Utilisation de la notation complexe pour les quantités harmoniques rencontrées en électromagnétisme

1 - Représentation complexe d'une quantité harmonique

Soit un signal harmonique
$$x(t) = A \cos(\omega t + \varphi)$$

A est l'amplitude du signal, φ est sa phase (entre 0 et 2π radians) et ω sa pulsation (en radians/s). La période de ce signal est $T=2\pi/\omega$ et sa fréquence est $\nu=1/T=\omega/2\pi$.

Il est beaucoup plus facile de résoudre des équations différentielles linéaires en utilisant la notation complexe suivante:

posons
$$x(t) = A \cos(\omega t + \varphi) = Re [A e^{i(\omega t + \varphi)}] = Re (X e^{i\omega t})$$

où Re désigne la partie réelle de la quantité complexe; X désigne <u>l'amplitude complexe</u> du signal. Cette amplitude complexe X est reliée à l'amplitude réelle A et à la phase φ par:

$$X = |X| e^{i\varphi}$$
 où $|X| = A$ et $arg(X) = \varphi$

En physique, on confond souvent $x(t) = X e^{i\omega t} = |X| e^{i(\omega t + \phi)}$ avec sa partie réelle qu'on écrit *par abus de langage de la même manière*, soit $x(t) = A \cos(\omega t + \phi)$. Il faut simplement se souvenir que seule la partie réelle de $x(t) = X e^{i\omega t}$ possède un sens physique.

2 - Valeur moyenne et valeur quadratique moyenne

a - valeur movenne de $x(t) = A \cos(\omega t + \varphi)$ sur une période $T = 2\pi/\omega$

On la note $\langle x \rangle$ et elle est nulle.

La notation complexe $x(t) = X e^{i\omega t}$ ne perturbe pas ce résultat, sa moyenne est bien nulle sur une période.

b - valeur moyenne de $x^2(t) = A^2 \cos^2(\omega t + \varphi)$ sur une période $T = 2\pi/\omega$

On la note $\langle x^2 \rangle$ et elle vaut $A^2/2$.

Cependant, $x^2(t) = A^2 \cos^2(\omega t + \phi)$ n'est pas la partie réelle de la quantité complexe associée, c'est à dire $X^2 e^{2^{i\omega t}}$, en effet la valeur moyenne de cette quantité complexe est nulle, sa partie réelle étant un cosinus de l'angle double !

La formule qui donne la valeur quadratique moyenne de la représentation complexe $x(t) = X e^{i\omega t}$ est:

$$\langle x^2 \rangle = 1/2 \text{ Re } (x \ x^*) = 1/2 \text{ Re } (X \ X^*) = 1/2 \ |X|^2 = A^2/2$$

où * désigne la quantité conjugée (changer i en -i).

c - <u>valeur moyenne d'un produit de deux signaux harmoniques</u> $x(t) = A_1 \cos(\omega t + \varphi_1)$ et $y(t) = A_2 \cos(\omega t + \varphi_2)$ sur une période $T = 2\pi/\omega$

On la note $\langle xy \rangle$ et elle vaut 1/2 $A_1A_2 \cos(\varphi_1-\varphi_2)$; cette quantité peut être négative.

En notation complexe,

$$x(t) = X e^{i\omega t} et y(t) = Y e^{i\omega t} où X = |X| e^{i\phi_1} = A_1 e^{i\phi_1} et Y = |Y| e^{i\phi_2} = A_2 e^{i\phi_2}$$

$$\langle xy \rangle = 1/2 \text{ Re } (x \text{ } y^*) = 1/2 \text{ Re } (X \text{ } Y^*) = 1/2 \text{ } |X| \text{ } |Y| \text{ Re } (e^{i(\phi_1^- \phi_2^-)}) = 1/2 \text{ } A_1 A_2 \cos(\phi_1 - \phi_2)$$

Remarque: Re $(x y^*)$ = Re $(x^* y)$.

3 - Dérivées temporelles

La notation complexe est très commode en ce qui concerne la dérivation; en effet si $x(t) = X e^{i\omega t}$:

$$dx(t)/dt = i\omega X e^{i\omega t} et d^2x(t)/dt^2 = -\omega^2 X e^{i\omega t}$$

donc la dérivation est une opération multiplication par i ω

$$dx(t)/dt = i\omega \ x(t) \ \ et \ \ d^2x(t)/dt^2 = \text{-} \ \omega^2 \ x(t)$$

Conséquence: $\langle x \, dx/dt \rangle = 1/2 \, \text{Re} \left(x \, dx/dt^* \right) = 1/2 \, \text{Re} \left[x \, (-i\omega \, x^*) \right] = \omega/2 \, |x|^2 \, \text{Re} \left(-i \right) = 0$

4 - Exemple des oscillations mécaniques forcées d'un oscillateur harmonique en présence de frottement

Un tel oscillateur sur l'axe Ox est régi par l'équation: $m d^2x/dt^2 + f dx/dt + k x = F(t)$ où :

m est la masse de l'oscillateur

k sa constante de raideur (force de rappel - k x)

f son coefficient de frottement (force de frottement - f dx/dt opposée et proportionnelle à la vitesse)

F(t) est une force (par exemple électrique) à laquelle est soumis l'oscillateur. Nous allons étudier cette équation dans le cadre d'oscillations <u>forcées</u> par une force du type: $F(t) = F\cos(\omega t)$.

a - <u>comment déterminer x(t)</u> connaissant F(t) ?

On passe en notation complexe et on pose:

 $F(t) = F e^{i\omega t}$ (la force étant la partie réelle de cette quantité);

 $x(t) = X e^{i\omega t}$ où X est l'amplitude complexe du mouvement.

On utilise la propriété énoncée ci dessus pour les dérivées dx/dt et d²x/dt², et on obtient:

-
$$m \omega^2 x + i \omega f x + k x = F e^{i\omega t}$$

ce qui donne l'équation pour l'amplitude complexe: $(-m \omega^2 + i \omega f + k) X = F$

On pose généralement $\boxed{\omega_0^2 = k/m}$ où ω_0 est la pulsation propre (de résonance) de l'oscillateur lorsqu'il n'est soumis à aucune force autre que la force de rappel - k x.

On en déduit l'amplitude complexe $X = (F/m) / [\omega_0^2 - \omega^2 + i \omega f/m]$

Comme
$$|X| = (F/m) / [(\omega_0^2 - \omega^2)^2 + (\omega f/m)^2]^{1/2}$$

on peut écrire: $X = |X| e^{i\phi} = |X| (\cos \phi + i \sin \phi)$

 $o\grave{u}\;cos\;\phi = \left(\omega_{0}{}^{2} - \omega^{2}\right) / \left[\;\left(\omega_{0}{}^{2} - \omega^{2}\right)^{2} + \left(\omega\;f\;/m\right)^{2}\;\right]^{1/2} \;\;et\;\;sin\;\phi = \left(\omega\;f\;/m\right) / \left[\;\left(\omega_{0}{}^{2} - \omega^{2}\right)^{2} + \left(\omega\;f\;/m\right)^{2}\;\right]^{1/2}$

 $\cos \varphi$ et $\sin \varphi$ identifient la phase φ de manière univoque.

Remarque: tan $\varphi = (\omega f/m) / (\omega_0^2 - \omega^2)$ est plus simple mais identifie φ à π près.

La partie réelle de X donne la solution $x(t) = (F/m) \cos(\omega t + \varphi) / [(\omega_0^2 - \omega^2)^2 + (\omega f/m)^2]^{1/2}$

b - valeurs moyennes de l'énergie cinétique, potentielle et de la puissance de frottement

Le calcul des <u>moyennes</u> sur une période de l'énergie cinétique, potentielle et de la puissance de la force de frottement sont très simplifiés en notation complexe $x(t) = X e^{i\omega t}$:

<u>l'énergie cinétique moyenne</u> est égale à:

$$<1/2 \text{ m v(t)}^2> = 1/2 \text{ m} < (dx/dt)^2> = 1/2 \text{ m} < (i \omega x)^2> = 1/4 \text{ m Re} [(i \omega x)(i \omega x)^*] = 1/4 \text{ m } \omega^2 |X|^2$$

l'énergie potentielle moyenne est égale à:

$$<1/2 \text{ k x(t)}^2> = 1/2 \text{ k} < x^2> = 1/4 \text{ k Re (x x*)} = 1/4 \text{ k |X|}^2$$

la puissance moyenne développée par la force de frottement est égale à:

$$< -f \ v^2(t) > = -f < (dx/dt)^2 > = -f/2 \ Re \ [(i \ \omega \ x) \ (i \ \omega \ x)^*] > = -f \ (\omega^2/2) \ Re(X \ X^*) > = -f \ (\omega^2/2) \ |X|^2$$

c - cas du voisinage de la pulsation de résonance ($\omega \approx \omega_0$)

$$\omega_0^2 - \omega^2 = (\omega_0 - \omega) (\omega_0 + \omega) \approx -2 \omega_0 (\omega - \omega_0)$$

$$X \approx -(F/2\omega_0 m)/[\omega - \omega_0 - i f/(2m)]$$

d'où
$$\boxed{|X|\approx (F\,/\,2\omega_0 m)\,/\left[(\omega$$
 - $\omega_0)^2+\,f^{\,2}\!/4m^2\,\right]^{1/2}}$

La puissance moyenne P de la force de frottement est alors au voisinage de la résonance:

$$P \approx - \left(f \; \omega_0^2 / 2 \right) \; \left(F \; / \; 2 \omega_0 m \right)^2 \; / \; \left[(\omega - \omega_0)^2 + f \; ^2 / (4 m^2) \; \right] = - \left(f \; \; F^2 \; / \; 8 m^2 \right) \; / \; \left[(\omega - \omega_0)^2 + f \; ^2 / (4 m^2) \; \right]$$

Posons $\gamma = f/m$

$$P \approx -(f F^2 / 8m^2) / [(\omega - \omega_0)^2 + (\gamma/2)^2] = -(F^2 / 2f) (\gamma/2)^2 / [(\omega - \omega_0)^2 + (\gamma/2)^2]$$

$$P \approx - \left(F^2 \ / \ 2f\right) \ L(\omega) \ \ où \ \ L(\omega) = \left(\gamma/2\right)^2 \ / \ [\ (\omega - \omega_0)^2 + (\gamma/2)^2 \] \ est \ une \ Lorentzienne$$

 $L(\omega)$ est maximale pour $\omega = \omega_0$ (pulsation de résonance). Loin de la résonance, $L(\omega) \to 0$.

 $\gamma = f/m$ est la largeur à mi hauteur de la Lorentzienne