Charging of nanograins in cold dusty plasmas:

from noctulescent clouds to Enceladus plume
and cometary environments

Nicole Meyer-Vernet

LESIA, Observatoire de Paris, CNRS, UPMC, Université Paris
Diderot, Meudon, France

QAGU

San Francisco 9-13 December 2013
(invited talk)

nicole.meyer@obspm.fr
www.lesia.obspm.fr/perso/nicole-meyer/



mailto:nicole.meyer@obspm.fr
http://www.lesia.obspm.fr/perso/nicole-meyer/

Nano grains

What are they?

Where are they found?

What makes them different?

How are they charged in cold plasmas?

... and in dusty plasmas



What are they?

» Original definition of a nanoparticle: a particle
that consists of a countable number of atoms




What are they?

> Size
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What are they?
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What are they?

» The size may
determine the
structure
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[Pradzynski 2012]
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What are they?

100 nm 10 nm 1 nm
Bulk matter Nano particles Molecules
0.1 um 10 A 1A Bonr
Macromolecule or nano grain? A various fauna ..  radius
Polycyclic Aromatic Hydrocarbons: QOO Fullerenes: Cg4,
2 CsoHyy 1 nm Q:O — Cy00
QQ 1 nm
=N
Biology <0 2D 2-D
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Insulin C Nanotechnology
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Graphene
2 nm “ 0.1 nm
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Where are they found?

» Interstellar space Inferred from:
« far UV extinction - oneerer
a < A21 =~ 10 nm [Weingartner & Draine 2001] QOO

BN - |R emission [seligren 1984: Draine & Li 2001] g.g
due to stochastic heating (PAH’s)

" NGC 7023 (Iris nebula)

dust density (10 nm) relative

» Interstellar nanograins cannot to value in ISM [Slavin et al. 2010]

enter the heliosphere

except embedded

in larger grains Presolar TiC
nanocrystal

"

B gy <<lg



Where are they found?

» Planetary environments o Polar mesosphere in summer:
coldest place on Earth

- “Smoke particles™ a few 0.1 nm to a few nm T
(from condensation of meteoritic matter)

- Charged aerosols: a few nm to 100 nm te
[e.g. Friedrich & Rapp 2009] X nice
7|
- O
TS
T < water vapor frost point: ~ = a
©
n Large quantities of Charged R S
nanodust (ice): up to a few 103/cm?3
[Rapp & Thomas 2006]

Temperature (K)



Where are they found?

» Planetary environments o Polar mesosphere in summer:
coldest place on Earth

= Nanodust produces:

v" NoctuLescent Clouds (ground obs.)/
Polar Mesospheric Clouds (SC obs.):
ice grains a > 20 nm scatter light

[Friedrich et al. 2012] v' Decreases in electron density Ng
Peak in n, associated to increases in
l (negatively charged) dust
N, density ny
© n. v Polar Mesosphere Summer

Echoes: strong backscatter of

radio waves (50 - 103MHZ) [e.g; Rapp
& Liibken 2004]
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Where are they found?

» Planetary environments 1400 Orbiter multiple flybys

Farther out ..

E ©
o Titan atmosphere =
[Coates et al. 2007, 2009] E Charged
= nanodust
98:0 [Lavvas et al. 2013]

10 Largest mass (m,) 10°
Radiusa~ 1.6 nmif p ~ 103 kg/m3
a~16 nmifp~1kg/m?3
Cassini/CAPS (Plasma Spectrometer)

serendipitous detection (charged
nanodust of energy/charge in the
range of the instrument)
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Where are they found?

» Planetary environments

0 Enceladus plume

[Jones et al. 2009]
Cassini/CAPS (Plasma Spectrometer)
serendipitous detection (charged

nanodust of energy/charge in the
range of the instrument)

Number density per unit mass

[Hill et al. 2012]

©

peak fluxes

®

1

Mass (m;) a~1.6nm
withg=z*e (ice)
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Where are they found?

» Planetary environments (and farther out)

o0 Fast (~300 km/s) nanodust streams
= ...accelerated by corotation electric field of Jupiter

= . and Saturn kempfetal. 2005]

serendipitous detection

Dust detectors on Ulysses/Galileo/Cassini: _ ) _
outside calibration range

Original results from calibration | | From dynamics
V ~ 20-56 km/s V > 200 km/s
m ~ 1019 - 10-16 kg [Griin et al. 1992] m ~ 1021 kg [Zook et al. 1996]

[Kruger 2003;
Hsu et al. 2012]

> Comets lon mass spectrometers on Giotto & Vega-1:
serendipitous detection: m ~ 0.5 10-?" kg at 10 km from
nucleus of Halley [Utterback & Kissel 1990 Sagdeev 1985, 1989]
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Where are they found?

» Interplanetary medium
[Meyer-Vernet & Zaslavsky 2009, 2012]

1AU

Nano grains > Q
accelerated by the N6

magnetized solar wind dust

STEREO/WAVES.:

serendipitous detection

(voltage pulses from high- a=10 nm 5 km
speed (~300 km/s) dust l l

impacts on SC)
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What makes them different?

100 nm 10 nm 1 nm
Bulk matter Nano particles Molecules
0.1 um 10 A 1A Bonr
radius

Transition between molecular and bulk properties

» Consensus on nanoparticles: their properties
are different from those of bulk material
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What makes them different?

= |Large proportion of surface atoms

Surface atoms have too few bonding partners
— free radicals = surface “dangling bonds”
— mean-square displacements of surface atoms are relatively large

l

v' Melting point & latent heat Most atoms lie
at the surface
decrease &
v" Diffusion coefficient increases

v Optical properties change

v" Much chemical activity at surface

v' Surface reconstruction Radius (nm)
v Coagulaton @ = @@ = ‘ decrease in surface energy
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What makes them different?

DIRECTORY >

YOU ARE HERE -
BUT HAVING LOCATED
YOUR POSITION,
YOU'VE ALTERED
YOUR MOMENTUM,
50 NOW YoU'ge
HEREC>+ RUT

NOW YOURE HERE
| THEN HeRe -+

$ A
"ERE‘Q NDHERE

Quantum confinement gﬁﬁ%ﬁ
PRYSICS
Saluik
Heisenberg: AxX Ap = h/2r
e
electron confined in nanograin of radius a: “25 252 =
@~
AX ~a— momentum: Ap = h/(2nAXx) 7/3 —

— confinement energy: E, ~ Ap%/2m,

» Quantized energy levels E,, = nh?/[8m, (AX)?]

Affects optical & electrical properties (e.g. Li 2004

HERE. @"ERE{J
Tt
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What makes them different?

= Size compared to basic scales

v’ Electron free path in solids

~1 nm
for E < 100 eV I

atomic scale: 2 r;—

€ 102Fitting et al. 2001 Silica

£

£ 10"

o

o

&= 100

§ Escape

=10 length
102 10" 10° 10" 102 103 104

Electron energy (eV)

—electron secondary emission increases

[Draine & Salpeter 1979; Chow et al. 1993]

— electron sticking coefficient decreases if a <1,
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What makes them different?

= Size compared to basic scales

v Photon scales ° Photon attenuation length ~10-100 nm
>

* Photoelectron escape length I, ~ 0.5 -5 nm

» Photoelectron yield increases ifa < |,

photoelectrons have a better chance to escape [watson 1972; Draine 1978]

» can be counterbalanced by:

= Increase of electron removal energy: Note: for a > I, : yield
~ work function + ((3/8) (e%/4ng,2) when a . [de Heer 1993;
W t al. 2003 ~ L Abbas et al. 2007]
[Wong et al. ] Image charge contribution

« Photon wave length (UV) A >a

— photon absorption cross-section/(ra?) oC a (Rayleigh)
19



What makes them different?

= Size compared to basic scales o )
L .7

v’ Plasma Landau radius .
e?/(4near ) =mv3/2 mh 1 =e?/(4nekgT)
N

7\ N
Coulomb kinetic —If agr,, dipole induced by

energy energy an approaching charge
©, Y strongly curves its trajectory
- — increases currents

S B noo=1.4/T,
=) Concerns nanograins if T <2 eV

Note: * a<<Lly = grain’s capacitance C ~ 4ng,a

other plasma . 3 << free path ~ [n, r,2 In(1/I')]" .
| 7 <__Plasma coupling
Scales
In general parameter
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What makes them different?

= High charge-to-mass ratio
» Dynamics and pick-up in magnetized plasmas

» Dusty plasma effects

= Further charge effects of relative importance ~ as a \,

» Nucleation: charged grain attracts molecular

dipoles — decreases free energy G H,O clustering on ice
G, =|4na®c|t NkgT In(S) - Coulomb term
R 130 K
b ocad |
Energetic preference
energy to

for condensation

form surface

Can suppress barrier of potential

[Gumbel & Megner 2009]

» Electrostatic disruption: stress o (g/a2)? 4 a

— makes grain explode — may determine minimum size

1 nm
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Electric charging: basics

PLANETS (dense plasmas) %,

4 secondary J
S€C\ glectrons

e

\ © plasma

A Y=
q. _ electrons
v g B
< Je
ions m, << m,
@ Ji —> Jo>>J;

Jpndominates  sOLAR WIND
4 secondary O
Jsec 1 J
sez9 \electrons ph

N e _.|.q photoelectrons
plasma H lonising
electronsg

photons

3J. / o

lons J, |J 5> |

Q: grain’s charge; @: grain’s potential relative to ambient plasma

« Charging governed by
Incoming plasma
electrons until grain
negative charge repels
them sufficiently to

balance other currents
[e.g. Whipple 1981]

« Charging governed by

escaping photoelectrons
until grain positive charge
binds them sufficiently for
escaping photoelectrons to
balance other currents
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Electric charging: basics

PLANETS (dense plasmas) %,

4 secondary Je
Sec \\electrons
Se - C) plasma
.~ _ electrons
v q -
e
ions m, << m,
@ JI — Je == Ji

* At equilibrium: potential energ
energy of dominant charging particles

 Charge: q ~(4ngyafd

capacitance
of a sphere

n ~ 1 (order of mag.) determined
by details of charging processes

J,n dominates

SOLAR WIND

4 secondary O
Jsec \ electrons J
e} "
N e _.|.q photoelectrons

=) |Z|=|g/e| = n alr,

plasma @' lonising
electrons
. photons
O Je ions / Q
J. | Jon >> J
I h e J
= a few times kinetic
ed| = n kg|T
T or Tph

r, = e?/(4ngykgT) a few eV

if|Z| >>1,i.e.a>r,
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Electric charging

Beware: tricky cases

» Secondary emission not negligible

Sensitivity to parameters near T at
which Jg .~ J [Laframboise et al. 1982]

» Non-maxwellian plasma

— Unstable solutions

| “unstable ~~, Two stable

equilibrium

o potentials
'5fMeyer-Vernet|1984] | L
100 102 107 g1

Photoelectron current

ed/kgT,
0 t— Two stable
=" a0 equilibrium
\)\'\5 ,,,,,, :
............ potentials
5 for same
grains in same
conditions
-101—
[Meyer-Verpet 1982] |
0 005 0.1 nyng

Suprathermal electrons

Secondary emission: 6 = 3
Ey,=400eV; T=25eV T,/T,=100
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Electric charging  2:D cuts in multi
dimensional space of

Beware: tricky cases parameters
» Secondary emission not negligible

Sensitivity to parameters near T at Infinitesimal
which J ..~ J [Laframboise et al. 1982] R increase of
: "
> Non-maxwellian plasma +"1g0@ non thermal
S\ . electrons

— Unstable solutions

ed/kgT, —> bifurcations

T o maaRE — jump of -10[

unStable/ potentlal [Meyer-Vernet 1982] |
| 0 005 01 nyn
'5 [Meyer-Vernet; 1984] | LS

103 107 107 Joide 1

Infinitesimal increase of photoemission
25



Electric charging in dusty plasmas
ny grains/m3 ; n, (n,) electrons (ions)/m3 () @
Lp = [4n r(ng+ny) ' (Te~T)) “TAF< B >> 3
Fraction of charges carried by grains = Z n,/(n_+n,) = nP

P =4n ngalpy?

[Meyer-Vernet 2013]
 If P>1, Debye sheaths n
overlap L =180 o
— electrons depleted (H,0") =
— reduces grain’s charge ']'
[Havnes et al. 1984, Whipple et al. 1985] ne/ni I%—_
e IfP>>1:. Z~-a/(Pr.) <<1 AP 4
limit to el. depletion: n/n, ~ 1/p .
[Mendis & Rosenberg, 1994; Mendis 2002 1‘ P

1= (Se/S; )(Vine/ Vini)~(mi/mg) 12 > 1
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Electric charging in dusty plasmas

ng grains/m?; n, (n;) electrons (ions)/m® O +@ <<Lo o
Lo = [4m r(ngn)] 2 [ oS ©

< __________

s——___ Densities inside Ar~ng'B >>g
dusty plasma

Fraction of charges carried by grains = Z n,/(n_+n;) = nP

[P — 47'E nd aLDZJ [Meyer-Vernet 2013]
n

u =180 «

= P % “Alfvén parameter” (H07) =

which refers to n, outside
a “dust cloud” [Havnes1987, 1989: ne/n,

Goertz 1989] 1/P
- 1/

il




Electric charging

> Important limitations for nanodust

 Long charging time scales:
T ~ RC ~ (dl/d®)'C ~ [4nar Jle]! ifa>r,
T ~ [(2ra)32r V2 J ] ifa<r

* Field emission limits negative charge:

Limiting electric field for (electron) field emission: ®/a ~ 10° V/m

=) Maximum number of electrons on a nanograin:

[Zyaxl ~ 1+ 0.7 a2,
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Electric charging in cold dusty plasmas

» Nanodust:asr ~1.4/T,, nm

Examples:

Earth’s ionosphere: r, = 5 — 100 nm

Juplter/IO torus: g ~ 0.1-1.5nm (Te from [Bagenal 1994]; [Moncuquet et
al. 1995))

Saturn (3-1 0 RS): g ~ 0.3-3nm (Te from [Sittler et al. 2006; Schippers et

al. 2013]

Comet plasma tail: e ~ 1 nm (Te from [Meyer-Vernet et al. 1986] measure
in situ of Giacobini-Zinner plasma tail by ICE/radio instrument: n, = 103, T, =
1eV)
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Electric charging in cold dusty plasmas

» Nanodust:asr ~1.4/T,, nm

Two major consequences:
1. Approaching charge is strongly

o attracted by induced dipole
@: Potential energy e?/(4ngya) = kg T
s — increases currents
a — decreases charging time scales

[Natanson 1960; e.g. Draine & Sutin 1987; Rapp & Lubken 2001]

» 2. Grain’s number of charges |Z| = wal/r, > 1

— statistical treatment: f (£) J; (Z) =1 (Z+1) J, (Z+1)

[Draine & Sutin 1987] deduce moments, as: probability for
charge state Z

average charge state: <Z>=2 7 f(2)
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Electric charging in cold dusty plasmas

Examples:
Probability distribution of Variation of grain’s
Z = g/e at equilibrium potential with time
Earth mesosphere Z = -1 Inhomogeneous Poisson
| process approach
F(Z) Rosenberg et al. 2012 ,
a= 20 nm Saturn’s magnetosphere
_ Hsu et al. 2011
a=3 nm
n./n, = 0.02 np/ng = 107
n,/n. = 0.01
7 -5 0

T.=0.015 eV+ hyperthermal

electrons at 3.5 eV
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Electric charging in cold dusty plasmas

Average number of
charges on a grain without field emission

no longer proportional to grain size

(if Jph negligible) [Meyer-Vernet 2013]

alr,
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Electric charging in cold dusty plasmas

Average number of Zyax due to field emission limit
charges on a grain T=03eV T=1eV
no longer proportional to grain size |

[e.g. Draine & Sutin, 1987; ,a\‘(\,
Rapp & Liibke 2001: n O
Hill et al. 2012]

[Meyer-Vernet 2013]

(if J,, negligible) a/rL
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Conclusions

Beware of nanograins:
Ubiquitous
Physical properties different

Secondary emission — multiple states
— nasty for numerical simulations

In cold (a < r ) dense plasmas,
nanograin carries |<Z>| ~ 1 electron

— g/m oc a3 (instead of a2)
BC

Were detected serendipitously in most environments ...
Will crop up when you don’t expect them
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