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A plot of  spin rate versus orientation when Hyperion is at the pericenter of  its orbit (surface of  
section) reveals a large chaotic zone surrounding the synchronous spin-orbit  state of Hyperion, if 
the satellite is assumed to be rotating about a principal axis which is normal to its orbit plane. This 
means that Hyper ion 's  rotation in this zone exhibits large, essentially random variations on a short 
time scale. The chaotic zone is so large that it surrounds the I/2 and 2 states, and libration in the 3/2 
state is not possible. Stability analysis shows that for libration in the synchronous and I/2 states, 
the orientation of  the spin axis normal to the orbit plane is unstable, whereas rotation in the 2 state 
is attitude stable. Rotation in the chaotic zone is also attitude unstable. A small deviation of the 
principal axis from the orbit normal leads to motion through all angles in both the chaotic zone and 
the attitude unstable libration regions. Measures of the exponential rate of separation of nearby 
trajectories in phase space (Lyapunov characteristic exponents) for these three-dimensional mo- 
tions indicate the the tumbling is chaotic and not just a regular motion through large angles. As tidal 
dissipation drives Hyperion 's  spin toward a nearly synchronous value, Hyperion necessarily enters 
the large chaotic zone. At this point Hyperion becomes attitude unstable and begins to tumble. 
Capture from the chaotic state into the synchronous or I/2 state is impossible since they are also 
attitude unstable. The 3/2 state does not exist. Capture into the stable 2 state is possible, but 
improbable. It is expected that Hyperion will be found tumbling chaotically. 

I. INTRODUCTION 

The rotation histories of  the natural satel- 
lites have been summarized by Peale 
(1977). Most of the natural satellites fall 
into one of  the two well-defined categories: 
those which have evolved significantly due 
to tidal interactions and those which have 
essentially retained their primordial spins. 
The exceptions are Hyperion and Iapetus, 
for which the time scales to despin to spin 
rates which are synchronous with their re- 
spective orbital mean motions are esti- 
mated to be on the order  of  one billion 
years. However ,  it has been known for 
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some time that lapetus rotates synchro- 
nously (Widorn, 1950). Since the time scale 
for the despinning of  Hyperion is somewhat 
less than that for Iapetus, it is likely that 
Hyperion has significantly evolved as well. 

As a satellite tidally despins, it may be 
captured in a variety of spin-orbit  states 
where the spin rate is commensurate  with 
the orbital mean motion. Mercury,  how- 
ever,  is the only body in the solar system 
which is known to have a nonsynchronous 
yet commensurate  spin rate (see Goldreich 
and Peale, 1966). Among the tidally 
evolved natural satellites, where the spin 
rates are known the satellites are all in syn- 
chronous rotation, and in those cases 
where the spin rate is not known the proba- 
bility of  capture in a nonsynchronous state 
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is small. Most of the tidally evolved satel- 
lites are expected to be synchronously ro- 
tating. Hyperion is the only remaining pos- 
sibility for an exotic spin-orbit  state (see, 
e.g., Peale, 1978). We shall see that it may 
indeed be exotic. 

In their original paper on spin-orbit  cou- 
pling, Goldreich and Peale (1966) derive a 
pendulum-like equation for each spin-orbit  
state by rewriting the equations of motion 
in terms of an appropriate resonance vari- 
able and eliminating the nonresonant,  high- 
frequency contributions through averaging. 
The strength of each resonance depends on 
the orbital eccentricity and the principal 
moments of  inertia through (B - A ) / C .  As 
long as (B - A ) / C  ~ 1, averaging is a good 
approximation and the resulting spin states 
are orderly. However ,  the figure of Hyper- 
ion has been determined from Voyager 2 
images (Smith et al . ,  1982; T. C. Duxbury, 
1983, personal communication) and (B - 
A ) / C  ~ 0.26. This is significantly larger than 
the hydrostatic value assumed in Peale 
(1978), and averaging is no longer an appro- 
priate approximation. In fact, the reso- 
nance overlap criterion (Chirikov, 1979) 
predicts the presence of a large zone of cha- 
otic rotation. 

In this paper, we reexamine the problem 
of spin-orbit  coupling for those cases 
where averaging is not applicable, with spe- 
cial emphasis on parameters appropriatc 
for Hyperion.  In the next section, the prob- 
lem is recalled and the qualitative features 
of the nonlinear spin-orbit  problem are dis- 
cussed. One mechanism for the onset of 
chaos, the overlap of first-order reso- 
nances, is briefly reviewed and the reso- 
nance overlap criterion is used to predict 
the critical value of (B - A ) / C  above which 
there is large-scale chaotic behavior. In 
Section 1II, the spin-orbit  phasc space is 
numerically explored using the surface of 
section method. The existence of the large 
chaotic zone is verified, and the critical 
value for the onset of chaos is compared to 
the prediction of the resonance overlap cri- 
terion. In Section 11 and III it is assumed 

that the spin axis is normal to the orbit 
plane. In Section IV the stability of this ori- 
entation is examined for the spin-orbit 
states, where it is shown that for principal 
moments appropriate lbr Hyperion the syn- 
chronous and I/2 spin-orbit  states are atti- 
tude unstable! In Section V rotation in the 
chaotic zone is also shown to be attitude 
unstable, The resulting three-dimensional 
tumbling motions are considered in Section 
VI, and shown to be fully chaotic. Conse- 
quences of  these results for the tidal evolu- 
tion of Hyperion are discussed in Section 
VII and it is concluded that Hyperion will 
probably be found to be chaotically tum- 
bling. A summary follows in Section VIll. 

11. SPIN-ORBI 'F  C O U P L I N G  REVISITED 

Consider a satcllite whose spin axis is 
normal to its orbit plane. The satellite is 
assumed to be a triaxial ellipsoid with prin- 
cipal moments of inertia A < B < C, and C 
is the moment about the spin axis. The orbit 
is assumed to be a fixed cllipse with semi- 
major axis a, eccentricity e, true anomalyJ.  
instantaneous radius r, and longitude of pe- 
riapse o), which is taken as the origin of 
longitudes. The oricntation of the satellite's 
long axis is specified by 0 and thus ~9 - f  
measures the orientation of the satellite's 
long axis relative to the planet-satellite cen- 
ter line. This notation is the same as that of 
Goldreich and Peale (1966). Without exter- 
nal tidal torques, the equation of motion for 
~) (Danby, 1962; Goldreich and Peale, 1966) 
is 

d2~ og 
dt----y + ~ sin 2(~ - j') = 0, (I) 

where too = 3(B - A ) / C  and units have been 
chosen so that the orbital period of the sat- 
ellite is 2~" and its semimajor axis is one. 
Thus the dimensionless time t is equal to 
the mean longitude. Since the functions r 
and f a r e  2~- periodic in the time, the second 
term in Eq. (1) may be expanded in a 
Fourier-like Poisson series giving 
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dt  2 + - ~  ~ H , e  s i n ( 2 0 -  rot) = O. 
m • ~ 

The coefficients H ( m / 2 , e )  are proportional 
to e 2~";2~-L and are tabulated by Cayley 
(1859) and Goidreich and Peale (1966). 
When e is small, H ( m / 2 , e )  ~ -½e,  I, [e for 
m/2 = ~, 1, ], respectively.  The halt-integer 
m/2 will be denoted by the symbol p. 

Resonances  occur  whenever  one of the 
arguments  of  the sine functions is nearly 
stat ionary,  i.e., whenever  i(dO/dt) - p[ ~ ½. 
In such cases it is often useful to rewrite the 
equation of motion in terms of the slowly 
varying resonance variable Yr, = 0 - pt ,  

d2yp + too 
dt----y - f  H ( p , e )  sin 2yp 

"9 

+ -~  H , + ~ . e  sin(2yp - nt) = O. 

(2) 

If  too is small enough the terms in the sum 
will oscillate rapidly compared  to the much 
slower variation of  yp determined by the 
first two terms and consequent ly  will give 
little net contribution to the motion. As a 
first approximat ion for small too, then, these 
high-frequency terms may be removed by 
holding yp fixed and averaging Eq. (2) over  
an orbital period. The resulting equation is 

dt  2 + ~ -  t I (  p , e )  sin 2yp = 0 

and is equivalent to that for a pendulum. 
The first integral of  this equation is 

l ( d y o t "  too 
lp = ~ k--f[-/ - 4 -  H i p , , ' )  cos 2yp; 

y~, librates for 1 r, < lo s and circulates for ! r, > 
lo s, where the separating value lo s = (too/4) 
IH(p,e)].  For  / e < / s  and H ( p , e )  > O, yp 
librates about  zero; while for Ip < lp s and 
H ( p , e )  < O, yp librates about ~/2. In both 
cases the f requency of  small-amplitude os- 
cillations is t o 0 ~ .  F o r / p  = /ps, Yp 
follows the infinite period separatr ix which 
is asymptot ic  forward and backward in time 
to the unstable equilibrium. The half-width 

of the resonance is character ized by the 
maximum value of dyp/dt  on the separatrix.  
When yp librates ]dyJdt l  is always less than 
this value which is equal to tooX/]H(p,e)]. 

Averaging is most useful for studying the 
motion near  a resonance when the reso- 
nance half-widths are much smaller than 
their separation.  In this case,  most solu- 
tions of  the actual equation of  motion differ 
from those of  the averaged equations by 
only small regular oscillations resulting 
from the nonresonant ,  high-frequency 
terms. An important  exception occurs for 
motion near  the infinite-period separatrix 
which is broadened by the high-frequency 
terms into a narrow chaotic band (Chirikov, 
1979). While the band is present  for all val- 
ues of  ¢o0 it is ex t remely  narrow for small 
w0. Chirikov has given an est imate of  the 
half-width of  this chaotic separatrix,  which 
is expressed in terms of the chaotic varia- 
tions of  the integral lp, viz., 

l p  - -  lp s _ 4zrv.jk3e¢_,x)/2 ' 
wp - lt, S 

where e is the ratio of  the coefficient of  the 
nearest  perturbing high-frequency term to 
the coefficient of  the perturbed term, and X 
= ~l/w is the ratio of  the f requency differ- 
ence between the resonant term and the 
nearest  nonresonant  term (~D to the fre- 
quency of small-amplitude librations (to). 
For  the synchronous  spin-orbi t  state per- 
turbed by the p = ~ term, s = H(~ ,e ) / l t ( !  ,e) 
= (7e)/2 and ~ = I/too. Thus 

Ii - Ii s 147re 
wl - - - i t  s - to~ e-1~"2'~ok (3) 

For  Mercury,  for instance, where too = 
0.017 (for (B - A ) / C  = 10 -4) and e = 0.206, 
the width of  the chaotic region associated 
with the synchronous  state is w~ = 1.4 x 
10-s4, and a similar est imate for the width of 
the p = 3/2 chaotic band gives w3,2 = 5.4 x 
10-43! Averaging is certainly a good approx-  
imation for Mercury.  On the other hand, 
the width of  the chaotic layer depends ex- 
ponentially on too, and as too increases the 
size of  the chaotic separatr ix increases dra- 
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matically. Now most of  the natural satel- 
lites are expected,  on the basis of  hydro- 
static equilibrium, to have values of coo 
larger than that expected for Mercury,  in 
several cases approaching unity (Peale, 
1977). At such large oJ0 chaotic separatrices 
are a major featurc in thc phase space. In 
studying the rotations of  the natural satel- 
lites caution must be exercised when using 
the averaging method.  

The widths of  the libration regions also 
grow as oJ0 increases.  At somc point their 
widths, as calculated above using the aver- 
aging method,  are so large that the reso- 
nances begin to overlap.  Analyzed sepa- 
rately, libration would be expected in each 
of  two neighboring resonanccs.  However ,  
s imultaneous libration in two spin-orbit  
states is impossible. The result is wide- 
spread chaotic behavior.  An estimate of  the 
oJ0 at which this happens is provided by the 
Chirikov resonance overlap criterion. This 
criterion states that when the sum of two 
unperturbed half-widths equals the separa- 
tion of resonance centers,  large-scale chaos 
ensues. In the spin-orbi t  problem the two 
resonances  with the largest widths are the p 
= I a n d p  = 3/2 states. For these two states 
the resonance overlap criterion becomes 

1 
oJoR°X/IH(I ,e)l + ojoR°~,/ln(3/2,e)l = ~ 

o r  

1 
coo R° = (4) 

2 + V'14-e" 

For e = 0.1, the mean eccentricity of  Hype-  
rion, the critical value of oJ0 above which 
large-scale chaotic behavior  is expected is 

RO = 0.31. This is well below the actual to 0 

value of Hyper ion ' s  o~o which has been de- 
termined f rom Voyager  2 images to be o~0 = 
0.89 _-x- 0.22 (T. C. Duxbury,  1983, personal 
communicat ion).  It is expected then that 
for Hyper ion there is a large chaotic zone 
surrounding (at least) the p = 1 and p = 3/2 
states, and possibly more.  

These predictions are verified in the next 

section, where the spin-orbit  phase space 
is investigated numerically using the sur- 
face of section method.  

111. T H E  S P I N - O R B I T  P H A S E  S P A C E  

Most Hamiltonian systems display both 
regular and irregular trajectories. Thc 
phasc space is divided: there are regions in 
which trajectories behave chaotically and 
regions where trajectories arc quasiperiodic 
(H6non and Heiles, 1964). The simplest and 
most intuitivc method of determining 
whether  a trajectory is chaotic or quasipe- 
riodic is thc surfacc of section method. Thc 
spin-orbi t  problem, as defined in the last 
section, is 2rr periodic in the dimensionless 
timc. A surface of section is obtained by 
looking at the system stroboscopical ly with 
period 2rr. A natural choice tbr the scction 
is to plot dO/dt versus 0 at every periapse 
passage. The successive points definc 
smooth curves for quasiperiodic trajecto- 
ries; for chaotic trajectories the points ap- 
pear to fill an area on the section in an ap- 
parently random manner.  It is a rcmarkable 
property of  Hamiltonian systems that these 
two types of  behavior  are usually readily 
distinguishable and that thcy arc generally 
both present on any surface of section. 

Because of the symmet ry  of a triaxial cl- 
lipsoid, the orientation denoted by ~9 is 
equivalent to that denoted by 0 ~ rr. Conse- 
quently, ~ may be restricted to the interval 
from 0 to zr. The spin-orbit  statcs found in 
the previous scction by the averaging 
method are states where a resonance vari- 
able yp = 0 - pt  librates. For each of these 
states dO/dt has an average value precisely 
equal to p, and 0 rotates through all values. 
If attention is restricted, however ,  to thc 
times of periapse passage,  i.e., t = 27rn, 
then each y~, taken modulo ~r is simply ~. A 
libration in ~/p becomes  a libration in ,9 on 
the surface of section. For quasiperiodic li- 
bration successive points trace a simple 
curve on the section near d~/dt  = p which 
covers  only a fraction of the possible inter- 
val from 0 to rr. For nonresonant  quasipe- 
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FIe,,. I. Sur face  of  sec t ion  for coo = 0.2 and  e = 0.1. 
d,~/dt v e r s u s  ~9 at s u c c e s s i v e  pe r i apse  p a s s a g e s  for ten 
s e p a r a t e  t r a j ec to r i e s :  th ree  i l lus t ra t ing  q u a s i p e r i o d i c  
l ib ra t ion ,  th ree  i l lus t ra t ing  the s u r r o u n d i n g  chao t i c  lay- 
ers  and  four  i l lus t ra t ing  tha t  q u a s i p e r i o d i c  ro ta t ion  

s e p a r a t e s  the chao t i c  zones .  

riodic trajectories, all yf, rotate, and succes- 
sive points on the surface of section will 
trace a simple curve which covers all values 
of  ~. For small too, resonant states are sepa- 
rated from nonresonant states by a narrow 
chaotic zone, for which successive points 
fill a very narrow area on the surface of 
section. The surface of section displayed in 
Fig. I illustrates these various possibilities 
for oJ0 = 0.2 and e = 0.1. Equation (1) was 
numerically integrated for ten separate tra- 
jectories and d~/dt was plotted versus v q at 
every periapse passage. Three trajectories 
illustrate quasiperiodic libration in the p = 
I (synchronous),  p = I/2, and p = 3/2 
states. Three trajectories illustrate the cha- 
otic separatrices surrounding each of these 
resonant states, and four trajectories show 
that each of these chaotic zones is sepa- 
rated from the others by impenetrable non- 
resonant quasiperiodic rotation trajecto- 
ries. Five hundred successive points are 
plotted for each quasiperiodic trajectory, 
and 1000 points for each chaotic trajectory. 

As too is increased both the resonance 
widths and the widths of the chaotic separa- 
trices grow. The resonance overlap crite- 
rion predicts that the chaotic zones will be- 
gin to merge when 6o0 > oa0 rO, where ~o0 R° is 

given by Eq. (1). For Hyperion, e = 0.1, 
and too R° = 0.31. Numerically, we find that 
the p = I and p = 3/2 chaotic zones merge 
between oJ0 = 0.25 and co0 = 0.28. The pre- 
diction of the resonance overlap criterion is 
in excellent agreement with the numerical 
results, especially considering that too var- 
ies over two orders of magnitude for the 
natural satellites. 

As too is further increased the simplicity 
of the picture developed for small too disap- 
pears. The now large chaotic zone sur- 
rounds more and more resonances, and the 
sizes of the principal quasiperiodic islands 
decrease. Figure 2 illustrates the main fea- 
tures of  the surface of  section for e = 0. I 
and too = 0.89, values appropriate for Hype- 
rion. The chaotic sea is very large, sur- 
rounding all states from p = I/2 to p = 2. 
Notice the change in scale from Fig. I. The 
tiny remnant of  the p = I/2 island is in the 
lower center of  the chaotic sea; the p = 3/2 
island has disappeared altogether. The sec- 
ond-order p = 9/4 island in the top center of 
the chaotic zone is now one of the major 
features of the section. A total of  17 trajec- 
tories of Eq. (l) were used to generate this 
figure: eight quasiperiodic librators, illus- 
trating the p = 1/2, I, 2, 9/4, 5/2, 3, and 7/2 
states, five nonresonant quasiperiodic rota- 
tors, and four chaotic trajectories (one for 

4 
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FIG. 2. Sur face  of  sec t ion  for oJ~, = 0.89 and e = 0. I. 
H y p e r i o n ' s  s p i n - o r b i t  phase  space  is d o m i n a t e d  by a 
chao t i c  zone  which  is so large that  even  the p = I/2 
and  p = 2 s t a t e s  are  s u r r o u n d e d  by it. 
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FIG. 3. Ma jo r  island centers versus ~o. Each island 

may be identified by the value of  dO/dt at w,, = O. 
except  for the second synchronous  branch which ap- 
pears in the upper right quadrant .  A broad line indi- 
cates that the island is sur rounded by the large chaotic 
zone. These  resonance curves  summar ize  the surfaces 
of  section by showing which states may be reached by 
traveling in the chaotic sea for any particular (o.. The 
dotted lines show the usual linear approximation for 
the forced librations in the synchronous  state, while 
the dashed lines show a much  superior nonlinear ap- 
proximation.  

each chaotic zone). Two thousand points 
are plotted in the large chaotic sea. 

While the average value of dO/dt is pre- 
cisely p for a quasiperiodic librator in state 
p, on the surface of section the island cen- 
ters are displaced from these values. This 
displacement results from a forced libration 
with the same period as the orbital period 
and amplitude (in the variations of  0 and 
dO/dt) equal to the displacement.  This phe- 
nomenon is familiar from the forced libra- 
tion of Phobos (Duxbury,  1977; Pealc, 
1977). A convenient  way to summarize the 
results of the surfaces of section for various 
¢o0 is to plot the location of all the major 
island centers.  The resonance centers oc- 
cur at b ~ = 0 or 0 = rr/2, so it is sufficient to 
plot only d~/dt versus oJ0. This plot is pre- 
sented in Fig. 3 for an orbital eccentricity of 
0.1. Curves  with different symmetry  may 
cross.  For example ,  the p = 1 and p = I/2 
curves cross,  yet the islands are always dis- 
tinct since their centers occur  at different 

values of  ~9. Whenever  the island was sur- 
rounded by the large chaotic sea. the line 
has been broadened.  The resonance curves 
in Fig. 3 thus give a clear picture of  which 
states may be visited by traveling in the 
chaotic sea for any particular oJ.. It is inter- 
esting to note that tor (o0 within the range 
1.27 < ¢o0 < ! .36 two different synchronous 
islands are simultaneously present.  

For the large oJo and e appropriate  lor Hy- 
perion the forced librations are not well ap- 
proximated by the linear theory that was 
used for Phobos.  However ,  good approxi- 
mations are obtained from the nonlinear 
method of Bogoliubov and Mitropolsky 
(1961). If we define tO~, = ~9 - p f a n d  Eq. (1) 
is rewritten with the true anomaly as the 
independent variable, the equation of mo- 
tion for tOp becomes  

,ttO, / 
(1 + e c o s f )  d-qJ~'- 2e sin .l" ( p + df  / d F 

2 
¢a)0 

+ ~ sin 2(tO t, + (p - l ) f )  0. (5) 

The island centers are fixed points on the 
surface of section, thus ~bp(J) is 27r periodic. 
This suggests that top be written as a Fourier 

series, t0p(f) = ~bp ~ + ~ tOt) sin /,;L tOl, ° as- 
/, I 

sumes a value of 0 or rr/2 depending on 
whether  libration is about 0 equal to 0 or 
r /2 ,  respectively,  and only sine terms arc 
included since the equation of motion is in- 
variant under a simultaneous change in sign 
of ~hp and .L A first approximation to the 
solution is obtained by retaining only the 
first term (k = I) in this Fourier series. Sub- 
stituting this into Eq. (5). multiplying by 
sin(J) and integrating from 0 to 2~r yields an 
implicit equation for the amplitude @t, ~ 

oJo[J3- zp(2@I, I) + ( -  l):t'J2;, - ,(2tOp')l - 

(2@, I + 4ep)( - 1 )~:%%:~' 

where the J, are the usual Bessel functions. 
The dashed line in Fig. 3 shows the solution 
to this equation for p = 1, where 

dO ( dtOp] d f  (I + e)'- 
d--7 = P + (-Tff J ~ = (p + tOp') (1 -- e2) ~-~-'- 



THE CHAOTIC ROTATION OF HYPERION 143 

on the surface of  section (at periapse). Evi- 
dently, even one term in this Fourier series 
is a much better representation of  the full 
solution than the usual linear solution (see 
Peale, 1977) which is drawn as a dotted line 
in Fig. 3. Though they are not drawn in Fig. 
3 the nonlinear approximations for p = I/2 
and p = 3/2 are also quite good. 

Up to now it has been assumed that the 
spin axis is perpendicular to the orbit plane. 
However,  Fig. 2 bears little resemblance to 
the picture of spin-orbit  coupling devel- 
oped for small too. In the next section this 
question of  attitude stability is reevaluated 
in this now strongly nonlinear regime. 

• IV.  A T T I T U D E  S T A B I L I T Y  O F  R O T A T I O N  A T  

T H E  I S L A N D  C E N T E R S  

Consider now the fully three-dimensional 
motion of a triaxial ellipsoid in a fixed ellip- 
tical orbit, which is specified as before. Let 
a ,  b ,  and c denote a right-handed set of axes 
fixed in the satellite, formed by the princi- 
pal axes of  inertia with moments A < B < 
C, respectively. In this case Euler 's  equa- 
tions are (Danby, 1962) 

dto,, 3 
A ~ -  - tohto , (B - C )  = - ~ f l y ( B  - C), 

dtob 3 
B t-ft (o, to.(C - A) = r7 y a ( C  - A), 

(6) 

dtoc 3 
C -d[- to,,tob(A - B )  = - ~ a f l ( A  - B), 

where to,, toh, and to,. are the rotational an- 
gular velocities about the three axes a, b, 
and c, respectively, and a, fl, and y are the 
direction cosines of  the planet to satellite 
radius vector on the same three axes. 

To solve these equations, a set of  gener- 
alized coordinates to specify the orientation 
of  the satellite must be chosen. The Euler 
angles (as specified in Goldstein, 1965) are 
not suitable for this purpose because the 
resulting equations have a coordinate sin- 
gularity when the spin axis is normal to the 
orbit plane, which is just the situation under 

study. A more convenient set of  angles has 
therefore been chosen and is specified rela- 
tive to an inertial coordinate system xyz 
which is defined at periapse. The x axis is 
chosen to be parallel to the planet to satel- 
lite radius vector,  the y axis parallel to the 
orbital velocity, and the z axis normal to the 
orbit plane so as to complete a right-handed 
coordinate system. Three successive rota- 
tions are performed to bring the a b e  axes to 
their actual orientation from an orientation 
coincident with the xyz set of axes. First, 
the a b c  axes are rotated about the c axis by 
an angle 0. This is followed by a rotation 
about the a axis by an angle ~. The third 
rotation is about the b axis by an angle th. 
The first two rotations are the same as the 
Euler rotations, but their names have been 
interchanged. In terms of  thesc angles the 
three angular velocities are 

dO d~ 
to, = - d---7 cos ~, sin t) + ~ -  cos ~, 

d O  . d O  
tob = -~- sin ¢ + "d-7' 

d O  d ¢  
to,. = --~ cos ~ cos tk + -d-t sin qJ, 

and the three direction cosines are 

a = cos O cos(O - f )  

- sin O sin ~¢ sin(O - f ) ,  

fl = - cos ~ sin(O - f ) ,  

y = sin qJ cos(O - f )  

+ cos qJ sin ~ sin(O - . f ) .  

The equations of motion for O, ~, and qJ are 
then derived in a straightforward manncr. 
For reference, the three canonically conju- 
gate momenta are 

P0 = -Ato ,cos  cp sin qJ + Btobsin ¢, 

+ Cto , . co s  ~o cos qJ, 

p~, = Ato,cos ~ + Cto,.sin qJ, 

p~, = Btob. 

When ¢, ~, p~, and p ,  are set equal to 
zero, they remain equal to zero. In this 
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equilibrium situation the spin axis is normal 
to the orbit plane and O is identical to the 0 
used in the two previous sections. At the 
island centers O(t) is periodic and the stabil- 
ity of  this configuration may be determined 
by the method of  FIoquet multipliers (see, 
e.g., PoincarE, 1892; Cesari, 1963; Kane, 
1965). A trajectory near this periodic trajec- 
tory is specified by O' = O + 80, ~' = ~ + 

t ~o, ¢' = tO + 8tO, p'o = p o  + 8 p o ,  p~  = p, + 
8p~ and p ;  = p ,  + 8p,.  The equations of  
motion for the variations 80, 8¢,, 8tO, etc. 
are then linearized in the variations, giving 
six first-order linear differential equations 
with periodic coefficients. Integration of 
these equations over  one period for six lin- 
early independent initial variations (&9 = 1, 
Np = StO = Spo = S p ,  = ~Sp, = O; 8 0  = 0, 89  

= 1, ~tO = Spa = 8p, = 8p, = 0; etc.) defines 
a linear transformation which maps an arbi- 
trary set of  initial variations to their values 
one period later. The evolution of the varia- 
tions over  several periods is obtained by 
repeated application of  this linear transfor- 
mation. The eigenvalues of this linear 
transformation are called the Floquet multi- 
pliers, and determine the stability of the 
original periodic solution. Namely,  if any of 
the Floquet multipliers have a modulus 
greater than one, then repeated application 
of  the linear transformation will lead to ex- 
ponential growth of  the variations and the 
periodic solution is unstable; while (linear) 
stability is indicated if all the multipliers 
have modulus equal to one. Because of the 
Hamiltonian nature of  this problem, every 
multiplier may be associated with another 
multiplier for which the product of the two 
moduli is equal to one (Poincarr,  1892). 
Thus instability is indicated by any multi- 
plier with modulus not equal to one. 

Two simplifications of this procedure 
were employed. Rather than explicitly lin- 
earize the equations of  motion about the 
periodic reference trajectory, the variations 
were determined by directly integrating a 
nearby trajectory. The initial phase-space 
separation was taken to be I0 7; the results 
are insensitive to this initial separation as 
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FIG. 4. Atti tude stability diagram for the synchro-  
nous island center.  A circle indicates stability, a plus 
sign indicates instability with one unstable direction 
and an asterisk indicates instability with two unstable 
directions. For most  principal momen t s  within the er- 
ror ellipsoid o f  Hyperion the synchronous  island is 
attitude unstable! 

long as it is small enough. The characteris- 
tic equation is a sixth-order polynomial 
equation, which is cumbersome to solve. 
Fortunately,  it may be explicitly factored 
into the product of a quadratic equation, 
which determines the stability of the 0 mo- 
tion with the spin axis normal to the orbit 
plane, and a quartic equation which deter- 
mines the attitude stability. Of course, the 
0 motion is always stable for the island cen- 
ters. 

Figure 4 displays the results of  a number 
of calculations of  the Floquet multipliers 
for the centers of the synchronous islands, 
with e = 0.1, for various principal mo- 
ments. Because Eqs. (6) are linear in the 
moments,  it is sufficient to specify only the 
two principal moment ratios, A / C  and B/C.  

A grid of  these ratios was studied, with a 
basic grid step of  0.025 for both ratios. The 
dashed lines are lines of  constant oJ0. Since 
the lower synchronous island disappears 
for co0 > 1.36, this region has been hatched. 
Also, for co0 near 0.5, the synchronous is- 
land bifurcates into a period doubled pair of 
islands, neither of which is centered at 0 = 
0. Consequently,  for coo = 0.55 it was the 
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FIG. 5. Attitude stability diagram for the p = 1/2 
island center. For principal moments  within the error 
ellipsoid of  Hyperion the p = I/2 island is also mainly 
attitude unstable. The symbols are the same as those 
in Fig. 4. 

attitude stability of  this island pair which 
was studied. Whenever  the Floquet analy- 
sis indicated stability a small circle is plot- 
ted. Instability is denoted by a plus sign if 
one pair of  multipliers had moduli not equal 
to one, and by an asterisk if two pairs of  
multipliers had moduli not equal to one. 
The resulting regions of  stability and insta- 
bility are complicated,  and it is expected 
that even more structure would be found if 
the grid size were reduced (Kane, 1965). 
The error  ellipsoid for the actual figure of 
Hyperion,  as determined by Duxbury,  is 
also shown. The surprising result is that for 
most values of  the principal moments 
within this ellipsoid, rotation at the synchro- 
nous island center  is attitude unstable! Fig- 
ures 5 and 6 show the results of  similar cal- 
culations for the p = 1/2 and p = 2 island 
centers,  respectively.  Again, for most val- 
ues of  tOo within the error  ellipsoid, rotation 
at the p = 1/2 island center  is attitude unsta- 
ble. On the other  hand, except  for a few 
isolated points, the p = 2 state is attitude 
stable. These isolated points of instability 
are associated with narrow lines of internal 
resonance,  where the fundamental frequen- 
cies of small-amplitude oscillations are 
commensurate  either among themselves or 
with the orbital frequency.  The diagram for 

the p = 9/4 state is similar to that for the p 
= 2 state, and mainly indicates stability. 
The p = 3/2 state is likewise mainly stable, 
but exists only for tOo < 0.56. 

To summarize,  for principal moments 
within the error  ellipsoid for Hyperion the 
synchronous (p = 1) and p = I/2 states are 
mainly attitude unstable, while the p = 2 
and p = 9/4 states are stable. Except  for 
certain moments  of  inertia near the edge of 
the error  ellipsoid in Fig. 4, Hyperion has 
no stable synchronous state. 

The method of  Floquet multipliers is not 
suitable to determine the attitude stability 
of rotation in the chaotic zones since the 
reference trajectory is no longer periodic. 
For  this purpose the Lyapunov characteris- 
tic exponents  are introduced in the next 
section. 

V. A T r l T U D E  STABILITY OF ROTATION IN 
THE CHAOTIC ZONE 

The repeated application of a linear oper- 
ator leads to exponential  growth if one or 
more of  its eigenvalues has modulus greater 
than one, and to oscillatory behavior if all 
the eigenvalues have moduli equal to one. 
The Floquet multipliers introduced in the 
last section are thus indicators of exponen- 
tial deviation from the periodic trajectory. 
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FIG. 6. Attitude stability diagram for the p = 2 island 
center. This state is predominantly attitude stable. The 
symbols are the same as those in Fig. 4. 
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They may be calculated from a characteris- 
tic equation determined from a numerical 
integration over  one orbit period because 
the refcrcnce trajcctory is periodic and the 
variations are being subjected to the same 
" f o r c e s "  over  and over  again. Whcn thcre 
is no underlying periodicity, the Floquet 
method is not useful. Rather, a measure 
of  exponential  separation is provided by 
the Lyapunov  characterist ic exponents  
(LCEs).  The l~yapunov characteristic cx- 
ponents  play a dual role in this paper. In 
this section, they are defined and used to 
determine the attitude stability of the large 
chaotic zone, while in the next section they 
are used as indicators of  chaotic behavior.  
(See Wisdom (1983) for more discussion of 
these exponents . )  

The LCEs  measure the average rate of  
exponential  separation of  trajectories near 
some reference trajectory.  They are defined 
a s  

Inld(t)/d(to)l 
X = lim y(t) = lim , (7) 

t ~  t ~  I - -  I 0 

where 

d(t) = 
X/8~92 + &p2 + 8~b2 + 6p, 2 + ~p,c2 + 8p~2 

the usual Euclidean distance between the 
reference trajectory and some neighboring 
trajectory. The variations 60,  8~, 6+, etc. 
satisfy the same six linear first-order differ- 
ential equations as in the last section. The 
difference is that now the reference trajec- 
tory need no longer be periodic. In general, 
as the direction of  the initial displacement 
vector  is varied, X may take at most N val- 
ues, where N is the dimension of the sys- 
tem. In Hamiltonian systems,  the hi are ad- 
ditionally constrained to come in pairs: for 
every ,kg > 0 there is a Xj < 0, such that Xg + 
~.~ = 0. Thus in the sp in-orbi t  problem only 
three LCEs  are independent:  it is sufficient 
to only study those which are positive or 
zero. (For a review of the mathematical  
results regarding LCEs  see Benettin et al. 
(1980a)). 

In this section we are concerned with at- 
titude stability. In all cases the reference 
trajectory has its spin axis normal to the 
orbit plane. An attitude instability is indi- 
cated if the spin axes of  neighboring trajec- 
tories exponential ly separate from the equi- 
librium orientation. If the reference 
trajectory is quasiperiodic then one pair of 
LCEs  must bc zcro,  and instability is indi- 
cated if any other  LCE is nonzero. On the 
other hand, if the reference trajectory is 
chaotic,  one LCE must bc positivc (sec 
Section VI), and attitude instability is indi- 
cated if two or morc LCEs  arc positivc. In 
cases where the reference trajectory is peri- 
odic there is a correspondence  between the 
Fioquct multiplicrs, o~,, and thc LCEs,  A~, 
viz., tk)r every i there is a j such that ,x. i = 
(lnla~:)/I, where T is the period of thc refcr- 
ence trajectory.  For every Floquet multi- 
plier with modulus greater  than one, there 
is a I ,yapunov exponent  greater  than zero. 

The calculation of the largest LCE is not 
difficult, but to determine the attitude sta- 
bility of  the large chaotic zone it is neces- 
sary to determine at least the two largest 
LCEs,  as one exponent  must be positive to 
reflect the fact that the reference trajectory 
is chaotic. Because several different rates 
of  exponential  growth are simultaneously 
present,  the numerical determination of 
more than the largest LCE is not a trivial 
task. The algorithm used here is that de- 
vised by Benettin et al. (1980b). 

The infinite limit in Eq. (7) is of course 
not reached in actual calculations, lf,X = 0, 
then d(t) oscillates or grows linearly and 
-,/(t) approaches  zero as ln(t)/t. If, however,  
, 4 : 0  then y(t) approaches  this nonzero 
limit. These two cases are easily distin- 
guished on a plot of  log y(t) versus log t, 
where the In(t)/t behavior  appears  roughly 
as a line with slope - 1. This is illustrated in 
Fig. 7 where calculations are presented of 
the three largest LCEs  for the synchronous 
island center  with moments  appropriate  for 
Hyper ion (A/C = 0.5956 and B/C --- 0.8595). 
Two LCEs  are approaching a (positive) 
nonzero limit and one has the behavior  ex- 
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FIG. 7. Lyapunov  characterist ic exponents  for the 
synchronous  island center  with moments  appropriate 
for Hyperion.  Two exponents  are positive and the 
third has the behavior  expected of  a zero exponent .  

pected of  a zero exponent .  This verifies the 
result of the Floquet analysis that with 
these moments  rotation in the synchronous 
island is attitude unstable. As a further 
check,  the attitude stability of  all the syn- 
chronous island centers previously deter- 
mined by the Floquet method were redeter- 
mined with the LCEs.  In all cases the two 
methods agreed, both qualitatively and 
quantitatively. 

Finally, the stability diagram for the large 
chaotic zone is shown in Fig. 8. For all val- 
ues of A/C and B/C which were studied, 
reference trajectories in the large chaotic 
zone with axes perpendicular to the orbit 
plane have three positive LCEs.  This indi- 
cates attitude instability; small displace- 
ments of the spin axis from the orbit normal 
grow exponentially for all trajectories in the 
large chaotic sea! 

The LCEs also provide a time scalc for 
the divergence of  the spin axis from the or- 
bit normal. Since neighboring trajectories 
separate from the reference trajectory as 
e a t  , the e-folding time for exponential diver- 
gence is I/h. For quasiperiodic (or periodic) 
reference trajectories the appropriate h to 
use is the largest LCE;  for chaotic refer- 
ence trajectories the second-largest LCE is 
appropriate since at least one of the first 
two is associated with attitude instability. 
For  values of  the principal moments near 
those of  Hyperion these h's are both near 

0. I. The e-folding time is thus of  order 10 or 
only two orbital periods! These attitude in- 
stabilities arc very strong. 

VI. C H A O T I C  T U M B L I N G  

Almost all trajectories initially near a 
chaotic reference trajectory scparate from 
it exponentially on the average, while al- 
most all trajcctories initially near a quasipe- 
riodic refercnce trajectory separate from it 
roughly linearly. Chaotic behavior can thus 
be detected by examining the behavior of 
neighboring trajectories. The rate of expo- 
nential divergence of  nearby trajectories is 
quantified by the Lyapunov characteristic 
exponents  which were introduced in the 
last section. A nonzero LCE indicates that 
the reference trajectory is chaotic. If all of  
the LCEs are zero then the reference tra- 
jec tory  is quasiperiodic. More generally, 
every pair of zero exponents  indicates the 
existence of an " in tegra l"  of the motion. 
The trajectory is " in tegrable"  if all LCEs 
are zero. 

In the previous two sections several 
cases of attitude instability were found. 
However ,  the methods used are only indi- 
cators of  linear instability since the equa- 
tions of motion for the variations were lin- 
earized. It is possible that when the 
orientation of  the spin axis normal to the 
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FIG. 8. Att i tude stability diagram for the large cha- 
otic zone. In all cases  studied the large chaotic zone is 
att i tude unstable.  
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FIG. 9. Three Lyapunov characteristic exponents 
for two trajectories whose axes were initially slightly 
displaced from the orbit normal. The resulting tum- 
bling motion is fully chaotic; there are no zero expo- 
nents. The LCEs for the two trajectories are approach- 
ing similar values. 

orbit plane is unstable,  the spin axis never- 
theless remains near that orientation or pe- 
riodically returns to it. This turns out not to 
be the case. Wherever  the linear analyses 
indicated instability a trajectory slightly 
displaced from the equilibrium orientation 
was numerically integrated. In every case, 
the spin axis subsequently went through 
large variations and the c body axis went 
more than 90 ° from its original orientation 
perpendicular  to the orbit plane. Still, these 
large excursions could be of a periodic or 
quasiperiodic nature. 

A calculation of the LCEs  for one of 
these trajectories which originates near the 
equilibrium has been made to answer  this 
question. The algorithm of  Benettin et al. 

(1980b) was again uscd to avoid the numeri- 
cal difficulties in calculating several LCEs.  
However ,  an additional difficulty was en- 
countered,  namely,  the equations of motion 
as described in Section IV become singular 
when ~ = rr/2. At this point the 0 rotation 
and the tO rotation become parallel. Since 
all of  the angles go through large variations 
this singularity is frequently encountered.  
To navigate past this coordinate singular- 
ity, a change of coordinates was made to 
the usual Euler angles, which arc singular 
at ¢~. = 0. (The first two Euler rotations are 
the same as those used here, but the third is 
a rotation about the c axis by the angle tO~. 

When ~ .  = 0, the oq~. and the qJL rotations 
are parallel.) Figure 9 shows the results for 
two trajectories with initial conditions ¢ =- 
0.1, ~b = 0.01, d~p/dt = O. ddg/dt = 0, and dO/ 

dt -- I. One of  them began with 0 = rr/2 and 
the other  at ~ = 7r/2 -'- 1/2. The principal 
moments  are A / C  = (I.5956 and B / C  = 

0.8595, values appropriate  for Hyperion.  
The initial conditions are such that the ~ 
motion by itself would be chaotic,  i.e., the 
trajectory with the axis of  rotation fixed 
perpendicular  to the orbit plane would lie in 
the large chaotic zone. The three LCEs  for 
the two trajectories are approaching 
roughly the same limits. The results show 
clearly that the tumbling motion is fully 
chaotic;  none of the LCEs  is zero. 

VII. TIDAl. EVf)LU'FION 

We have seen many qualitatively new 
features in the rotational behavior  of  satel- 
lites with large oJ0 in eccentric orbits. New 
features also appear  in their tidal evolution. 
In general, tidal dissipation tends to drive 
the spin rate of  a satellite to a value near 
synchronous (e.g., Peale and Gold, 1965). 
In this process the satellite has most likely 
passed through several stable spin-orbit  
states where libration of its spin angular ve- 
locity about a nonsynchronous  value could 
be stabilized against further tidal evolution 
by the gravitational torque on the perma- 
nent a symmet ry  of  the satellite 's mass dis- 
tribution. Whether  or not the satellite will 
be captured as it encounters  one of these 
spin-orbi t  states depends on the spin angu- 
lar velocity as the resonance variable yf, en- 
ters its first libration. If the spin rate is be- 
low a critical value capture results, and 
otherwise the satellite passes through the 
resonance.  In most situations there is not 
enough information to determine if this 
condition is satisfied and capture probabili- 
ties may bc calculated by introducing a suit- 
able probabili ty distribution over  the initial 
angular velocity. For instance, the capturc 
probability may be defined as the ratio of  
range of the first integral I r, which leads to 
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capture to the total range of lp allowing a 
first libration (Goldreich and Peale, 1966). 

This standard picture of  the capture pro- 
cess implicitly assumes  that the behavior  
near  the separatr ix is regular and thus well 
described by the averaged equations of  mo- 
tion. In general,  though, the motion near a 
separatr ix in a nonlinear dynamical  sys tem 
is not regular but chaotic.  The calculation 
of  capture probabilities is a well-developed 
art (see Henrard,  1982; Borderies and 
Goldreich,  1984), but thc effect of  thc cha- 
otic separatr ix has never  been mentioned. 
Of  course,  when ¢o0 is very small the cha- 
otic separatr ix is microscopical ly small. 
and even a very small tidal torque can 
sweep the sys tem across  the chaotic zone 
so quickly that it has essentially no effect. 
On the other  hand, for larger ¢o0 where the 
chaotic zones  are sizable, the simple cap- 
ture process  described abovc is qualita- 
tively incorrect.  While still fundamentally 
deterministic,  the capture process now in- 
volves the randomness  inherent in determi- 
nistic chaos.  Probabilities still arise from 
unknown initial conditions, but now the 
outcome is an ext remely  sensitive, essen- 
tially unpredictable function of these initial 
conditions. The capture process  is more 
properly viewed as a random process.  

Following Goldreich and Peale (1966), let 
AE denote the change in the integral lp over  
one cycle of  the resonance variable yp due 
to the tidal torque. When ~ E  is much 
smaller than the width of the chaotic se- 
paratrix 2wplp the chaotic character  of  the 
separatr ix may be expected  to have a signifi- 
cant effect on the capture process.  For the 
p = 3/2 state of  a nearly spherical body this 
condition is 

15k,R' (2_?: I 
- - -  e ,-r,fi,,OX" 14e) 

8 p.Q < \7e /  w0 

where k2 is the Love  number,  l/Q is the 
specific dissipation function, R is the ratio 
of  the radius of  the body to the orbit semi- 
major axis, and /x is the satellite to planet 
mass ratio. With parameters  appropriate  

for Mercury this inequality is satisfied for 
all oJ0 > 0.075. This critical ~o0 is only a little 
more than four times Mercury ' s  actual oJ0 
as assumed in Goldreich and Peale (1966)? 
The chaotic separatr ix should not be 
blithely ignored. 

If 60 o is much larger a trajectory may 
spend a considerable amount  of  time in a 
chaotic zone before escaping or being cap- 
tured. Motion in a chaotic zone depends 
ext remely sensitively on the initial condi- 
tions. Capture will occur  if, by chance,  the 
trajectory spends enough time near the bor- 
der of  the libration zone for the tidal dissi- 
pation to take it out of  the chaotic region; 
escape occurs  if, by chance,  the trajectory 
spends enough time near the border  of  reg- 
ular circulation for the tidal dissipation to 
move it into the regular region. For a value 
of w0 as large as that of  Hyper ion,  the pic- 
ture is even more complicated since many 
islands are accessible to a t raveler  in the 
large chaotic sea. Once a trajectory has en- 
tered the large chaotic zone, it may repeat- 
edly visit each of  the accessible states be- 
fore finally being captured by one of them. 
In numerical exper iments ,  this odyssey  fre- 
quently lakes a very long time, as com- 
pared to capture without a chaotic zone 
where capture or escape is decided perma- 
nently on a single pass through a reso- 
nance. These exper iments  were performed 
with principal moments  appropriate  for Hy- 
perion, the spin axis normal to the orbit 
plane and a tidal torque given by 

C d(O - f )  
T -  

r ~ dt 

which is appropr ia te  when the tidal phase 
lag is simply proport ional  to the frequency 
(Goldreich and Peale, 1966). The constant 
C was chosen for computat ional  conven-  
ience to be of  order  10 -3 . Capture in each 
accessible state appears  to be possible, 
though the synchronous  state was the most 
common  endpoint.  

Normally ,  tidal dissipation not only 
drives the spin rate toward a value near 
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synchronous,  but also drives the spin axis 
to an orientation normal to the orbit plane. 
Thus, in Goldreich and Peale (1966), for in- 
stance, this orientation for the spin axis is 
simply assumed. The discussion of tidal 
evolution is now complicated by the rather 
surprising results of Sections IV, V, and VI 
where it was found that in many cases the 
orientation of the spin axis perpendicular to 
the orbit plane is unstable. In particular, the 
large chaotic zone is attitude unstable (Sec- 
tion V). So as soon as the large chaotic 
zone is entered the spin axis leaves its pre- 
ferred orientation and begins to tumble cha- 
otically through all orientations (Section 
VI). Capture into one of the attitude-stable 
islands is still a possibility. However ,  for 
Hyperion,  the only attitude-stable end- 
points which are accessible, once the large 
chaotic sea has been entered, are the p = 2 
and p = 9/4 states. The synchronous and p 
= 1/2 states are attitude unstable for most 
values of the principal moments within the 
error ellipsoid of Hyperion and the p = 3/2 
state does not exist for too above 0.56 (Sec- 
tion IV). Occasionally, the tumbling satel- 
lite may come near one of the attitude-sta- 
ble islands with its spin axis perpendicular 
to the orbit plane. If it lingers long enough it 
may be captured. However ,  the chaotic 
zone is strongly chaotic (a. ~- 0.1) and the 
tidal dissipation is very weak (the time 
scale for the despinning of Hyperion is of 
the order of the age of  the Solar System). It 
may take a very long time for this tumbling 
satellite to enter an orientation favorable 
for capture to occur. Judging from the long 
times required in the numerical experi- 
ments for capture to occur  even when the 
spin axis was fixed in the required direction 
it seems to us unlikely that Hyperion has 
been captured. We expect  that Hyperion 
will be found to be tumbling chaotically. 

Preliminary observations of a 13-day pe- 
riod (Thomas e t  a l . ,  1984; Goguen, 1983) 
support this conclusion that capture has not 
occurred. We should point out that the tra- 
ditional method of determining periods 
from light variations involves observations 

which are separated by times longer than 
the period of variation and the period is de- 
termined by folding these observations 
back on each other with an assumed period 
which is varied until the scatter of points 
about a smooth curve is minimized. This 
method will not yield meaningful results if 
the period of the observed object varies 
markedly on a time scale which is short 
compared to the time spanning the observa- 
tions. Hence the determination of a chaotic 
light curve requires many magnitude obser- 
vations per orbit period carried out over  
several orbit periods. 

VIII. SUMMARY 

Hyper ion 's  highly aspherical mass distri- 
bution and its large, forced orbital eccen- 
tricity renders inapplicable the usual theory 
of spin orbit coupling which relies on the 
averaging method. In fact, for much smaller 
( B  - A ) I C  the resonance overlap criterion 
predicts the presence of a large chaotic 
zone in the spin-orbit  phase space, and nu- 
merical exploration using the surface of 
section method has verified its presence. 
For Hyperion,  this chaotic zone is so large 
that it engulfs all states from the p = I/2 
state to the p = 2 state. The p = 3/2 state 
has disappeared altogether, and the second- 
order p = 9/4 island is a prominent feature 
on the surface of section. 

Hyperion could stably librate in the syn- 
chronous spin-orbit  state if the spin axis 
were able to remain normal to the orbit 
plane. However ,  for most values of the 
principal moments within the error ellipsoid 
for Hyperion,  Floquet stability analysis in- 
dicates that rotation within the synchro- 
nous island is attitude unstable. A small ini- 
tial displacement of  the spin axis from the 
orbit normal grows exponentially and the 
axis appears to pass through all orienta- 
tions. Likewise, t h ep  : I/2 state is attitude 
unstable for most principal moments near 
those estimated for Hyperion. The only at- 
titude-stable islands in the large chaotic sea 
are the p = 2 and p = 9/4 states. 
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The orientation of the spin axis perpen- 
dicular to the orbit plane is likewise unsta- 
ble for trajectories in the large chaotic 
zone. This is indicated by the Lyapunov 
characteristic exponents which measure 
the rate of exponential separation of neigh- 
boring trajectories. Small displacements of 
the spin axis from the orbit normal lead to 
large displacements. Lyapunov character- 
istic exponents for the rcsulting tumbling 
motion indicate that it is fully chaotic; there 
are no zero exponents. 

Over the age of the solar system, tidal 
dissipation can drivc Hyperion's spin to a 
near synchronous value. The probability of 
the spin being captured into any of the 
spin-orbit states with p > 2 is negligibly 
small, and Hyperion will have necessarily 
entered the large chaotic zone. At this 
point, Hyperion's spin axis becomes atti- 
tude unstable, and Hyperion begins to tum- 
ble chaotically with large, essentially ran- 
dom variations in spin rate and orientation. 
Tidal dissipation may lead to capture if Hy- 
perion's spin comes close enough to one of 
the attitude-stable islands with its spin axis 
perpendicular to the orbit planc. However, 
judging from the long times required in nu- 
merical experiments for capture to occur 
even when the spin axis was fixcd in the 
required orientation and the fact that the 
tidal dissipation is very weak (the time 
scale for the despinning of Hyperion is on 
the order of one billion years), it seems to 
us unlikely that capture has occurred. We 
expect that Hyperion will be found to be 
tumbling chaotically as more extensive ob- 
servations conclusively define its rotation 
state. If this chaotic tumbling is confirmed, 
Hyperion will be the first example of cha- 
otic behavior among the permanent mem- 
bers of the solar system. 
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