v) thus
varies as v2e−mv2/(2kB T ), so that the most probable speed (the one at which the
derivative of v2e−mv2/(2kB T ) vanishes) is

vth = (2kBT/m)
1/2

. (2.50)
13We consider below non-relativistic motions. In the relativistic case, one represents f in

terms of r and p = mv instead of r and v.
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On the other hand, the mean square speed14 is 〈v2〉 = 3kBT/m, so that, as we
already noted, the average kinetic energy per particle is

W = m〈v2〉/2 = 3kBT/2. (2.51)

Evolution of f

From the definition (2.43), the velocity distribution f is a density in the (six-
dimensional) phase space [r,v], just as n (or ρ) is the particle (or mass) density
in the ordinary (three-dimensional) space of positions. Let us study how f
evolves.

As t varies, the distribution f varies, while the position r and the velocity v

of a particle vary as

dr = vdt (2.52)

dv = adt (2.53)

where the acceleration vector is from the equation of motion (2.33)

a = dv/dt = q (E + v × B) /m (2.54)

for particles of charge q, mass m and velocity v, in the fields E and B, to which
must be added in general a gravitational acceleration.

Therefore, the evolution of f may be seen from two different points of view:
the variation with time at a fixed position and velocity (the so-called Eulerian
point of view), and the variation following particles in their motion (the so-called
Lagrangian point of view). In the latter viewpoint, the variation has two origins:
the time variation proper (at fixed co-ordinates [r,v]), and the variation of the
co-ordinates [r,v] themselves.

The convective derivative

A similar distinction holds in fluid mechanics. Assume for example that you
wish to analyse the composition of water in a river. You may do so in two ways.
You may sit on the bank, and so observe the time evolution at a fixed position;
by convention, we note the variation so observed as ∂/∂t. A second method is to
embark on a boat that drifts following the river motion; the observed variation
is then noted d/dt. Both variations are related in one dimension (x) by the fact
that a quantity n is a function of x and t: n = n (x, t) with x = x0+Vxt (Vx being
the fluid velocity). Hence dn/dt = ∂n/∂t+∂n/∂x×dx/dt = ∂n/∂t+Vx∂n/∂x.
In three dimensions, the time variation as observed following a fluid moving at
velocity V is therefore

d

dt
=

∂

∂t
+ (V · ▽) (convective derivative) (2.55)

with the usual notation V · ▽ = Vx∂/∂x + Vy∂/∂y + Vz∂/∂z.

14Defined as 〈v2〉 =
∫

d3v v2 f (v) /n.
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Vlasov equation

A basic result of statistical mechanics is Liouville’s theorem, a consequence of
which is that in the absence of collisions, f is invariant following the motion in
the six-dimensional phase space. In other words, df/dt = 0, where the derivative
must be understood as a convective derivative in the six-dimensional phase
space. Just as the convective derivative in ordinary three-dimensional space [r]
is given by (2.55), the convective derivative in the six-dimensional phase space
[r,v] is given by

d

dt
=

∂

∂t
+ v · ∂

∂r
+ a · ∂

∂v
. (2.56)

Substituting (2.56), df/dt = 0 may be written

∂f

∂t
+ v · ∂f

∂r
+ a · ∂f

∂v
= 0 (Vlasov equation). (2.57)

Here the acceleration a is given in (2.54), where in the general case, the electric
and magnetic field are the mean fields produced by all the plasma particles, and
one must add a gravitational acceleration if it is not negligible.

This means that in the absence of collisions, the velocity distribution (the
density in the six-dimensional phase space) behaves as an incompressible (six-
dimensional) fluid. Note that since ∂a/∂v = 0 (any component of a is inde-
pendent on the velocity along the same direction because the Lorentz force
is perpendicular to the velocity),15 we have a∂f/∂v = ∂/∂v (af), so that
(2.57) is equivalent to a continuity equation (in the six-dimensional phase space):
∂f/∂t + ∂ (vf) /∂r + ∂ (af) /∂v = 0.

A reminder: the continuity equation

The most basic equation of fluid mechanics is the continuity equation, which
merely states the conservation of the number of particles or of the mass. It may
be derived as follows. In the absence of creation or destruction of particles, the
time variation of the number of particles in a fixed volume υ is the opposite of
the outward flux of particles crossing the surface Σ bounding this volume

∂

∂t

∫

υ

d3r n = −
∫

Σ

dS · nV = −
∫

υ

d3r ▽ · (nV) (2.58)

where the second equality has been obtained by transforming the surface integral
into a volume integral by Gauss’s theorem. Since this is true for any arbitrary
(fixed) volume υ, we have

∂n

∂t
+ ▽ · (nV) = 0 (continuity equation). (2.59)

In the particular case when the fluid is incompressible, we have dn/dt = 0, so
that, using (2.55), the continuity equation is equivalent to ▽ · V = 0.

15By ∂a/∂v = 0, we mean ∂ai/∂vi = 0 for i = x, y, z. This property also holds with a
gravitational force, but not with a friction force.
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Other forms of the invariance of f

There are several other equivalent ways of expressing the conservation of f
along particle trajectories. Since the number of particles in a volume of (six-
dimensional) phase space is conserved, and so is f , so is this volume. The total
volume in phase space therefore remains constant, whatever its change of shape
as the system evolves.

Another consequence of the conservation of f along particle trajectories is
that the motion of charges in given electric and magnetic fields (plus possibly a
gravitational field) may be calculated by expressing f in terms of the constants
of motion (energy, magnetic moment, . . . ); this is often called Jeans’ theorem.

One must be careful to apply these results within their limits of application.
In particular, they do not hold in the following cases:

• when the number of particles is not conserved (for example because of
ionisation or recombination),

• when the acceleration varies with the velocity as ∂a/∂v 6= 0,

• when collisions act,

• for values of r and v that are not accessible along particle trajectories,
given the constants of motion.

When collisions are not negligible, df/dt 6= 0, which produces a non-zero
term (∂f/∂t)c on the right-hand side of (2.57). In neutral gases, collisions
involve two-particle encounters producing large perturbations, and this yields
the Boltzmann equation. In plasmas, collisions act through the accumulation
of small-angle Coulomb encounters, and this yields the Fokker–Planck equation.

Basic illustration: effect of a force on the velocity distribution

Most textbook applications of the Vlasov equation consider waves. We study
here a stationary problem: the effect of a (conservative) force on the distribution
of particles.

In its simplest form, the problem may be stated as follows. We know that
in equilibrium at temperature T the density of particles subjected to a force
deriving from a potential ψ is proportional to e−ψ/kB T – the Boltzmann factor.
How is this result changed in absence of equilibrium? This problem arises when
measuring particles aboard a spacecraft, and on a larger scale (with subtle
differences) when calculating the distribution of particles near a planet or a
star, and the production of a wind.

Let us assume for simplicity that the particle velocity distribution is isotropic
(i.e. depends only on the modulus v of the velocity) at some position. An
isotropic velocity distribution may be expressed as a function of the particle
energy only, which is a constant of motion. To further simplify the problem, let
us assume that the potential depends on one co-ordinate only, for example the
distance r from an object. For a given particle, the total (conserved) energy
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Figure 2.13 How the particle velocity distribution is modified when the poten-
tial energy increases (left) or decreases (right) by | ∆ψ |, in the special case when
the original distribution is a Maxwellian of temperature T . For ∆ψ > 0 (parti-
cles coming against the force, left panel), the translation in energy decreases f
by the Boltzmann factor e−∆ψ/kB T . For ∆ψ < 0 (particles accelerated by the
force, right panel) the translation in energy produces a hole in the distribution
(thick dashed grey line); if collisions did act, they would fill the hole (thin dotted
grey line).

is the sum of the kinetic energy W plus the potential energy ψ(r). If ψ varies
by ∆ψ between r0 and r, then a particle of original kinetic energy W0 at r0

will have at r the kinetic energy W0 −∆ψ, which is smaller or greater than W0

depending on whether ∆ψ > 0 (particles coming against the force) or ∆ψ < 0
(particles coming in the direction of the force). From the conservation of f
along particle trajectories, the velocity distribution at distance r (expressed as
a function of the kinetic energy W ) is thus related to the original distribution
by the relation

f (r,W ) = f (r0,W + ∆ψ(r)) (2.60)

for values of [r,W ] accessible from r0.
Therefore, the distribution f(r,W ) at some distance r is deduced from the

original distribution at r0 by a translation in energy of amplitude ∆ψ(r) –
the variation in potential energy. This is sketched in Fig. 2.13 in the simple
case when the original distribution is a Maxwellian of temperature T , i.e. ∝
e−W/kB T , so that ln(f) as a function of W is originally a straight line.

The final distribution depends strongly on the sign of ∆ψ. When the po-
tential energy increases (particles coming against the force), the particle kinetic
energy decreases, so that the kinetic energy distribution is translated to the left
(Fig. 2.13, left). Therefore, with a Maxwellian original distribution, the particle
density is reduced by the factor e−∆ψ, the usual Boltzmann factor. Hence, in
this case the collisionless kinetic description gives exactly the same result as if
there were enough collisions to ensure equilibrium.
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This is not so, however, when the potential energy decreases (particles mov-
ing in the direction of the force; Fig. 2.13, right). In that case, the translation
in energy produces a hole in the velocity distribution, so that the density of
these particles does not simply increase by the Boltzmann factor e−∆ψ ≡ e|∆ψ|

as in equilibrium. The origin of this hole is that particles of nearly zero kinetic
energy at r0 are accelerated to a kinetic energy equal to | ∆ψ(r) | at distance
r, so that there is no particle of kinetic energy smaller than this value. In con-
trast, with collisions, the redistribution between degrees of freedom populates
the hole, producing the usual Boltzmann factor.

This result illustrates the difference in Debye shielding for attracted and re-
pelled particles in the absence of equilibrium, and has consequences on measure-
ments of velocity distributions in space. We shall encounter a similar problem
when calculating the plasma distribution in the solar corona (Section 4.6), and
the solar wind acceleration (Section 5.5), with important differences: the large
size of the system ensures electric quasi-neutrality; it enables collisions to popu-
late some orbits, suppressing the hole; and the original distribution is generally
not a Maxwellian.

This last point introduces a basic consequence of the rarity of collisions in
space. Consider in more detail the left-hand panel of Fig. 2.13 (∆ψ > 0). The
translation of the original Maxwellian distribution f (W ) ∝ e−W/kB T yields a
straight line (in log co-ordinates) having the same slope, i.e. a Maxwellian of the
same temperature. But think what happens if the original distribution is not
Maxwellian, a frequent situation in space. Then we no longer have a straight
line, i.e. the slope (in log co-ordinates) does depend on the energy, so that
the translation in energy does change the shape, thereby changing the effective
temperature. Indeed, the potential filtrates the particles, letting only the fastest
ones climb the potential barrier (Problem 2.5.4). This is a purely kinetic effect,
completely outside the scope of the usual fluid description, and is of far-reaching
consequences (Section 4.6.4).

2.3.2 First-aid kit for space plasma fluids

The infinite hierarchy of fluid equations

The simplest fluid picture describes each particle species by three macroscopic
quantities:

• the particle density n defined by (2.46),

• the velocity V = 〈v〉 defined by (2.47),

• the pressure.

If the particle velocity distribution is isotropic in the frame where the mean
velocity vanishes, the pressure is a scalar defined by

P =
m

3

∫

d3v f (v) (v − 〈v〉)2 (pressure) (2.61)
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for non-relativistic particles of mass m. The temperature is defined from kBT =
P/n = Pm/ρ, which, for a Maxwellian, coincides with the usual thermodynamic
temperature. This generalises the definitions (2.2) and (2.3) to frames where
the mean velocity does not vanish.

In this simplified picture, for a plasma containing n electrons and n (singly
charged) ions per unit volume at the same temperature, the mass density is
ρ ≃ nmi since the mass is essentially carried by the ions, but both species
contribute equally to the pressure so that P = 2nkBT . Hence P = ρkBT/m
where m ≃ mp/2 is the average mass per particle.

With these three unknowns: ρ, V and P (or equivalently, T , since P =
ρkBT/m), three equations are required to solve the problem. We have already
written the first fluid equation – the continuity equation (2.59), for the par-
ticle number density n; an equivalent equation holds for the mass density ρ.
The continuity equation may be obtained more formally by integrating over
the velocities the equation of evolution of f ; elastic collisions do not change the
result since they do not change the number of particles.

In a stationary case, the continuity equation means that the mass entering a
flow tube (a tube everywhere parallel to the fluid velocity) across a given section
equals the mass leaving across another section. This yields

ρV s = constant (2.62)

if s is the cross-section area. In the particular case when the medium is in-
compressible (ρ = constant), this means that the flow lines diverge (converge)
when the speed decreases (increases), or alternatively that the flow accelerates
in a constricted tube – properties that are well known in hydrodynamics. In
spherical symmetry, where the velocity is radial and the flow tubes vary as the
square of the distance r, this yields ρV r2 = constant.

Similarly, the fluid equation of motion may be derived in two ways. The
most intuitive way is to note that for a fluid parcel of volume unity and mass
ρ, the force ρdV/dt (following the parcel’s motion) is equal to the sum of the
pressure force −▽P and the gravity force −ρ▽ΦG, plus electric and magnetic
forces if charges and currents are not negligible. Substituting the convective
derivative (2.55), this yields the fluid equation of motion

∂V

∂t
+ (V · ▽)V = −▽P

ρ
−▽ΦG (fluid equation of motion) (2.63)

(where we have omitted for the moment the electromagnetic force and also the
viscosity force, which will be considered later). This equation of motion may be
obtained more formally by multiplying the equation of evolution of f by V and
integrating over the velocities. With a velocity distribution that is isotropic in
the frame where the mean velocity vanishes, this yields (2.63), to which must
be added electric and magnetic forces if there is a finite density of charge and
current.

An important problem emerges, which is perhaps one of the most difficult
problems of space plasma physics. With the continuity equation and the fluid
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equation of motion, we have only two equations for the three unknowns ρ, V

and P (or equivalently, T , since P = ρkBT/m). One might think naively that
this problem could be solved by going a step further in the averaging process.
Indeed, the continuity equation stems from averaging the equation on f , the
equation of motion stems from averaging the equation on f multiplied by V,
and similarly another equation (involving the energy) stems from averaging the
equation on f multiplied by V2. Unfortunately this does not work, because just
as the continuity equation determines ρ in terms of V, the equation of motion
(2.63) determines V in terms of ρ and P (or T ), a third equation will involve a
moment of higher order, in terms of which P (or T ) will be expressed, and so
on up to an infinite number of moments.

The fluid equations therefore constitute a ladder having an infinite number
of steps. This is not surprising since one cannot replace an infinite number
of unknowns (which a velocity distribution represents effectively in the general
case) by a finite number of unknowns – for example ρ, V and P – without a
miracle. The root of the problem is the transport of energy, which we shall
examine below. Meanwhile, let us examine some cases when the miracle comes
true.

Bernoulli’s theorem

Let us make two assumptions:

• the problem is stationary, so that ∂/∂t = 0,

• P is a function of ρ only (for example P and ρ obey a relation P ∝ ργ),
or the fluid is incompressible.

In this case, we can define the enthalpy

H =

∫

dP/ρ (enthalpy). (2.64)

We deduce ▽P/ρ = ▽H, so that multiplying the equation of motion (2.63) by
V, we obtain

V · ▽
[

V 2/2 + H + ΦG

]

= 0. (2.65)

This means that we have along flow lines

V 2/2 + H + ΦG = constant (Bernoulli’s theorem). (2.66)

Bernoulli’s theorem is a pillar of fluid dynamics. It may be used to solve a host
of problems, from domestic plumbing to astrophysics, including how wings of
aeroplanes, insects and birds produce lifts (or crashes), how termites and prairie
dogs design the ventilation of their homes,16 or why your shower curtain engulfs
you every morning.17

16See for example Vogel, S. 1998, Cats’ Paws and Catapults, London, Penguin Books.
17The latter explanation is still under debate.
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Let us calculate the enthalpy. Consider first an incompressible medium; from
P = ρkBT/m with ρ = constant, we have H = P/ρ = kBT/m.

Then consider the polytrope case P ∝ ργ . The case γ = 1 must be considered
separately; we then have T = constant, so that from P = ρkBT/m

H =

∫

dP/ρ = (kBT/m) ln ρ (isothermal). (2.67)

On the other hand, if P ∝ ργ with γ 6= 1, we have P ∝ T γ/(γ−1), so that

H =

∫

dP/ρ =
γ

γ − 1

∫

P

ρ

dT

T
=

γ

γ − 1

kBT

m
. (2.68)

With these values of H, the Bernoulli theorem (2.66) yields along flow lines, for
a polytrope P ∝ ργ :

V 2

2
+

kBT

m
ln ρ + ΦG = constant γ = 1 (2.69)

V 2

2
+

γ

γ − 1

kBT

m
+ ΦG = constant γ 6= 1. (2.70)

Equation (2.69) holds when transformations are so slow that isothermal equi-
librium has enough time to establish everywhere.

On the other hand, (2.70) holds in the opposite case when transformations
are so fast that heat has no time to flow: such processes are called adiabatic; in
that case, γ = cp/cv = 1+2/N – the ratio of specific heats for (non-relativistic)
particles having N space degrees of freedom, so that γ = 5/3 for N = 3.
Bernoulli’s theorem then represents the conservation of the fluid energy per unit
mass, which is the sum of the bulk kinetic energy V 2/2, plus the thermal energy
3kBT/2, plus the work kBT expended on compression, plus the gravitational
energy ΦG. Beware that (2.70) holds in the stationary case. In a time-dependent
case, the adiabatic fluid energy equation simply reads d (Pρ−γ) /dt = 0 with
P = ρkBT/m and d/dt the convective derivative. With the help of the continuity
equation and the equation of motion, it may be put under various (more or less
complicated) forms. These three equations are known as the Euler equations.

The same result may be obtained formally by assuming the particle velocity
distribution to be a Maxwellian of temperature T centred on a mean velocity V,
and making averages of the equation of evolution of f multiplied by V2. Since
such a Maxwellian distribution is characterised by only three parameters – the
density, the mean velocity and the temperature (or the pressure) – no miracle is
needed to reduce its evolution to three equations involving these three unknowns.
The establishment of a Maxwellian distribution, however, generally requires
some process – such as collisions between particles – to ensure equilibrium,
and is not so easily achieved in plasmas as in neutral gases, due to the nature
of collisions; we shall return to this point later. Note that the relation P ∝
ργ further reduces the number of independent unknowns to two, so that the
equations of motion and of energy then become equivalent.
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Sound waves and their plasma counterparts

Assume that the only force is the pressure force, and consider small perturba-
tions around the simple solution having the velocity V0 = 0 and uniform mass
density ρ0 and temperature T0 (and pressure P0 = ρ0kBT0/m). Assume the
perturbations to be fast enough for the behaviour to be adiabatic, i.e. P ∝ ργ ,
so that we have ▽P = (dP/dρ) ▽ ρ with

dP/dρ = γP/ρ = γkBT/m. (2.71)

Let us now write the continuity equation and the fluid equation of motion
with the perturbed quantities V = V1, ρ = ρ0 + ρ1, P = P0 + P1, where the
subscript 1 denotes small perturbations of the initial solution. To first order in
the perturbation, this yields

∂ρ1

∂t
+ ρ0 ▽ ·V1 = 0 (2.72)

ρ0
∂V1

∂t
= −▽ P1 = −dP

dρ
▽ ρ1. (2.73)

Taking the time derivative of (2.72) and substituting (2.73), we obtain

∂ρ1

∂t2
= V 2

S ▽2 ρ1 (2.74)

VS =

(

dP

dρ

)1/2

(2.75)

and equations similar to (2.74) for the perturbations P1 and V1. This has a plane
wave solution varying as ei(k·r−ωt), which propagates at the speed ω/k = VS .
With P ∝ ργ , we have from (2.71)

VS = (γP/ρ)
1/2

. (2.76)

This wave produces small perturbations in the fluid mass density and veloc-
ity; it is a sound wave, propagating at the sound speed VS = (γkBT/m)

1/2 in
a gas of particles of mass m at temperature T . Note that from (2.73), V1 is
parallel to ▽ρ1. In the Fourier space [ω,k] (see [3]), ∂/∂t transforms into −iω
and ▽ into ik, so that (2.73) yields −iωρ0V1 = −V 2

S ikρ1, whence V1 ‖ k. This
shows that in a sound wave, the velocity perturbation is parallel to the wave
vector: this is called a longitudinal wave.

In a plasma, two major differences arise. First, the pressure is provided
by electrons and ions in proportion of their temperatures, whereas the mass is
essentially provided by the ions. The corresponding wave – called ion–acoustic
wave – behaves differently depending on whether or not the electrons and ions
move together, i.e. whether or not the plasma remains neutral.

If the plasma remains neutral, which holds at scales greater than LD (i.e.
wave numbers k ≪ 1/LD), the wave is a simple generalisation of the sound wave
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in a neutral gas, so that the phase speed is

VS =

(

γePe + γiPi

ρ

)1/2

=

(

γekBTe + γikBTi

mi

)1/2

(2.77)

where the subscripts e and i refer to electrons and ions respectively. If γe ∼
γi ∼ γ and Te ∼ Ti ∼ T , the phase speed reduces to (γkBT/m)

1/2 (in order
of magnitude) with m ≃ mi/2 (the average particle mass), as for a neutral
gas. In this case, however, since the wave phase speed is of the same order of
magnitude as the most probable speed of ions, the bulk of the ions move together
with the wave so that they are subjected to a nearly constant force along their
motion; this accelerates them efficiently at the expense of the wave, which is
thus damped; this process is called Landau damping, and we shall return to it
in Section 2.3.4. For the wave not to be damped, the electrons must be much
hotter than the ions, to produce a wave speed much greater than the ion most
probable speed so that the wave is no longer damped.

When the wave number k ≥ 1/LD, the plasma does not remain neutral, i.e.
the electrons and ions do not move together; in the large k limit, the ions then
perform plasma oscillations at their characteristic frequency

ωpi =
(

ne2/ǫ0mi

)

. (2.78)

The picture is then like ordinary plasma oscillations (Section 2.1.4), but with
the role of electrons and ions reversed.

The second major modification that plasmas introduce in the sound wave
arises when a magnetic field is present. We shall consider this point later.

Shocks

Sound waves (and their plasma generalisations) enable fluids to adapt gently to
compressions. Hence, for motions at a speed smaller than the sound speed, the
fluid behaves as if it were roughly incompressible. On the other hand, for larger
speeds, nasty things may happen. To understand this, suppose you agitate your
hand. In doing so, you compress the surrounding air, and your hand is able
to move because the gas ahead goes out of the way. It can do so because the
compression is transmitted farther away by the sound waves emitted by your
moving hand, thereby transmitting to the gas ahead the information that your
hand is approaching.

But suppose you try to move it faster than the sound speed. In that case,
sound waves do not propagate fast enough to transmit the information that
your hand is moving. Hence the gas far ahead, being not aware of the motion,
is not perturbed. In contrast, close to your hand, the gas is compressed by the
motion and moves at the same speed; the (adiabatic) compression also increases
the local temperature (and sound speed), so that the information propagates
just ahead of your moving hand.

Therefore the gas separates into two regions. Far away, it remains undis-
turbed; in the frame of the moving object that is approaching at the speed −V1,
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Figure 2.14 A simple shock: moving cars, whose drivers are asleep, are im-
pacting a stopped truck. The rows show the state of the system at several con-
secutive times. A shock forms, separating two different states: upstream, the
unperturbed fluid (the row of cars) moving at uniform velocity; downstream,
the fluid that has stopped and undergone an irreversible transition. The shock
moves towards the left, propagating information on the presence of the obstacle.

the gas moves at V1, faster than the local sound speed. On the other hand,
just before the object, the flow adapts gently, moving at a speed that is locally
subsonic, and stopping at the object. In between lies a transition, at some dis-
tance ahead of the object, where the gas velocity changes from supersonic to
subsonic. It is this transition that transmits the information on the presence of
the obstacle ahead, and it does so at a supersonic speed – a performance that
the small amplitude sound waves cannot achieve.

Contrary to the sound waves, this transition – called a shock – is not a
reversible process, and it can transmit information faster than the sound speed.
The irreversibility involves some dissipation, which, in the usual case of neutral
gases, can be achieved via collisions between particles; in this case, the width
of the transition is thus the scale at which the ideal fluid equations no longer
hold, that is the mean free path of particles for collisions.

We have defined a shock as a large amplitude irreversible perturbation en-
abling propagation of information faster than the small amplitude compressible
waves. An extreme case arises when no such waves do exist. Figure 2.14 illus-
trates such an example, that I have borrowed from [2], where an insightful in-
troduction to shocks in space may be found. Imagine a stream of equally spaced
vehicles on a straight freeway. Now assume that the drivers have fallen asleep,
with the speeds of the cars somehow blocked at their original speed V1, whereas
a large truck suddenly stops in the middle of the lane. The system evolves as
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Figure 2.15 A plane shock before a moving object, in the reference frame where
the shock (and the object) is at rest. The unperturbed fluid upstream (left) of
uniform mass density ρ1 moves at the supersonic speed V1 > VS1 (the upstream
sound speed). At the shock, these properties change abruptly to ρ2, V2 < VS2.
Between the shock and the object, the fluid slows down smoothly, stopping at
the object, and being diverted sideways (not shown). The width of the transition
is about the scale lf at which the ideal fluid equations no longer hold.

shown on the successive rows, from top to bottom. The accumulation of crashes
quickly produces two states separated by an abrupt transition: a shock. Up-
stream, the medium (the regular row of cars) is unperturbed, being unaware
of the obstacle ahead. Downstream accumulates a hump of crashed cars. The
transition – a shock – moves to the left as more vehicles stop and crash.

This example is a limiting case when there is no small amplitude (reversible)
wave propagating information, but it has several basic properties of shocks. The
unperturbed medium is supersonic in the sense that it moves faster than the
velocity at which information propagates (which is zero here), and its motion
becomes abruptly subsonic (zero here) at the shock, where it undergoes an irre-
versible dissipative transition. The shock is the only way that information can
propagate, and it does so at a speed that is effectively supersonic (in the above
sense), and is determined by the initial speed of the vehicles, the separation
between them and their compression upon crashing.

A more general case is sketched in Fig. 2.15, which is drawn in the frame
where the shock (and the object ahead of which it lies) is at rest. Upstream
(left), the unperturbed medium has the supersonic speed V1 > VS1 (the sound
speed). At the shock the medium undergoes an abrupt dissipative transition,
becoming subsonic, of speed V2 < VS2 (the sound speed just downstream of the
shock). On this downstream side, the subsonic velocity enables the information
on the presence of the obstacle to propagate, so that the speed can decrease
smoothly up to the surface of the object where it vanishes. Furthermore, the
stream lines are diverted sideways; this is not shown in Fig. 2.15, which is one-
dimensional.18

18Namely, the radius of curvature of the shock (and of the object) is assumed to be much
larger than the scales shown.
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The fluid properties on both sides of the shock are related by the three ideal
fluid equations. First, mass conservation tells us that the mass flux ρV is the
same on both sides of the transition. Second, the equation of motion tells us
that the variation in the flux of momentum ρV 2 between both sides balances
the variation in pressure P . Finally, (adiabatic) energy conservation tells us
that the sum of the density of kinetic energy V 2/2, plus the enthalpy 5P/ (2ρ)
(with γ = 5/3) is the same on both sides. This yields

ρ1V1 = ρ2V2 (2.79)

ρ1V
2
1 + P1 = ρ2V

2
2 + P2 (2.80)

V 2
1

2
+

5P1

2ρ1
=

V 2
2

2
+

5P2

2ρ2
(2.81)

where the subscripts 1 and 2 refer respectively to the values upstream and just
downstream of the shock. These are called the Rankine–Hugoniot relations. The
decrease in speed from upstream to downstream is accompanied by an increase
in density, pressure and temperature. The Mach number M = V/VS , with
the sound speed VS = (γP/ρ)

1/2
= (γkBT/m)

1/2, changes at the shock from
M1 > 1 to M2 < 1, with from (2.79)–(2.81):

V2

V1
=

ρ1

ρ2
=

1 + 3/M2
1

4
. (2.82)

In the particular case when V1 ≫ VS1, we have

V2/V1 = ρ1/ρ2 ≃ 1/4 (2.83)

V2/VS2 ≃
√

1/5 (2.84)

kBT2 ≃ mV 2
1 /5. (2.85)

In that case, one sees that most of the upstream kinetic energy is converted
into downstream enthalpy, so that the downstream temperature can be very
large.

This holds for neutral gases. In space plasmas, some complications arise,
requiring tools that we have not yet introduced. We shall consider these com-
plications when studying shocks in the solar wind (in Section 6.3), and its inter-
action with solar system objects (Section 7.2) and with the interstellar medium
(Section 8.2).

Transport of momentum and heat

We now go a step further into the theory and examine how the ideal fluid
equations are modified when the fluid is neither isothermal nor adiabatic. Or,
from a microscopic point of view, when the particle velocity distribution is not
Maxwellian.

Being not Maxwellian has two main consequences.
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The first one concerns the property of isotropy, and is relatively trivial. In
the presence of a magnetic field B, the velocity distribution tends to acquire
a cylindrical symmetry around B, so that the pressure is no longer a scalar,
even to zero order, being different in the directions parallel and perpendicular
to B. This introduces a complication, but does not present basic difficulties if
the velocity distribution remains Maxwellian in the parallel and perpendicular
directions; it is then called a bi-Maxwellian19 and defined by two temperatures:
T‖ and T⊥.

In this case, the (isotropic) adiabatic relation P ∝ ργ may be generalised
in the following way. Just as, for individual particle motions, the ratio of the
particle perpendicular energy to the magnetic field mv2

⊥/2B is an adiabatic
invariant, so the ratio of the fluid perpendicular temperature to the magnetic
field T⊥/B = constant. Similarly, we know that the adiabatic invariant of the
particle bounce motion is the product of the parallel velocity v‖ by the length
L of the bounce path. Let us apply this invariance to a magnetic tube of length
L and section s; conservation of mass yields ρLs = constant, and conservation
of magnetic flux yields Bs = constant. Hence ρL/B = constant, so that the
invariance of v‖L is equivalent to v‖B/ρ = constant. Finally, therefore, for an
anisotropic Maxwellian distribution, the adiabatic isotropic relation P ∝ ργ is
replaced by the so-called CGL relations20

T⊥ ∝ B (2.86)

T‖ ∝ (ρ/B)
2
. (2.87)

Unfortunately, this simple scheme does not hold when the velocity distri-
bution is not close to an anisotropic Maxwellian. And still worse, the condi-
tions for the distribution to be an anisotropic Maxwellian are difficult to realise:
there must be enough collisions to produce Maxwellians in both the parallel and
perpendicular directions, but not so many that the parallel and perpendicular
temperatures become equal. Furthermore, even though the gyration around the
magnetic field comes to the rescue of collisions for providing quasi-equilibrium
in the direction ⊥ B, this is not so in the direction ‖ B. Therefore, the velocity
distributions in space plasmas are generally not bi-Maxwellian, except if the free
path for collisions is much smaller than the scale of variation, at least in the
direction ‖ B.

We now come to the second consequence of not being Maxwellian. In or-
dinary gases, small perturbations to the Maxwellian are studied by performing

19The bi-Maxwellian distribution has the form f (v) = Ae
−mv2

‖
/2kB T‖ × e−mv2

⊥
/2kB T⊥ ,

with A = n (m/2πkB )3/2 T
−1/2

‖
T−1

⊥
, in order to ensure the normalisation n =

∫

+∞

−∞
dv‖

∫ ∞

0
2πv⊥dv⊥f (v); v‖ and v⊥ are the velocity components in the directions re-

spectively ‖ B and ⊥ B.
20When B is constant, the CGL relation (2.87) yields T‖ ∝ ρ2, so that the parallel pressure

P‖ ∝ ρT‖ ∝ ργ with γ = 3. Since for particles having N degrees of freedom, the adiabatic
index γ = 1 + 2/N , (2.87) then corresponds to an adiabatic compression with 1 degree of
freedom. This is not surprising since with constant B, the magnetic flux tube must keep a
constant section, and thus can only be compressed (or expanded) along B.

From:   Basics of the Solar Wind   © N.  Meyer-Vernet  2007   Cambridge University Press Corrected proofs



82 Tool kit for space plasma physics

an expansion in a small parameter: the ratio of the mean free path lf to the
scale L of variation of the medium, which is related to the extent by which
the velocity distribution differs from a Maxwellian. Such an expansion yields
the ideal fluid equations, plus small corrections representing a viscosity force
and a heat flux. The equation of motion and the Bernoulli theorem are then
replaced by

∂V

∂t
+ (V · ▽)V = −▽P

ρ
−▽ΦG + Fvis (2.88)

ρV · ▽
(

V 2

2
+

γ

γ − 1

kBT

m
+ ΦG

)

= −▽ ·Q. (2.89)

The viscosity force Fvis tends to reduce the gradients in velocity. It may be
written approximately

Fvis ≃ ν ▽2 V + ν′ ▽ (▽ · V) (2.90)

where ν is the kinematic viscosity, and the second term vanishes if the medium
is incompressible. The heat flux tends to reduce the gradients in temperature,
and may be written (in this nearly Maxwellian approximation)

Q = −κ ▽ T (2.91)

where κ is the thermal conductivity. These transport terms are produced by the
particle agitation and collisions which enable them to share their momentum and
energy. The transport terms therefore increase with the gradients, the random
speeds and the free path for collisions. We make below a simplified estimate.

The motion of the particles may be viewed as a random walk at the speed vth,
with individual random steps of length equal to the collision free path lf . The
average distance travelled in this way is zero, but the mean square is not, being
〈d2〉 = p× l2f for p random steps. Travelling a distance L ≫ lf therefore requires
a number of steps given by L2 = p× l2f and therefore a time τ ∼ p× lf/vth, i.e.

τ ∼ L2

vthlf
lf ≪ L. (2.92)

This enables us to estimate the coefficient of viscosity and the thermal conduc-
tivity. Consider first the equation of motion (2.88), and assume that the main
contributions come from the time variation and the shear viscosity, so that in
order of magnitude ∂V/∂t ∼ ν ▽2 V. For a velocity varying at the scale L, we
have | ▽2V |∼ V/L2, so that ∂V/∂t ∼ νV/L2. This means that the viscosity
can suppress a velocity variation of scale L in a time τ ∼ L2/ν. Since this is
achieved by the diffusion of particles, which diffuse over a distance L in a time
given by (2.92), both times are equal, so that

ν ∼ vthlf lf ≪ L. (2.93)

The importance of viscosity is quantified by the Reynolds number, which
represents the ratio of the inertial term | (V · ▽)V | in the fluid equation of
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motion (2.88) to the viscosity force. If the velocity varies at the scale L , we have
| (V · ▽)V |∼ V 2/L, while the viscosity force (2.90) is roughly Fvis ∼ νV/L2.
The ratio is therefore

inertia
viscosity

∼ V L/ν ≡ R (Reynolds number). (2.94)

With the expression (2.93) of the viscosity, we have R ∼ (V/vth) × (L/lf ), so
that if V > vth, the Reynolds number must be much greater than unity to
ensure lf ≪ L so that the fluid equation of motion (2.88) holds. Therefore,
viscous forces are generally much less important than inertial effects.21 This is
still more true in space and astronomy, because of the extremely large scales.

Consider now the energy equation (2.89). This equation holds in the simple
case when there is no time variation, so let us consider another simple case: when
the fluid velocity is much smaller than the sound speed so that the dynamical
terms are negligible (and the medium behaves as nearly incompressible). In
that case, the divergence of the heat flux simply balances the variation in the
density of kinetic energy per unit time, so that the energy equation becomes

n
∂

∂t

(

3

2
kBT

)

= κ ▽2 T for V ≪ VS . (2.95)

With the order of magnitude estimate ▽2T ∼ T/L2 where L is the scale of
variation, (2.95) shows that the heat flux makes the temperature diffuse over
a distance L in a time τ ∼ 3nkBL2/ (2κ). Since we have seen that particles
diffuse over a distance L in a time given by (2.92), the thermal conductivity is

κ ∼ 3

2
nkBvthlf lf ≪ L. (2.96)

Despite the simplicity of our approach, the above estimates of the viscosity and
of the thermal conductivity turn out to be accurate to a factor of order unity
in a collisional medium.

Transport in plasmas

How do these results apply in space plasmas? Because of the large ion-to-
electron mass ratio, whereas ions and electrons generally have similar tempera-
tures, ions have a much greater kinetic momentum mvth than electrons, but a
much smaller kinetic speed vth, whereas the free paths are similar. Hence:

• ions transport momentum, and determine the viscosity,

• electrons transport heat, and determine the thermal conductivity.

21Beware that the viscosity force, however small quantitatively, may have important qual-
itative consequences, as we shall see in Section 6.4. Furthermore, we must be careful not to
rely too heavily on our intuition, which is based on a familiarity with high Reynolds numbers.
This point is nicely addressed by Purcell, E. M. 1977, Am. J. Phys. 45 3.
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Because the Reynolds number is generally very large in space plasmas, viscosity
is in general negligible.

This is not so, however, for the heat flux. Consider the energy equation
(2.89), and compare the transport of heat by thermal conduction, ▽ ·Q, to the
transport of heat by the fluid bulk motion, ∝ ρV · ▽kBT/m. For variations at
the scale L, we make the order of magnitude estimate ▽ ∼ 1/L , which yields

conduction
advection

∼ κT/L2

ρV kBT/ (mL)
∼ vthlf

V L
(2.97)

where we have substituted the expression (2.96) of κ and n = ρ/m. If the same
particle species did produce the viscosity and the heat conductivity, this ratio
would be roughly the inverse of the Reynolds number, and would thus be very
small. However, heat conduction in plasmas is provided by the electrons, so
that the speed in (2.97) is that of electrons, i.e. much greater than that of ions.
Furthermore, even though space plasmas have often a bulk motion faster than
the ions’ most probable speed, the bulk motion is generally slower than the
most probable speed of electrons. Hence, heat conductivity is often important
in plasmas, even when lf ≪ L.

Let us estimate the thermal conductivity in a (collisional) plasma. Substi-
tuting the numerical values in (2.96), with vth = vthe and the mean free path
(2.22), we have

κ ≃ 10−10

ln 1/Γ
× T 5/2 W m−1 K−1 (2.98)

in SI units, where T is the electron temperature. In space plasmas, we have
ln 1/Γ ∼ 10–20, so that in order of magnitude κ ∼ 10−11 ×T 5/2 W m−1K−1 (SI
units). For example, the solar corona, with T ∼ 106 K, has a heat conductivity
κ ≃ 104 W m−1K−1, of the same order of magnitude as the heat conductivity
of brass [5].

Beware of fluid equations in space plasmas

These results, however, must be applied with extreme caution in space plasmas,
for two reasons. First, the magnetic field has been neglected. The magnetic
field does not affect the thermal conductivity along its direction. However,
since in general the particle gyroradii are much smaller than the free paths,
the conductivity is strongly reduced in the direction ⊥ B. Second, even in the
direction ‖ B, the thermal conductivity (2.96) only holds when the free path is
much smaller than the scales of variation. How much smaller? This question is
still not fully solved, and we shall return to it in Sections 4.6 (in the context of
the solar corona) and 5.5 (in the context of the solar wind). In practice, values
of lf/L as small as about 10−3 are required. The basic reason is the fast increase
of the particle free path with speed. The free path lf given by (2.22) is the value
for particles of speed equal to the most probable speed. Since for a particle of
velocity v, the free path ∝ v4, particles moving, say, three times faster have a
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Figure 2.16 The basic difference between the fluid (left) and the kinetic (right)
picture, and why the former is often inappropriate in space plasmas. The fluid
picture implies a process that enables the particles to transport heat in bulk.
However, heat is mainly carried by the particles moving faster than average,
which are nearly collisionless and require a kinetic description. (Drawing by
F. Meyer.)

free path greater by a factor of 34 ∼ 102. And since heat is transported by the
faster particles, these fast particles must have a small free path for (2.96) to hold.

There lies the difficulty of applying fluid equations in space plasmas. The
particles that transport heat are those for which the classical theory of heat
transport does not apply! Stated in more precise terms, the fast variation of the
free path with speed prevents the expansion of the moment equations in terms of
the small parameter lf/L to converge. Even though the fluid continuity equation
and equation of motion do hold (provided the particle pressure is roughly a
scalar, and including the electromagnetic contribution if it is not negligible),
their solution requires another (local) fluid equation: the energy equation, which
generally does not hold because the heat flux is not a simple function of the local
derivatives. Another way of understanding this point is to note that for the heat
flux to depend on a local derivative, there must be a process – such as collisions –
that effectively localises the particles (Fig. 2.16).22

It is often said that the fluid picture nevertheless applies because the parti-
cles are localised by the gyration around the magnetic field and by the various
plasma instabilities. However, the gyration of the particles only localises them
in the direction perpendicular to the magnetic field, and the instabilities drive
them towards stable configurations, which do not necessarily correspond to local
thermal equilibrium.

2.3.3 Elements of magnetohydrodynamics

So far, we have ignored the contribution of the electromagnetic force to the
fluid motion. This is permissible if the electric charge and currents carried by

22Adapted from Meyer-Vernet, N. 2001, Planet. Space Sci. 49 247.
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the plasma particles are vanishing or negligible. We have seen that the large-
scale electric charge is generally negligible, but this is not necessarily so for
the current. And since currents produce magnetic fields, which themselves act
on the currents, the particles and the magnetic field are closely coupled. This
confers special properties to the medium, which are generally studied with a
fluid description. This is the subject of magnetohydrodynamics (MHD).

We neglect the charge separation, which is permissible at timescales T ≫
1/ωp and spatial scales L ≫ LD, and consider the plasma as a single fluid moving
at the non-relativistic speed V ≪ c and carrying the electric current J. We also
assume that the transport coefficients are similar in the directions parallel and
perpendicular to B. In the presence of an electric current, a further transport
coefficient acts: electric conductivity, which tends to reduce the gradients in
electric potential.

Plasma electric conductivity

The origin of the electric current is the slight difference in bulk motion of ions
and electrons in the presence of an electric field E. In the absence of a magnetic
field, each electron is accelerated as medv/dt = −eE. The ions, being more
massive, are less easily accelerated, producing a slight difference ∆v between
the electron and ion velocities, and thus an electric current of density

J = −ne∆v (2.99)

for n electrons and n (singly charged) ions per unit volume. Because of electron–
ion collisions, of frequency νei, the electrons lose their velocity excess ∆v in an
average time ∆t ≃ 1/νei. At equilibrium (which requires E weak enough, see
Section 5.4.5), the momentum gained by an electron per second −eE is balanced
by the momentum transferred per second to the ions, me∆v/∆t, so that

−eE = me∆v × νei.

Eliminating ∆v by using (2.99), we deduce J =
(

ne2/meνei

)

E. This may be
written

J = σE (2.100)

σ =
ne2

meνei
(electric conductivity). (2.101)

Substituting νei = vthe/lf with the free path (2.23) and ln(1/Γ) ∼ 10–20, we
find σ ∼ 3 × 10−4 × T 3/2. A more exact calculation yields

σ ≃ 6 × 10−4 × T 3/2 (Ω m)
−1

. (2.102)

With a temperature T ≃ 106 K, this yields σ ≃ 0.6 × 106 Ω−1 m−1, nearly
equal to the electric conductivity of mercury. Note that σ depends only on the
temperature, being independent of the density. This is not surprising since with

From:   Basics of the Solar Wind   © N.  Meyer-Vernet  2007   Cambridge University Press Corrected proofs



Many particles: from kinetics to magnetohydrodynamics 87

more particles, the current increases, but the collisional losses increase in the
same proportion.

An important remark is in order. The above estimate assumes the electrons
to follow straight lines between two collisions, and thus neglects the effects of
the magnetic field. This is permissible only in the direction ‖ B, or if the mean
free path is much smaller than the radius of gyration, so that the curvature
of the trajectories may be neglected. Therefore, (2.101) represents the electric
conductivity:

• in the direction ‖ B,

• in the directions ⊥ B, if lf ≪ rg.

In general, the opposite inequality holds, so that the particle gyration reduces
strongly the electric conductivity in the directions ⊥ B.

Magnetic diffusion

Let us consider an important consequence of the electric conductivity.
For slow time variations and non-relativistic plasma bulk speeds, we may ne-

glect the term
(

1/c2
)

∂E/∂t compared to ▽×B in Maxwell’s equation (2.30),23

so that we have

▽× E = −∂B/∂t (2.103)

▽× B = µ0J (2.104)

in a ‘laboratory’ frame R. In the frame R′ of a plasma moving at velocity V

with respect to R, the electric field is E′ = E + V × B, so that the electric
current is J = σE′, i.e.

J = σ (E + V × B). (2.105)

This yields E = J/σ − V × B, which we substitute into (2.104), to yield

∂B/∂t = −▽×(J/σ − V × B). (2.106)

Eliminating J with the help of (2.104) and using the vector identity ▽ ×
(▽× B) = −▽2 B (since ▽ · B = 0), we deduce

∂B

∂t
=

▽2B

µ0σ
+ ▽× (V × B). (2.107)

This equation contains two contributions to the magnetic field variation:

• a diffusion, produced by the conductive losses,

• a convection, produced by the plasma bulk motion.

23This requires that the timescale τ , length scale L and mean velocity V satisfy E/τc2 ≪
B/L, i.e. with E ∼ V B, τ ≫ LV/c2.
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For magnetic variations at the scale L, we have | ▽2B |∼ B/L2, so that the first
term on the right-hand side of (2.107) is of order of magnitude B/

(

µ0σL2
)

. Its
contribution yields ∂B/∂t ∼ B/

(

µ0σL2
)

, making the magnetic field vary on a
timescale

τσ ∼ µ0σL2 (2.108)

proportional to the square of the spatial scale of variation, as in usual diffusion
processes. The second term on the right-hand side of (2.107) is produced by
the bulk speed, and is of order of magnitude VB/L. Either of these two effects
can be dominant, depending on the relevant time and length scales. The ratio
between both terms is the non-dimensional number

convection
diffusion

∼ µ0σLV ≡ Rm (magnetic Reynolds number). (2.109)

Magnetic diffusion is therefore negligible if Rm ≫ 1; Rm is called the mag-
netic Reynolds number, in analogy with the fluid Reynolds number whose value
quantifies the importance of viscosity.

Basically, the magnetic field diffuses in a conductive medium because the
electric currents produce a joule energy loss, which converts magnetic energy into
heat. To understand this, consider the following order-of-magnitude estimate.
The rate of energy dissipation per unit volume is J ·E = J2/σ. From Maxwell’s
equation (2.104), the current corresponding to a magnetic field of scale L is of the
order of magnitude: J ∼ B/µ0L, and dissipates energy at the rate (B/µ0L)

2
/σ

per unit volume. During the diffusion time τσ ∼ µ0σL2, the energy dissipated
per unit volume is thus ∼ B2/µ0, equal (in order of magnitude) to the initial
density of magnetic energy.

There is a major difference between laboratory experiments – on which our
intuition is based – and astrophysics. In the laboratory, we have Rm < 1 so
that magnetic diffusion dominates, and diffusion acts so quickly that the electric
currents are mainly determined by the electric conductivity. In astrophysics, the
opposite inequality holds because of the large scales and velocities.

Frozen-in magnetic field

When the magnetic Reynolds number is so large that the electric conductivity
may be considered as infinite, the induction equation (2.107) reduces to24

∂B

∂t
= ▽× (V × B) . (2.110)

Consider a closed contour drawn in the fluid, and the magnetic flux that it
embraces. As the fluid moves, the contour is displaced and deformed, but one
may prove from (2.110) that the flux embraced remains constant. This is known
as Alfvén’s theorem, and is picturesquely expressed by saying that the magnetic

24The vorticity field ▽ × V satisfies the same equation as B in the limit of an infinitely
large Reynolds number (no viscosity).
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Figure 2.17 A consequence of flux freezing. If we try to introduce a piece of
conductor into a magnetic field, the magnetic field lines bend away, avoiding
the conductor (1, 2), until magnetic diffusion lets the magnetic field penetrate
(3). Conversely, if we try to remove the bar from the magnetic field, the field
lines follow the motion, remaining frozen into the conductor (4).

lines of force are ‘frozen’ in the fluid. The fluid can move freely along the
magnetic field lines, but any motion of the fluid perpendicular to the field lines
carries them with the fluid.25

Basically, this is because if the fluid moves across the magnetic field B,
the motion induces an electric field of amplitude proportional to the com-
ponent of the velocity ⊥ B. If the conductivity is infinite, the electric field
must vanish for the electric current to remain finite, and so does this velocity
component.

An important consequence of magnetic flux freezing is that in a conducting
fluid, one may increase the magnetic field by stretching the field lines. Indeed,
consider a small magnetic flux tube of section s and length l, that is carried and
deformed as the fluid moves. Alfvén’s theorem tells us that the magnetic flux
across the tube, which is constant along the tube at each time, remains constant
too as the tube moves with the fluid, so that Bs = constant. Conservation of
mass yields ρsl = constant, so that B ∝ ρl. If the velocity is much smaller than
the sound speed, the density ρ remains roughly constant, so that B ∝ l, i.e. the
magnetic field strength increases with the length of the tube. We shall see in
Section 3.3 that this property has important applications in the production of
the cosmic magnetic fields.

The freezing of the magnetic field in a conductor is a concept that has
important consequences in astrophysics, where we have generally Rm ≫ 1, but
to which we are not accustomed in the laboratory where the opposite inequality
generally holds. However, similar effects hold to a certain extent, albeit on
different scales, with the conductors we encounter in ordinary life (Fig. 2.17). If
we try to insert a copper bar, 0.1 m thick, say, in a magnetic field, the magnetic
field lines do not penetrate it immediately, because the electric currents induced
in the conductor produce a magnetic field opposing the external magnetic field.

25Saying that field lines are moving with the fluid is a way of identifying the motion of
field lines rather than a statement of fact, since this motion cannot be defined unambiguously
from electromagnetic theory alone; the concept of moving magnetic field lines might produce
apparent paradoxes if it is applied without care.

From:   Basics of the Solar Wind   © N.  Meyer-Vernet  2007   Cambridge University Press Corrected proofs



90 Tool kit for space plasma physics

It takes about 1 s for the currents to die away so that the external field enters
the bar. Meanwhile, the field lines are deformed as shown (Fig. 2.17, left, and
Problem 2.5.5). If you quickly pull the bar out of the magnetic field, electric
currents are again induced, tending to trap the magnetic field within the bar.
The magnetic field lines move with the bar, remaining inside for about 1 s, until
the decay of the currents enables the magnetic field to disappear from the bar
(Fig. 2.17, right).

This manifestation of magnetic field freezing in conductors occurs on much
larger scales in astrophysics, so that the time of field decay is much larger than
the timescale of motion. An important consequence is that plasmas in space,
remaining tied to the magnetic field lines, do not mix easily across the magnetic
field.

In the particular case when the magnetic field does not vary with time,
Maxwell’s equation (2.29) yields ▽ × E = 0, whence E = − ▽ ΦE where ΦE

is the electric potential, so that E is perpendicular to equipotential surfaces.
With the approximation E ≃ −V × B, E is perpendicular to both V and B,
so that V and B lie on equipotential surfaces. Hence in this case, stream lines
and magnetic field lines are equipotential.

Magnetic forces

Consider now the electromagnetic force that must be added in the fluid equation
of motion (2.63), when the plasma electric currents are not negligible.

With a vanishing large-scale electric charge, the electromagnetic force per
unit volume is J×B. Eliminating the current density with the aid of Maxwell’s
equation (2.104), the force per unit volume is

1

µ0
(▽× B) × B =

1

µ0
(B · ▽)B −▽

(

B2

2µ0

)

. (2.111)

This is the superposition of:

• a tension force along the field lines equal to B2/µ0 (per unit cross-section
area normal to them),

• the gradient of a magnetic pressure equal to B2/2µ0.

The magnetic force acting on a conducting medium may therefore be pic-
tured in two equivalent ways. The force is the sum of the Lorentz forces qv×B

acting on all the moving charges. Alternatively, since the charges are equivalent
to a current, itself related to the magnetic field, the force can be described in
terms of stresses in the magnetic field. Let us examine these stresses in more
detail.

The magnetic tension arises from the curvature of the field lines, and vanishes
when they are straight since in that case (B · ▽)B = 0. To understand its origin,
consider the simple case of a magnetic field having a cylindrical symmetry, as the
one produced by a current flowing along an axis. In this case, the magnetic field
follows circles perpendicular to the axis, and depends only on the distance r from
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Figure 2.18 The magnetic tension along the field lines may be pictured as a
tension force acting on an elastic wire.

this axis. The contribution of the tension to the volume force is (B · ▽)B/µ0 =
nB2/µ0r, where n is a unit vector pointing towards the axis (Fig. 2.18). This
contribution is produced by the magnetic tension acting along the field lines,
just as for a stretched string. Indeed, when a piece of string of small length l
and cross-section area s is stretched with a tension force Ts, producing a radius
of curvature r (Fig. 2.18), the (downward) vertical force at each extremity is
Ts × sin θ ≃ Tsθ, whereas the net horizontal force vanishes. The net force
(normal to the string) is 2Tsθ ≃ Tsl/r, since the length l ≃ 2rθ, so that the
force per unit volume is T/r. The magnetic tension T = B2/µ0 can therefore
be viewed as the tension force per unit cross-section normal to the field lines.

In the general case when the magnetic field strength varies along the field
lines, the term (B · ▽)B has also a component ‖ B, which balances the com-
ponent ‖ B of the gradient in magnetic pressure, so that the net magnetic force
is ⊥ B (as it should be), and may be expressed as

B2

µ0

n

Rc
−▽⊥

(

B2

2µ0

)

(magnetic force per unit volume) (2.112)

where n is a unit vector pointing towards the centre of curvature, Rc is the
radius of curvature and ▽⊥ denotes the component of the gradient in the plane
⊥ B. The magnetic tension tends to oppose the curvature of the field lines and to
shorten them, just as does the tension of an elastic string. The magnetic pressure
tends to oppose the compression of the field lines and to expel the plasma from
regions of high magnetic field, just as the ordinary gas pressure tends to expel
matter from high pressure regions. Hence, the plasma and the magnetic field
conspire to keep the plasma+magnetic pressure constant, by putting matter
where the magnetic field is weak and vice versa.

Finally, therefore, the equilibrium and dynamics of a magnetised plasma are
governed by three terms:

• inertia, corresponding to the density of bulk kinetic energy ρV 2/2,

• thermal pressure, corresponding to the density of random kinetic energy
∼ ρkBT/m,

• magnetic forces, corresponding to the density of magnetic energy B2/2µ0.
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If the first term dominates the third, the motion is not significantly affected by
the magnetic field, and it controls the field lines. In contrast, if the third term
dominates, the magnetic field controls the motion. Equating the first and third
terms gives a speed

V =
B

(µ0ρ)
1/2

≡ VA (Alfvén speed). (2.113)

This is the typical speed to which the magnetic field can accelerate the plasma;
we shall return to it later.

On the other hand, when the bulk velocity of the medium vanishes, the
nature of the equilibrium is determined by the ratio of the second to the third
terms:

β =
nkBT

B2/2µ0
. (2.114)

In that case, the equilibrium is governed by the magnetic field if β ≪ 1, and by
the plasma if β ≫ 1.

Magnetohydrodynamic waves

Just as a stretched string supports waves, in which transverse motions produced
by the string’s tension propagate along the string, so a magnetised plasma sup-
ports transverse waves, known as Alfvén waves, in which transverse motions of
the field lines produced by the magnetic tension propagate along the field lines.

On a stretched string, the phase speed is v =
√

T/ρ, where T is the tension
force per unit cross-section area, and ρ is the mass density of the string. Simi-
larly, the phase speed of an Alfvén wave is

√

T/ρ, where the tension T = B2/µ0

is produced by the magnetic field, and the mass density ρ is provided by the
plasma which moves with the field lines because of flux freezing. With this
analogy, the phase speed is

√

B2/µ0ρ, the Alfvén speed defined in (2.113), and
oriented along the field lines. This result may also be found as follows.

Consider a magnetic field oriented along z, i.e. B = Bz, and deform the
field lines as shown in Fig. 2.18. If x (z) is the amplitude of the displacement
normal to z, the magnetic field component along x is

Bx = Bzdx/dz ≃ Bdx/dz. (2.115)

The magnetic tension produces a restoring force per unit volume given by the
first term of (2.112) as Fx = B2/ (µ0Rc) where the radius of curvature Rc =
(

d2x/dz2
)−1

. Since the field lines move together with the plasma of mass density
ρ, this yields the equation of motion

ρ
d2x

dt2
=

B2

µ0

d2x

dz2
. (2.116)
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Figure 2.19 Sketch of the magnetic field lines in an Alfvén wave; the undis-
turbed magnetic field lines are shown as dotted lines.

There are two solutions of the form26

x ∝ e−i(ωt−kz) ω/k = ±VA VA ≡ B/
√

µ0ρ (2.117)

which are plane waves propagating along z at the phase speed VA, perturbations
of B that are ⊥B.

The material moves with the field line at right angles to the direction of
propagation at the speed v = dx/dt = −iωx (in Fourier space), so that the
kinetic energy per unit volume is ρ | v2 | /2 = ρω2 | x2 | /2. From (2.115)
and (2.117), the magnetic field variation in the wave is Bx = Bikx, so that the
wave magnetic energy per unit volume is | B2

x | /2µ0 = k2B2 | x2 | /2µ0. Since
ω/k = VA, both energies are equal.

The flux of energy carried by the wave is thus equally shared by the mechanic
and magnetic energies, and equal to twice the flux of mechanical energy VA × ρ
| v2 |.27

Since the wave vector k is normal to the fluid velocity v, we have in Fourier
space ▽ · v = ik · v = 0, so that the continuity equation yields ρ = constant.
Hence, the mass density is not perturbed in these waves, as might be expected
from Fig. 2.19, which shows that the deformation of the field lines does not
change the volume of the flux tubes.

Finally, even though our calculation assumes small perturbations, these
waves can exist with a large amplitude, provided the medium is incompress-
ible and adiabatic. In this case, Alfvén waves may propagate at constant speed
in a homogeneous medium without any distortion or attenuation. These waves
are of great importance in astronomy, as they transport perturbations along the
magnetic field over long distances.

The above calculation assumes a frozen-in magnetic field and non-relativistic
speeds, which require in particular k ≪ 1/rg, ω ≪ ωg and VA ≪ c, and consider
a special geometry: perturbations of speed and magnetic field that are ⊥ B

and propagate along B. For other directions, one finds three MHD modes: a
generalisation of the Alfvén wave propagating at an angle with the magnetic

26In Fourier space, with the usual convention that the physical quantity corresponding to,
say, the displacement noted x in Fourier space is equal to the real part of x.

27We have neglected the terms involving the electric field in Maxwell’s equations, so that
the electric energy is absent. This approximation is acceptable if VA ≪ c.
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field, and two modes which, contrary to the Alfvén mode, involve some plasma
compression, so that the restoring forces are the magnetic stresses plus the gas
pressure gradient.

The generalised Alfvén wave has a wavefront that is not necessarily ⊥ B,
and propagates at the Alfvén speed VA in the direction ‖ B whatever the angle
θ between k and B, so that ω/k = VA cos θ; the perturbations of velocity and
magnetic field are perpendicular to both k and B, so that a given magnetic field
line still looks like a plucked string.

Of the two compressive modes, one propagates faster than the other, so that
they are called the fast and slow magnetosonic waves. In the so-called fast
wave, the particle pressure and the magnetic forces act roughly in phase, and
the propagation depends strongly on the angle θ between k and B:

• When θ → 0 the phase speed ω/k → max (VA, VS).

• When θ → π/2 the velocity perturbation is ‖ k just like a sound wave,
with the effect of the gas pressure supplemented with that of the magnetic
pressure. This is thus a longitudinal wave propagating ⊥ B, in which the
field lines move parallel to themselves, with alternating compressions and
rarefactions of the gas and field, so that the restoring force is produced
by the sum of the gas and the magnetic pressure. The phase speed may
be calculated by generalising our calculation of the sound waves (2.76), as
(γP/ρ + γMPM/ρ)

1/2 where PM = B2/2µ0 is the magnetic pressure and
γM is the corresponding adiabatic index (γM = 2 for this two-dimensional

compression normal to B). Therefore, ω/k →
(

V 2
A + V 2

S

)1/2
.

The so-called slow wave has the restoring forces acting roughly out of phase:

• When θ → 0 the phase speed ω/k → min (VA, VS).

• When θ → π/2 the phase speed vanishes.

Non-ideal magnetohydrodynamics

The concept of a frozen-in magnetic field has been derived by assuming that the
electric field vanishes in the plasma frame. This is not exactly so, for several
reasons.

First of all, even if the conductivity is very large, it is never infinite. This
point is not a mere semantic distinction because the electric resistivity, however
small, makes the magnetic field diffuse on a timescale that is proportional to the
square of the length scale. Diffusion thus acts very quickly if small scales arise,
even with a very large conductivity. Let L be the typical scale of variation, so
that Rm ≫ 1 and the diffusion term ▽2B/µ0σ in (2.107) is negligible. Now
suppose that some effect produces a variation at a smaller spatial scale l ≪ L
so that µ0σlV < 1. In that case, the diffusion term ▽2B/µ0σ ∼ B/

(

µ0σl2
)
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becomes larger than the motional term ▽×(V × B) ∼ V B/l, so that the electric
conductivity is no longer negligible.28

With a finite electric conductivity, there is an electric field in the frame of the
plasma equal to J/σ. This is not, however, the only component of the electric
field, because in deriving (2.100)–(2.101), we have neglected:

• the gradient of the electron pressure Pe, which produces a contribution to
the electric field in the plasma frame equal to −▽ Pe/ne, which balances
the electron pressure force, to maintain the plasma neutral,

• the effect of the magnetic field on the electron trajectories, which produces
an additional contribution to the electric field equal to J×B/ne, in order
to produce a force on the electrons that balances the Lorentz force,29

• the effects of the electron inertia on the current, which produces an addi-
tional contribution to the electric field of order of magnitude V Bc/ (ωpL),
which is therefore negligible for scales L > c/ωp.30

We shall see that the electron pressure, and the corresponding large-scale
electric field, play an important role in the solar wind.

Another important consequence of the finite electric field is that the break-
down of the frozen magnetic field concept may produce important changes in
the topology of the magnetic field. This is called magnetic reconnection, and
is sketched in Fig. 2.20.31 When field lines of different directions are pushed
together, producing large gradients in a magnetic field, the magnetic field may
disappear quickly in a small region, the magnetic energy being converted into
other forms of energy, and the lines reconnect to form a new topology, so that the
connectivity of plasma parcels by field lines changes. This enables the magnetic
field to pass to a state of lower energy, releasing energy in producing plasma
jets and high-energy particles, in addition to heating. This change in topology
of the field lines enables different plasmas to mix.

Normal magnetic dissipation acts at the timescale τσ ∼ µ0σL2. This may be
compared to the collision time, which may be written, with the aid of (2.101),
as

1

ν
∼ τσ ×

(

c/ωp

L

)2

28A similar effect acts in hydrodynamics with the viscosity. In a non-viscous fluid, objects
move without friction. Nevertheless, the friction force on an object of cross-section S moving
at speed V in a fluid of density ρ is of order of magnitude ρV 2S for a very large range of
fluid viscosities including extremely small ones. We will return to this apparent paradox in
Section 6.4.

29This term is called the Hall electric field. When it is not negligible, but the other terms
are, the electric field in the laboratory frame is E = − (V − J/ne) × B. If Vi and Ve are
respectively the bulk speeds of ions and electrons, the current is J = ne (Vi − Ve), so that
since V ≃ Vi because the ions carry the mass, E = −Ve ×B and the frozen-in approximation
holds for the electron gas, instead of holding for the plasma as a whole.

30The so-called electron inertial length.
31Beware that Fig. 2.20 is a simplistic view that not only ignores the three-dimensional

nature of the phenomenon, but uses an MHD concept (moving field lines to which the plasma
is attached) under conditions when it does not apply.
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Figure 2.20 A naive view of magnetic reconnection. Two field lines of opposite
directions are pushed together; the fluid parcels A and B lie on one field line, C
and D lie on the other one (1). After reconnection (2), the fluid parcels A and
C lie on a field line, the fluid parcels B and D lie on another one (3), which are
separating from each other (4).

so that for scales greater than the electron inertial length c/ωp (at which the
electron inertia may be neglected), the collision time is smaller than the time
τσ for magnetic resistive dissipation.

In nearly collisionless plasmas, small scales arise, which may be smaller than
all the plasma characteristic scales: the gyroradii and inertial lengths for all
particle species, and even the Debye length. In this case, all the fluid and MHD
approximations break down, and one must describe the plasma in a kinetic way.
Reconnection then acts faster than the scales τσ and 1/ν, acting instead on
timescales that are typically a fraction of the Alfvén time (the time of displace-
ment at the Alfvén speed)

τA = L/VA = (τσ/RM ) × (V/VA) . (2.118)

2.3.4 Waves and instabilities

We have seen that perturbations in the magnetic field and/or the plasma pres-
sure may drive several kinds of waves. In deriving the properties of these waves,
however, we have neglected the electron inertia, and we have pictured the plasma
as a fluid. Even if the unperturbed medium has Maxwellian velocity distribu-
tions, these approximations are not acceptable at frequencies equal to or greater
than the plasma characteristic frequencies (the gyrofrequencies and the plasma
frequency), or wavelengths smaller than the plasma characteristic scales (the
Debye length, the gyroradii and inertial lengths).

Electromagnetic waves

At frequencies near the plasma frequency or greater, the inertia of the electrons
is no longer negligible, but, because the ions have much greater mass, we may
neglect their motion. We also neglect the electron random motion (which is
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acceptable if the wave phase speed is much greater than the electron most prob-
able speed), and the ambient magnetic field (which is acceptable at frequencies
much greater than the electron cyclotron frequency), and assume that the wave
weakly perturbs the medium. In this case, we may assume all the electrons to
acquire the same velocity v in the wave electromagnetic field, so that they obey
the fluid equation of motion

me∂v/∂t = −eE (2.119)

where E is the wave electric field; we have also neglected the Lorentz force
produced by the wave magnetic field and the term (v · ▽)v since they are
of second order in the (small) perturbation. This electron motion produces a
current density

J = −nev ⇒ ∂J

∂t
= ω2

pǫ0E (2.120)

where n is the unperturbed electron density, ωp the corresponding plasma fre-
quency, and we have substituted (2.119).

Consider a wave satisfying ▽·E = 0, so that from Maxwell’s equation (2.29),
the density of electric charge vanishes. In this case, we have ▽ × (▽× E) =
−▽2 E, so that Maxwell’s equations (2.29) and (2.30) yield

▽× ∂B

∂t
= ▽2E = µ0

∂J

∂t
+

1

c2

∂2E

∂t2
.

Substituting the current (2.120), this yields

∂2E

∂t2
− c2 ▽2 E = −ω2

pE (2.121)

which has a plane wave solution ∝ e−i(ωt−k·r) with

ω2 = ω2
p + k2c2. (2.122)

From Maxwell’s equations (2.29), and since we have assumed ▽ · E = 0, this
is a transverse wave (k ⊥ E ⊥ B) as is light propagating in vacuum, but we

see from (2.122) that the wave has a phase speed ω/k = c/
√

1 − ω2
p/ω2 that

depends on the frequency and wave number, and propagates only at frequencies
greater than the plasma frequency; for ω < ωp, k is imaginary, so that the wave
decays in space, as does light reflected from a mirror. Since the phase speed
ω/k > c, it is generally much greater than the speeds of individual particles,
which can thus be safely neglected. This is why the wave is neither affected by
the pressure of the particles nor damped.32

If the ambient magnetic field is not negligible, the electrons gyrate in this
field. This affects the wave for frequencies of the order of magnitude of the elec-
tron gyrofrequency or smaller. In particular, for propagation along the ambient

32In the absence of collisions.

From:   Basics of the Solar Wind   © N.  Meyer-Vernet  2007   Cambridge University Press Corrected proofs



98 Tool kit for space plasma physics

magnetic field, the wave is split into two waves in which the electrons and the
wave electric (and magnetic) field gyrate around the ambient magnetic field at
the wave frequency.33 The mode rotating in the same sense as do the electrons
in the ambient magnetic field (the direct sense) is more easily emitted and ab-
sorbed by them. In the frequency range ω < ωge < ωp, one finds that the delay
of propagation increases towards low frequencies, giving rise to a characteristic
whistle, so that this mode is called a whistler.

Langmuir waves

The electromagnetic waves studied above have ▽ · E = 0, so that there is
no variation in the density of electric charge. We have seen in Section 2.1
that variations in the density of electric charge make electrons oscillate in bulk
when the random agitation is negligible. The random agitation has two major
consequences. The first consequence is that it produces a pressure force that
makes these oscillations propagate. This may be understood by picturing the
electrons as a fluid of number density n and pressure P = nkBT , so that their
equation of motion in the wave field is

me∂v/∂t = −eE −▽P/n (2.123)

in the absence of ambient magnetic field. Because of the small timescale, we
assume the electrons to behave as an adiabatic fluid (with 1 degree of freedom –
the wave direction of propagation), so that P ∝ nγ with γ = 3. This yields
▽P = 3kBT ▽n. Because of the pressure term, we now have instead of (2.120)

∂J

∂t
= ω2

pǫ0E +
3

2
v2

thee ▽ n. (2.124)

Because of the small timescale, the ions do not move, so that the variation
in electric charge density is ∂ρe/∂t = −e∂n/∂t; hence the continuity equation
applied to the electric charge and current yields ▽ · J = e∂n/∂t. Taking the
divergence of (2.124) and expressing J, E and ▽n in terms of the charge density
ρe with the help of Maxwell’s equation ▽ · E = ρe/ǫ0, we find

∂2ρe

∂t2
− 3

2
v2

the ▽2 ρe = −ω2
pρe. (2.125)

This equation has a plane wave solution ∝ e−i(ωt−k·r) with

ω2 ≃ ω2
p + 3k2v2

the/2 ≃ ω2
p

(

1 + 3k2L2
D

)

. (2.126)

33These waves have respectively a right-hand and a left-hand circular polarisation, with
respect to the direction of the ambient magnetic field. Beware that a number of different
conventions are in use to label these waves, so that the same wave is given a different hand-
edness depending on the context. For physicists, right-hand and left-hand generally refer to
the direction of the wave vector k; for radio astronomers, the same words refer to the direc-
tion from which the wave is coming, i.e. −k, so that plasma physicists and radioastronomers
use the same label only if B and k have opposite directions; furthermore, old textbooks call
these waves respectively ordinary and extraordinary, whereas the latter names now denote
electromagnetic waves of linear polarisation that propagate at an angle to the magnetic field.
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The wave electric field (and also the particle velocity perturbation due to the
wave) is parallel to k; it is due to the charge separation as the electrons oscillate
whereas the massive ions are barely set in motion at these high frequencies.
Whereas the electromagnetic wave found previously is a simple generalisation
of the electromagnetic wave in vacuum, with the plasma acting as a dielec-

tric medium (of refractive index
√

1 − ω2
p/ω2 for ω ≫ ωge and a birefringent

medium otherwise), this longitudinal wave is entirely new. It is called a Lang-
muir wave, and is simply the Langmuir oscillation that propagates because of
the electron thermal motion. One sees from (2.126) that the wavelength is
greater than LD for ω ∼ ωp, and tends to infinity as ω → ωp where the wave re-
duces to a plasma oscillation. We shall see an illustration of these properties in
Section 6.4.

Landau damping

The second consequence of the thermal agitation is that the Langmuir waves
are damped. This is called Landau damping. This damping does not appear
in (2.126), which gives a real value of k for any frequency ω > ωp, because our
derivation pictured the electrons as a fluid, while Landau damping comes from
the individual motions of the particles and therefore requires a kinetic picture.
This damping process is subtle since it produces losses without introducing any
explicit damping term in the equation of motion, and appears in a wide range
of problems outside plasma physics, from Saturn’s rings to fireflies.34

A simple way of understanding this process is to picture it as a resonance
between the wave and the electrons whose velocity equals the wave phase speed.
These electrons see a constant electric field, and are therefore in resonance with
the wave. The electrons moving slightly slower than the wave are accelerated,
whereas those moving slightly faster are decelerated. With a Maxwellian ve-
locity distribution (and more generally with a distribution whose derivative is
negative for a velocity equal to the phase speed), there are more slower particles
than faster ones, so that the net effect is to damp the wave. The damping is
greater when there are more electrons having a speed close to that of the wave,
which comes true when the phase speed is smaller than or close to the elec-
tron thermal speed. One sees from (2.126) that this happens when k ≥ 1/LD.
Hence, the Langmuir wave propagates at frequencies above but close to the
plasma frequency, and is heavily damped at larger frequencies.

Conversely, if the velocity distribution has a positive derivative for a velocity
equal to the wave phase speed, the wave grows. This happens for example
when a beam of particles of velocity v propagates in a plasma faster than the
electron thermal speed; the beam excites Langmuir waves of phase speed ω/k ≃
v directed along v, converting the energy of the beam into wave energy. This
is an example of one of the numerous instabilities that arise in non-equilibrium
plasmas, and we shall see an illustration of it in Section 6.4.

34See for example Meyer-Vernet, N. and B. Sicardy 1987, Icarus 69 157, and Sagan, D.
1994, Am. J. Phys. 62 450.
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A similar resonance occurs for other kinds of plasma waves when the phase
speed coincides with that of plasma particles. An example is cyclotron damp-
ing. For particles moving at velocity v‖ along the ambient magnetic field B,
the wave frequency is Doppler-shifted to the frequency ω− k‖v‖ where k‖ is the
component of the wave vector along B, so that at some velocity it may coincide
with the cyclotron frequency (or a harmonic), i.e. ω − k‖v‖ = nωg. The wave
is then damped when it has an electric field component perpendicular to B,
so that particles experience a perturbing force which oscillates at the cyclotron
frequency (or a harmonic).

2.3.5 Summary

The fast increase with speed of the collisional free path makes fast particles vir-
tually collisionless, and therefore easily driven out of equilibrium. Two effects
come to the rescue of collisions for tending to restore equilibrium: the first effect
is the gyration around the magnetic field, but it acts only across the magnetic
field; the second one is due to plasma instabilities which, however, only pre-
vent the velocity distributions from becoming too crazy, but do not oblige them
to be Maxwellian. This is why dilute plasmas have often velocity distributions
which are non-Maxwellian but not too crazy. Since fluid descriptions – including
MHD – assume velocity distributions to be nearly Maxwellian (or bi-Maxwellian),
dilute plasmas often require a kinetic description.

Both fluid and kinetic descriptions involve the conservation of particles, mo-
mentum and energy. Since momentum and energy are carried respectively by
plasma ions and electrons, of which the latter move much faster, thermal con-
ductivity generally plays a more important role than viscosity, and is rarely
negligible. Therefore, the major difficulty of fluid descriptions is to model cor-
rectly the transport of energy. Whereas in kinetic descriptions the heat flux
is calculated self-consistently, fluid descriptions use various approximations of
it. Basically, three kinds of fluid approximations are made, depending on the
conditions: for very slow or very fast changes, the plasma is assumed to be
isothermal or adiabatic respectively, corresponding to a heat flux that is respec-
tively infinite or zero; for intermediate cases, the heat flux is approximated by
the collisional transport. These approximations are valid only if the particle
velocity distributions are close to Maxwellian.

When the electric field in the plasma frame is small enough, the plasma and
magnetic field lines may be pictured as being tied together, so that the plasma
can only move along the magnetic field but not across it. As a consequence,
space plasmas tend to be organised by the magnetic field lines and do not mix
easily across them. The magnetic forces on the plasma may be described as
the superposition of a pressure acting across the field lines, which tend to expel
the plasma from regions of strong magnetic field, plus a tension acting along the
field lines, which tends to shorten and unbend them.

From:   Basics of the Solar Wind   © N.  Meyer-Vernet  2007   Cambridge University Press Corrected proofs



Basic tools for ionisation 101

2.4 Basic tools for ionisation

What is the origin of ionisation in the solar interior, the solar wind and the
planetary environments? A full answer to this question requires highly polished
calculational techniques using the tools of quantum mechanics, and is outside the
scope of this book; we shall give instead order of magnitude estimates based on
elementary considerations [14], [20]. We will do so with the naive point of view of
merely supplementing classical physics by the Heisenberg uncertainty relations.

2.4.1 Energy of ionisation and the size of the
hydrogen atom

Let us estimate the size and energy of the hydrogen atom in its most stable
state: the fundamental one. The H atom is made of a proton and an electron
bound together by an attractive Coulomb force. The potential energy of the
electron at distance r from the proton is WE = −e2/ (4πǫ0r). Because of the
small size of the system, the kinetic energy of the electron is determined by
Heisenberg’s uncertainty relation, which says that an electron confined in a
small region of size ∆r has the momentum ∆p ∼ h̄/∆r, whence the kinetic
energy Wth = (∆p)

2
/2me. Since in the H atom the electron is confined in a

region of size ∆r ∼ r, we have Wth ∼ h̄2/
(

2mer
2
)

, so that the total energy of
the electron is

W ∼ −e2

4πǫ0r
+

h̄2

2mer2
. (2.127)

The most stable state is the one of minimum energy, which arises for a distance
r so that dW/dr = 0, i.e.

r ∼ 4πǫ0h̄
2

e2me
≡ rBohr (Bohr’s radius). (2.128)

Substituting the numerical constants, we have

rBohr = h̄/ (αmec) ≃ 0.53 × 10−10 m (2.129)

where

α = e2/ (4πǫ0h̄c) ≃ 1/137 (fine structure constant). (2.130)

For r = rBohr, we have Wth = −WE/2 in accord with the Virial theorem
(Section 3.1.1), and the total energy (2.127) is equal to minus

e4me

8ǫ20h
2
≡ WBohr (Bohr’s energy). (2.131)

Substituting the numerical constants, we have WBohr ≃ 2.2 × 10−18 J, which
comes to about 13.6 eV.
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This is the energy required to ionise a hydrogen atom from its fundamental
state. By mere luck, this order-of-magnitude estimate gives the exact result. For
atoms made of a nucleus of charge Ze surrounded by Z electrons, an electron
of the outer shell sees the nucleus charge shielded by the charge of the Z − 1
other electrons, so that the energy required to strip an outer electron is of the
same order of magnitude as for ionising hydrogen.

This is no longer true, however, as more electrons are stripped, so that
producing highly charged ions requires a large energy. Very crudely, stripping
an element of charge Ze of its last electron (of potential energy −Ze2/ (4πǫ0r)
at distance r), to produce a bare nucleus, requires an energy that is greater than
the Bohr energy by the factor Z2.

2.4.2 Ionisation by compressing or heating

These results furnish hints as to how a medium may be ionised.
One way is to compress, so that the average distance between ions becomes

smaller than the sum of the radii of two atoms; this somehow crashes the
atoms. For hydrogen, this happens when the ion number density n satisfies
n−1/3 < 2rBohr, i.e. when the mass density satisfies ρ > mp/ (2rBohr)

3 ≃ 1.5×
103 kg m−3. We shall see in the next chapter that the density in the central
parts of the Sun largely exceeds this value, producing ionisation.

Less dense media may be ionised by furnishing to atoms the ionisation energy
WBohr. This may be done in several ways. One way is to heat. One might think
naively that significant ionisation requires heating at a temperature so that the
thermal energy kBT > EBohr. This is, however, a classical point of view, and in
fact a smaller energy is required because ionisation increases considerably the
phase space accessible to an electron and therefore its number of possible states.
This may be understood as follows.

At equilibrium, the ratio of the number of free electrons in some volume of
phase space to the number of electrons bound in an H atom is proportional to
e−∆W/kB T (where ∆W is the difference in total energy between both states)
times the ratio of the number of possible states for respectively a free electron
and a bound one. Let ni = ne be the ion (or electron) number density and nn

the number density of neutrals. In the volume V , a recombining electron may
do so with either of the niV ions and have one of two spin states, so that its
number of possible states is 2niV . On the other hand, the number of possible
states of a free electron at temperature T and thermal speed ve ∼ (kBT/me)

1/2

is roughly twice the ratio of the available volume V to the ‘private’ volume of
a free electron (that is roughly the cube of its wavelength h/meve). With the
approximation ∆W ∼ WBohr , this yields the degree of ionisation at thermal
equilibrium ne/nn ∼ n−1

i (h/meve)
−3

e−WBohr/kB T . A more exact calculation35

yields nearly the same result:

nine

nn
≃

(

2πmekBT

h2

)3/2

e−WBohr/kB T (2.132)

35Integrating over the electron velocity distribution.
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which is a simplified version of the so-called Saha formula. The term before the
exponential is of the order of magnitude of (T/TF )

3/2 where TF is the Fermi
temperature (see Section 2.1), which is much smaller than T in non-degenerate
media. Hence, in general, ionisation is already significant at a temperature much
smaller than WBohr/kB ≃ 1.6 × 105 K.36

Let us apply (2.132) to the solar corona. With ne ∼ 1014 m−3 and T ∼ 106 K,
we find ne/nn ∼ 2 × 1016, which shows that the corona is virtually completely
ionised. One must be careful, however, in applying this formula since the corona
is not in thermal equilibrium.

Planetary atmospheres are in general too cold for being thermally ionised.

2.4.3 Radiative ionisation and recombination

Ionisation and recombination

Another way of ionising particles is to subject them to photons of energy greater
than the energy of ionisation.

The ionisation rate per atom is proportional to the flux of ionising photons
F , and may be written

Λion = Fσion (2.133)

in s−1. Since the flux of photons F is expressed in m−2 s−1, σion – the cross-
section for ionisation – has the dimension of an area. With a concentration nn

of neutrals, the ionisation rate per unit volume is therefore dni/dt = nnΛion =
nnFσion.

Once ionised, the ions may recombine with electrons. For hydrogen, the
radiative ionisation and recombination processes may be written

H + ph ⇀↽ H+ + e−.

For a given ion, electrons recombine at a rate proportional to their flux ∼ nevthe

so that the rate of recombination per ion is

Λrec = nevtheσrec = neβ (2.134)

in s−1, where σrec has the dimension of an area, and may be expressed through
the parameter β = vtheσrec, the recombination coefficient. At equilibrium, in the
absence of bulk motion and of other ways of producing or suppressing particles,
the rate of ionisation per unit volume nnΛion balances the rate of recombination
per unit volume niΛrec, so that since ne = ni for singly ionised ions

nnFσion = n2
eβ ⇒ ne =

(

nnFσion

β

)1/2

. (2.135)

36By a factor that is easily shown to be approximately 1/ ln(T/TF )3/2 ≪ 1.
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Cross-sections

To estimate the order of magnitude of the cross-sections, we consider incident
photons of energy Wph ≥ WBohr, but still of the order of magnitude of WBohr,
because, if the energy of the incident photon is much greater than WBohr, con-
servation of both energy and impulsion makes the probability of ionisation very
small. Hence the electron liberated has the energy Wph − WBohr ≤ WBohr.
Likewise, we consider recombining electrons of energy ≤ WBohr. Now,

• in order for a photon to produce ionisation, it must (1) pass ‘close enough’
to an atom, and (2) be absorbed in liberating an electron,

• in order for a free electron to recombine radiatively, it must (1) pass ‘close
enough’ to an ion, and (2) become bound in producing a photon.

In the frame of quantum mechanics, ‘close enough’ means closer than the quan-
tum uncertainty on the position, that is h̄/p for a particle of momentum p.
Therefore,

• for the ionising photon of energy ∼ WBohr and momentum ∼ WBohr/c,
this distance is h̄c/WBohr,

• for the recombining electron of momentum mevthe, this distance is h̄/mevthe.

We deduce the cross-sections for ionisation and recombination

σion ∼ π (h̄c/WBohr)
2 × P (2.136)

σrec ∼ π (h̄/mevthe)
2 × P (2.137)

where P is the probability of absorption or emission of a photon by the electron
during the time uncertainty corresponding to the energy involved, i.e. ∆t ∼
h̄/WBohr.

We estimate P in a semi-classical way, regarding the bound electron as a
harmonic oscillator of angular frequency ω = WBohr/h̄ and momentum h̄/rBohr

so that the velocity is v ∼ h̄/ (merBohr) ≡ αc, where α is the fine structure
constant (2.130). For a harmonic oscillator, the speed varies by ∆v ∼ v in a
quarter of period, that is the time ∆t ∼ 1/ω, and energy is radiated at a rate
given by Larmor’s formula as

dW

dt
=

e2

6πǫ0c3

(

dv

dt

)2

. (2.138)

Writing dv/dt ∼ ∆v/∆t with ∆v ∼ v ∼ αc and ∆t ∼ 1/ω, we find that the
oscillator radiates during ∆t the energy

∆W ∼ dW

dt
× ∆t ∼ e2α2ω

6πǫ0c
. (2.139)

Quantum mechanics tells us that it does so in discrete steps by emitting photons
of energy h̄ω with the probability P = ∆W/ (h̄ω). From (2.139), this yields

P ∼ α3. (2.140)
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Correct calculations give cross-sections that are roughly three times greater
than the values (2.136)–(2.137) with our estimate P ∼ α3, i.e.

σion ≃ 10 (h̄c/WBohr)
2 × α3 ≃ 10−21 m2 (ionisation) (2.141)

σrec ≃ 10 (h̄/mevthe)
2 × α3 (recombination). (2.142)

The cross-section (2.141) holds for ionisation of hydrogen by photons of energy
∼ WBohr; for heavier atoms, the cross-section is of the same order of magnitude
for the liberation of an outer electron. The recombination cross-section (2.142)
holds for radiative recombination on the fundamental level of electrons of energy
≤ WBohr. The corresponding recombination coefficient is thus given by

βrec ≃ vtheσrec ≃ 10−17/
√

T m3 s−1 (2.143)

where T is the electron temperature. We shall use this recombination coefficient
to understand why the solar wind is ionised (Section 2.5.7), and the radiative
ionisation cross-section to estimate the basic properties of planetary ionospheres
(Section 7.1), for deriving comet’s properties (Section 7.5) and when studying
the interaction of the solar wind with the interstellar medium (Section 8.1).

2.4.4 Non-radiative ionisation and recombination

Ionisation by particle impact

Another way to produce ionisation is by bombarding with particles. For the
impact of a particle to ionise an atom, the kinetic energy of the relative motion of
the particle must exceed the ionisation energy ∼ WBohr. For an electron of mass
me this requires mev

2/2 > WBohr, i.e. v > αc. In this case, h̄/mev < rBohr,
so that the effective interaction distance between the electron and the atom (of
approximate size rBohr) is no longer h̄/mev but rather rBohr. Hence we expect
that the cross-section be of order of magnitude πr2

Bohr. This holds a fortiori for
a particle heavier than an electron.

However, the condition v > αc is not sufficient for producing ionisation, be-
cause, for the probability of interaction to be significant, the time of interaction
∆t ∼ rBohr/v must ensure that the energy h̄/∆t be roughly equal to WBohr,
i.e. v ∼ rBohrWBohr/h̄ ∼ αc.

For an electron (of mass me), this requires that the electron kinetic energy
be mev

2/2 ∼ WBohr. However, for an ion or an atom, the mass is m ≫ me,
so that the kinetic energy required to ensure v ∼ αc is greater by the factor
m/me ≫ 1.

Hence in space, impact ionisation is generally produced by electrons of energy
of the order of magnitude of WBohr, with an effective cross-section

σion ∼ πr2
Bohr

or by very energetic ions or atoms. With electrons of number density n and
temperature T ∼ WBohr/kB , the electron flux is about nvthe ∼ nαc, and the
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rate of ionisation per atom is Λion ∼ nvthe × πr2
Bohr. Substituting the electron

flux and the Bohr radius (2.129), we find the rate of impact ionisation per atom
per electron (in order of magnitude)

Λion/n ∼ πh̄2

αm2
ec

∼ 2 × 10−14 m3 s−1. (2.144)

Dissociative recombination

We have seen that the cross-section for radiative recombination is extremely
small, smaller by many orders of magnitude than the square of the typical
atomic size, because of the small probability of photon emission. However,
recombination occurs much more easily when the ions can dissociate. Instead of
producing a photon, recombination then produces several atoms, by a reaction
of the form

AB+ + e− 7−→ A + B.

The dissociation into several components replaces the emission of a photon to
conserve simultaneously the energy and the impulsion. Since no emission of
photon is required, the cross-section (in order of magnitude) is given by the
value (2.137) with P = 1, i.e.

σrec ∼ π (h̄/mevthe)
2 (2.145)

if h̄/mevthe > rBohr i.e. if mev
2/2 < WBohr. This yields the coefficient of

dissociative recombination

β = vtheσrec ∼ 10−11/
√

T (dissociative recombination) (2.146)

where T is the electron temperature (assumed smaller than WBohr/kB ∼ 1.6 ×
105 K).

This process is more effective than radiative recombination, by a factor of
about six orders of magnitude. Hence it is the dominant process when molecular
ions are present. In particular, it is the dominant recombination process in the
ionospheres of inner planets (Section 7.1.4) and of comets (Section 7.5.2), whose
atmospheres are made of complex molecules.

Charge exchange

Ionisation may also be produced by exchange of an electron between a neutral
and an ion, as

A+ + B 7−→ B+ + A

in the simple case when the ion is singly ionised. The atom B gives an electron
to the ion A+, and becomes ionised. This does not change the number of ions
and free electrons, but changes the chemical nature of the ions and their speeds
since the final ion has the properties of the original neutral and vice versa.
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If FA is the incident flux of ions A, the rate of ionisation per atom is FAσex

where σex is the cross-section for charge exchange. As for the collision frequency
for exchange of momentum between ions and neutrals (Section 2.1), the cross-
section is heavily influenced by the electric dipoles induced in the atom and in
the ion. For protons and hydrogen atoms with a relative speed of the order of
magnitude of the typical solar wind speed, this produces a cross-section greater
by two orders of magnitude than the Bohr radius squared, i.e.

σex ≃ 2 × 10−19 m2. (2.147)

This process plays an important role in the heliosphere when the solar wind
encounters a large flux of neutrals; we shall see that this holds with neutrals
of planetary and cometary origin (Section 7.5.6), as well as with interstellar
neutrals (Section 8.1.2), with the interesting further consequence that when the
original ion is highly charged, the final ion is left in a highly excited state whose
de-excitation produces ultraviolet and X-ray emission.

2.5 Problems

2.5.1 Linear Debye shielding in a non-equilibrium plasma

In this problem, we generalise the Debye shielding to a non-equilibrium plasma,
assuming small perturbations, and prove (2.8)–(2.9).

Consider an electron arriving from infinity (where its velocity is v) towards a
point charge at the origin that produces the electrostatic potential ΦE (r) (with
ΦE → 0 for r → ∞). Show that if the point charge perturbs weakly the electron
(i.e. if eΦE ≪ mev

2), then the electron velocity at distance r is changed by δv
given by δv/v = eΦE (r) /

(

mev
2
)

.
This velocity change is associated with a perturbation in electron number

density around the point charge. For example, if ΦE > 0 the electrons are
attracted and their trajectories are bent toward the charge, which increases their
density; since, however, their velocity increases, they spend less time within a
given region, which reduces this effect. Show that the net change in electron
density is given by δne/n = δv/v.

Apply this result to the ions (changing the mass and charge), and deduce
that the perturbations in electron and ion densities are given by

δne/n = eΦE (r) 〈v−2〉e/me δni/n = −eΦE (r) 〈v−2〉i/mi (2.148)

where the brackets denote averages over the velocities at infinity, for electrons
and ions respectively.

Deduce the shielding length from Poisson’s equation.
Think about the limitations of this calculation.37 The relation between δn

and δv depends on the symmetry of the problem. How are the results changed
with a different geometry? Show that if the point charge is replaced by a

37See Meyer-Vernet, N. 1993, Am. J. Phys. 61 249, and references therein.
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long wire, then the shielding disappears, whereas with a plane, there is an anti
shielding. What happens when one takes into account perturbations that are
not small? What kinds of particles are ignored in the above calculation?

Hints

We deduce δv/v from the conservation of total (electrostatic + kinetic) particle
energy between infinity and distance r.

To prove that the perturbations in density and speed are related by δn/n =
δv/v (in spherical symmetry), imagine a fictitious sphere of radius r collecting
particles arriving on its surface. The particles arriving at grazing incidence
with speed v (r) have an impact parameter p = r × v (r) /v, from conservation
of angular momentum between infinity (where the speed is v) and distance r.
The number of particles collected per second is nvπp2. This number is also
equal to n (r) v (r) × πr2 if the particles have density n (r) and speed v (r) at
distance r (because for each surface element of the collector, half the particles
are incident from one side, and their average perpendicular velocity is v (r) /2).
Whence n (r) /n = v (r) /v.

2.5.2 Mean free path in a plasma

Verify from Fig. 2.4, with the plasma properties indicated in the caption, that
for the velocity direction to change appreciably, the particle must travel a dis-
tance given roughly by (2.22).

2.5.3 Particles trapped in a planetary magnetic field

Consider a particle moving along a magnetic line of force near a planet of radius
RP , having a dipolar magnetic field (cf. Appendix and Fig. 2.12). Let θ0 be
the pitch angle in the magnetic equatorial plane at distance r = LRP from
the planet, and BP the magnetic field strength close to the planet in the polar
regions. When the particle comes close enough to the planet, it is absorbed
because of collisions with the atmosphere. When L ≫ 1, the line of force
crosses the planet surface in the polar regions.

Show that particles can be reflected between the north and south polar
regions if

θ0 ≥ arcsin(B0/BP )1/2. (2.149)

Calculate this limit angle for L = 6.
Show that the bounce motion between the north and south regions follows

the equation

mv2
‖ + µB = constant (2.150)

of a one-dimensional oscillator of potential energy µB.
Give an order of magnitude of the expression of the three periods of motion

of a trapped particle (respectively T1, T2, T3 for gyration, bounce, drift), and
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show that T1 ≪ T2 ≪ T3. Deduce that, in practice, the adiabatic invariant
associated to the gyration (the particle magnetic moment µ) is more invariant
than the one associated to the bounce motion, itself more invariant than the
one associated to the drift.

With the numerical parameters relevant for the Earth (Appendix), estimate
the drift velocity produced by the planet’s gravitational field, and show that its
ratio to the drift produced by the magnetic gradient is of the order of magnitude
of the particle gravitational potential energy to the thermal energy. Deduce that
it is in practice completely negligible.

2.5.4 Filtration of particles in the absence of equilibrium

In this problem, you will prove a very general result. Let a particle velocity
distribution in some region be made of a superposition of Maxwellians of differ-
ent temperatures. In absence of collisions, the particle velocity distribution in
another region where the potential energy of particles is greater has a greater
effective temperature. This result holds, for example:

• for the velocity distribution measured on a spacecraft, of particles that
are repelled by the spacecraft electrostatic potential (Section 7.2),

• for the environment of a planet or a star, subjected to the body’s gravi-
tational potential (and electrostatic field).

Consider a velocity distribution that is a sum of Maxwellians of densities nα0

and temperatures Tα, and give a formal expression of its effective temperature
T0 (defined from (2.51)).

Show that in the absence of collisions the distribution at a position where
the potential energy of the particles has increased by ∆ψ > 0 is again a sum
of Maxwellians having the same temperatures Tα, but with densities nα =
nα0e

−∆ψ/kB Tα . Deduce that the effective temperature is greater than T0.38

Prove this result graphically, by redrawing Fig. 2.13 with an initial distri-
bution having more fast particles than a Maxwellian, i.e. whose slope flattens
as energy increases.

Hints

The effective temperature of a distribution made of a sum of Maxwellians of
densities nα and temperatures Tα is

T =

∑

α nαTα
∑

α nα
. (2.151)

A particular application is studied in detail in Section 4.6.

38A general analytical proof may be found in Meyer-Vernet, N. 1995, Icarus 116 202.
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2.5.5 Freezing of magnetic field lines

Consider a bar of copper, of diameter L, and imagine you try to put it in a
region of strong magnetic field (Fig. 2.17, 1, 2, 3). How long will it take for the
magnetic field to penetrate into the bar? Conversely, once the magnetic field
has penetrated into the bar, if you try to remove the bar, how long will it take
for the magnetic field to disappear from the bar? At what speed should you
move the bar for the effects shown on Fig. 2.17 to take place? Figure out the
corresponding length and timescales for a cosmic object.

Hint

The electric conductivity of copper is about 0.6 × 108 mho.

2.5.6 Alfvén wave

Consider a small-amplitude Alfvén wave propagating along the ambient mag-
netic field in a uniform plasma at a speed much smaller than the velocity of light.
Show that the force produced by the gradient in magnetic pressure is negligible.
Show that the electric energy is negligible. Calculate the drift velocity of the
particles, and comment.

2.5.7 Why is the solar wind ionised?

We have seen that the corona is made essentially of hydrogen, and is so hot
that it is virtually completely ionised, and that the solar wind is produced by
the expansion of the corona. Use the radiative recombination coefficient to
understand why the solar wind remains ionised throughout the heliosphere.

Hints

The solar wind density is about n ∼ 5×106 (d⊕/d)
2 m−3 at distance d from the

Sun, where d⊕ ≃ 1.5 × 1011 m is the Sun–Earth distance (1 AU); the electron
temperature is about T ∼ 105 K; the size of the heliosphere is of the order of
magnitude of 102 AU.
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