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ABSTRACT

All irregularly shaped natural satellites must tumble chaotically before being captured into synchronous

rotation.

L. INTRODUCTION

The basic mechanisms governing the tidal evolution of the
obliquities and rotation rates of the natural satellites have
been understood for over 100 yr (Darwin 1879; see Gol-
dreich and Peale 1970). If the spin angular velocity is large,
the tidal torque tends to drive the obliquity to an equilibrium
value between 0° and 90°. As the spin is slowed by tidal fric-
tion, the equilibrium obliquity decreases. If the orbit is fixed,
the equilibrium obliquity goes to zero as the spin angular
velocity approaches twice the mean orbital motion. For
smaller angular velocities, the equilibrium obliquity is zero.
Until the discovery of the resonant rotation of Mercury
(Pettengill and Dyce 1965), the rate of rotation was as-
sumed to decline steadily until the synchronous lock was
established. The resonant rotation of Mercury forced a re-
evaluation of this picture, and the theory of spin-orbit cou-
pling was developed (see Goldreich and Peale 1966). For a
fixed orbit with nonzero eccentricity and a figure that is not
too out-of-round, spin-orbit resonances with rotation rates
equal to half an integer multiple of the orbital mean motion
were shown to be dynamically stable, and in many cases
motion in these resonances is stable against further tidal evo-
lution as well. The probability of capture into each of these
nonsynchronous spin-orbit resonances as it is encountered
was estimated. However, Peale (1977) has shown that,
among those natural satellites for which the timescale for
despinning is smaller than the age of the solar system, none
has a significant probability of having been captured into a
nonsynchronous commensurate spin-orbit resonance. In
those cases where the rotation state is known, all tidally
evolved satellites are in synchronous rotation. It is rather
unfortunate that the only example of a nonsynchronous
commensurate rotation in the solar system is the one that
inspired this elegant theory.

Saturn’s satellite Hyperion is a dramatic exception to this
general picture (Wisdom, Peale, and Mignard 1984). The
rotation of Hyperion has been significantly affected by tidal
friction and consequently the rotation rate is expected to be
comparable to the orbital mean motion (Peale 1977).
Voyager pictures showed Hyperion to be significantly out-
of-round, with the long axis roughly twice as long as the
short axis (Smith ef al. 1982). The standard theory of spin-
orbit coupling is not valid for a body with such large aspheri-
city. A reanalysis of the spin-orbit problem using techniques
of modern nonlinear dynamics showed that in fact for Hype-
rion the rotational phase space near synchronous rotation is
dominated by a large chaotic zone. The chaotic zone extends
from no rotation at all in an inertial frame to nearly twoand a
half revolutions per orbit. This region is so strongly per-
turbed that the 3/2 resonance, the resonance in which the
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rotation of Mercury is locked, is not stable. Even more inter-
esting, the synchronous spin-orbit resonance, in which all
other tidally evolved natural satellites are found, is attitude
unstable. Even if Hyperion were placed in synchronous rota-
tion with the spin axis perpendicular to the orbital plane,
under the slightest perturbation the spin axis would fall
away from the orbit normal and Hyperion would begin to
tumble. Moreover, the chaotic zone is also attitude unstable.
As Hyperion’s rotation was slowed by tidal friction, there
came a point when it entered the chaotic zone with its spin
axis nearly perpendicular to the orbit plane. Since this axis
orientation is unstable, Hyperion then began to tumble. The
calculation of the Lyapunov Characteristic Exponents
(LCEs) shows that the tumbling motion is fully chaotic.
Two spin-orbit resonances are accessible to Hyperion from
this chaotic-tumbling state that are attitude stable: the 2/1
resonance and the second-order 9/4 resonance. Ultimately,
Hyperion must be captured by one of these resonances, but
all observations to date are consistent with Hyperion cur-
rently being in the chaotic-tumbling state (Goguen 1983;
Thomas et al. 1984; Thomas and Veverka 1985; Binzel et al.
1986). Perhaps the most convincing evidence for the chaotic
tumbling of Hyperion is the large angle of the long axis from
the orbit plane.

The presence of the large chaotic zone can be understood
in terms of the resonance-overlap criterion (see Wisdom ez
al. 1984). A large chaotic zone is expected whenever the sum
of the widths of the libration zones for neighboring reson-
ances computed individually is larger than the separation
between the resonances. For the spin-orbit problem, the
widths of the resonances are all proportional to the aspheri-
city parameter @ = y3(B — 4)/C, where A < B < C are the
principal moments of inertia. In addition, the widths of all of
the resonances except for the synchronous resonance are
proportional to some power of the eccentricity. Hyperion is
not only out-of-round (a=0.89), but the orbit of Hyperion
has a rather large eccentricity, near 0.1. This eccentricity is
primarily a forced eccentricity due to the 4/3 mean motion
commensurability between Titan and Hyperion. An aspheri-
city parameter of order unity and large orbital eccentricity
gives a strong overlap of primary resonances, and thus ac-
counts for the large chaotic zone in Hyperion’s rotational
phase space. Should other natural satellites be expected to be
chaotically tumbling? There are actually a number of other
natural satellites that are significantly out-of-round, but in
each case the orbital eccentricity is low. In those cases where
the rotation is known, these satellites are all in synchronous
rotation; the synchronous resonance is attitude stable. With
its large orbital eccentricity (e~0.75) and size comparable
to that of Hyperion, Nereid comes to mind as a possible
candidate for chaotic tumbling, but in this case there is no
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reason to believe that Nereid is tidally evolved to a near syn-
chronous rotation (Peale 1977). The rotation of Nereid is
most likely spin stabilized. Like the classical spin-orbit the-
ory from which it was developed, the theory of Hyperion’s
chaotic rotation apparently has only a single follower today.

It may be the case though that other natural satellites ro-
tate chaotically at some point in their rotation histories. In
fact, since all spin-orbit resonances are surrounded by chao-
tic separatrices (see Wisdom et al. 1984; Chirikov 1979), itis
certain that all satellites that were captured into synchro-
nous rotation from nonsynchronous rotation crossed a chao-
tic separatrix. In many cases, this chaotic separatrix is ex-
ponentially small and would have had no significant effect
on the evolution. For example, the width of the separatrix
surrounding the 3/2 resonance of Mercury may be estimated
to be of order 10~*® times the width of the 3/2 resonance
(Wisdom et al. 1984). Tidal friction pulls Mercury across
the chaotic separatrix in a single libration period. In other
cases, the chaotic separatrices are not so microscopic. The
estimate of the width of the chaotic separatrix for the syn-
chronous spin-orbit resonance given in Wisdom er al.
(1984) (see also Eq. (4) below) depends exponentially on
the out-of-roundness parameter a, but only linearly on the
orbital eccentricity. Thus satellites that are significantly out-
of-round may be expected to have chaotic separatrices of
significant size even if the orbital eccentricity is relatively
small. For several of the irregularly shaped satellites the
chaotic separatrix engulfs both the 3/2 and the 1/2 reson-
ances (Sec. IT). A more surprising result is that in every case
the chaotic zone is attitude unstable, and the resulting chao-
tic-tumbling motion carries the long axis of the satellite
through a significant angle from the orbital plane (Sec. III).
The magnitude of this deflection seems to be relatively insen-
sitive to the orbital eccentricity. Even for Deimos, where the
orbital eccentricity is anomalously low (e ~0.0005), the an-
gle from the long axis to the orbital plane gets as large as 0.86
rad. This result suggests that the out-of-plane tumbling mo-
tion would occur even for circular orbits. Reducing the prob-
lem even further, it turns out that even a prolate axisymmet-
ricbody in a circular orbit can be attitude unstable to chaotic
tumbling at the point of entry into synchronous rotation. In
this case the motion is reducible to a two degree of freedom
problem and surfaces of section can be computed that dis-
play the geometry of the phase space of the tumbling motion
(Sec. IV). It is not possible to enter the synchronous spin-
orbit resonance without passing through the attitude-unsta-
ble chaotic separatrix. All of the irregularly shaped natural
satellites must have spent a certain amount of time in this
chaotic-tumbling state. The enhanced dissipation in a tum-
bling satellite may significantly affect the orbital evolution
and must certainly be taken into account in considering the
orbital history of an irregular-shaped satellite (Sec. V). This
episode of chaotic tumbling may help explain the anoma-
lously low eccentricity of the orbit of Deimos or perhaps the
“stretch marks” on Phobos (Sec. VI).

II. SURFACES OF SECTION

In this section the spin-orbit coupling problem with the
spin-axis fixed perpendicular to the orbit plane is considered.
This problem was reviewed by Wisdom et al. (1984). It is
natural to consider this reduced problem since in the stan-
dard picture of tidal evolution the spin axis is driven perpen-
dicular to the orbit plane. The satellite has principal mo-
ments of inertia 4 < B < C, and C is the moment about the

spin axis which is fixed perpendicular to the orbit plane. The
orbit is taken to be a fixed ellipse with semimajor axis a,
eccentricity e, true anomaly f, instantaneous radius r, and
longitude of periapse &, which is taken as the origin of longi-
tudes. The orientation of the satellite’s long axis is specified
by 0 and thus @ — f'measures the orientation of the satellite’s
long axis relative to the planet-to-satellite line. The equation
of motion for @ is

1 d%6 | o (a )3 .

— =4+ =—|—]) sin2(6—f) =0, 1

n? dt> 2 \r S )
where n is the orbital mean motion and, again,

a = 3(B — 4)/C . With the spin axis constrained to be per-
pendicular to the orbit plane, the spin-orbit problem has one
degree of freedom with explicit periodic time dependence
through the true anomaly and the instantaneous radius.

Most Hamiltonian systems have both regular and irregu-
lar trajectories. The phase space is divided; there are regions
in which trajectories behave chaotically and regions where
trajectories are quasiperiodic. The structure of the phase
space of a system with two degrees of freedom or of a nonau-
tonomous (time-dependent) system with one degree of free-
dom is most easily understood by computing surfaces of sec-
tion (see Hénon and Heiles 1964). Since the spin-orbit
problem depends periodically on the time, the most conven-
ient surface of section is made by plotting the rate of change
of the orientation d@ /dt, versus the orientation 6, once per
orbit period at periapse. The choice of periapse over other
orbital phases is arbitrary. For ease of understanding, the
rate of change of the orientation is normalized by the mean
motion. On the surface of section, successive points belong-
ing to a quasiperiodic trajectory will appear to be restricted
to a curve, while successive points belonging to a chaotic
trajectory appear to fill an area. On the spin-orbit surfaces of
section, the commensurate spin-orbit resonances appear as
islands of quasiperiodic orbits which do not cover all values
of 6. (Note that because of the symmetry of the principal
axis system, 6 and 6 + 7 are dynamically equivalent config-
urations. Only that portion of the section for @ between 0 and
 is plotted. )

For Hyperion, where @ =0.89 and e < 0.1, the phase space
near synchronous rotation is dominated by a large chaotic
zone in which d6 /dt varies from 0 to 2.5xn. For other irregu-
larly shaped natural satellites in the solar system, the param-
eter a is the same order of magnitude as that of Hyperion
(see Table I), but a crucial difference for the dynamics is
that the orbits are not nearly so eccentric. In fact, for zero
eccentricity, Eq. (1) is integrable. In this case, » =a and
f= nt. Changing variables to ' = @ — nt, the new equation
of motion is

1 d%' | a® . ,
el + 5 sin 20’ =0. 2)

Except for the factors of 2, which could easily be removed by
a further change of variables, this is the equation of motion
for a pendulum for which the solutions may be explicitly
written in terms of elliptic functions. This equation of mo-
tion has the integral

1(1do'yV o
I=—(——) — =co0s 20’. 3

2 \n dt 4 <)
It is easily verified that the frequency of small amplitude
oscillations is w, = an. The half-width of the libration re-
gionind6 /dtis also an. Evidently, there is no chaotic behav-
ior in the spin-orbit problem with the spin axis fixed perpen-
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TABLE 1. Data for irregularly shaped natural satellites.

i Sh: k a e A(i 19—) ]
Satellite ape (km) n dt mex
Phobos (13.5+ 1) X (10.5 +0.7) X (9.0 £ 0.7) 0.86 0.015 0.58 1.29
Deimos (7.5+3)X(60+0.5)X(50+ 1) 0.81 0.0005 0.09 0.86
Amalthea (135 4+ 5)X(85+5)X(75+5) 1.14 0.003 0.16 0.98
Janus (110+5)X (95 +5)X (80 +5) 0.66 0.009 0.34 0.85
Epimetheus (70 + 8) X (57 + 8) X (50 £ 5) 0.78 0.007 0.30 0.92
1980826 (55 +8)X(42+5)X(33+5) 0.89 0.004 0.23 0.85
1980827 (70+5)X(50+ 7)X (37 +8) 0.99 0.004 0.21 0.94

dicular to the orbit plane unless the eccentricity is nonzero.
Itis areasonable expectation then that the size of the chaotic
zone will increase with the eccentricity. The increase in the
size of the chaotic zone cannot, however, be continuous,
since there will be critical values of the eccentricity where a
new island is suddenly engulfed by the chaotic zone, or
equivalently where the last invariant curve separating the
chaotic zones surrounding two neighboring islands disap-
pears. Wisdom et al. (1984) have given an estimate of the
size of the chaotic separatrix when there is no overlap of
primary resonances in terms of the chaotic variations of the
integral /. For the synchronous spin-orbit resonance this es-
timate is

I —1,)/I, = (14me/a®)e ™, (4)

where I is the value of the integral evaluated on the separat-
ing trajectory in the integrable e = 0 case. (Strictly speaking,
I'should be the averaged resonance Hamiltonian for the syn-
chronous resonance, but this differs from 7 only by terms of
second order in e.) While the width depends exponentially
on the parameter ¢, it is only linearly dependent on the ec-
centricity. The formula obeys the requirement that the width
of the chaotic zone is zero for zero eccentricity, and verifies
the expectation that the width increases as the eccentricity
increases. The fact that the width depends linearly on the
eccentricity (in this approximation) means that those satel-
lites with large a but small e may still have significant chao-
tic zones. For the satellites considered here, a > 0.5 in every
case. Thus the synchronous island even extends beyond the
nominal position of the 3/2 resonance. Consequently, the
estimate (4) for the width may not be very good. The only
reliable way of determining the actual extent of the chaotic
zone is to compute a surface of section. Figure 1 shows the
surface of section for Phobos, where a, as determined from
the shape assuming a uniform density, is 0.86, and the eccen-
tricity is taken to be the current eccentricity of 0.015. While
the chaotic zone is much narrower than the chaotic zone for
Hyperion, it is still a major feature on the surface of section.
Note that a single chaotic zone engulfs the synchronous res-
onance, the 1/2 resonance (the island just below center),
and the 3/2 resonance (the small island in the center of the
chaotic zone near § = 0). The observed amplitude of the
forced libration of Phobos is only 0°8 + 0.2 (Duxbury and
Callahan 1982). This implies an a of only 0.56. It appears
that the shape of Phobos does not,accurately represent the
mass distribution. However, the surface of section for
a = 0.56 is very similar to the section in Fig. 1. The chaotic
zones are just about the same size, but the 3/2 island is some-
what larger for the smaller a.

The orbital eccentricity is a critical factor in determining
the width of the fixed-axis chaotic zone. Unfortunately,

there is considerable uncertainty in the orbital history of
Phobos; the orbital eccentricity at the time when Phobos was
captured into the synchronous resonance is not known.
Singer(1968), Lambeck(1979), Mignard(1981), and Ca-
zenave et al. (1981) all give large eccentricity (e> 0.6) to
the orbit of Phobos near the time of its formation or capture.
The timescale for the tidal despinning of Phobos is on the
order of 10° yr (Peale 1977) at its current semimajor axis
and at most ten million years at its more distant initial loca-
tion. Synchronous rotation was reached essentially at the
time of formation. If the eccentricity was indeed large at the
time of capture into synchronous rotation, then Phobos
would certainly have had a period of chaotic tumbling in its
history. On the other hand, Yoder (1982) (see also Mignard
1981) points out that a number of resonances must have
been crossed which could have increased the eccentricity
from a near-zero initial value to values several times larger
than the current eccentricity. In this case, the observed ec-
centricity is explained as a tidal remnant of the eccentricity
after the last resonance passage rather than a remnant from
the formation epoch. Thus the eccentricity of Phobos may
have always been small. The width of the chaotic zone may
be characterized by the extent of the chaotic zone in df /dt
near the unstable equilibrium (€ = 7/2 on the surface of
section). In Fig. 2, the extent of the chaotic zone for Phobos
(a =0.86), as determined from rather limited integrations
of 2000 orbit periods each, is plotted versus orbital eccentric-

Phobos Surface of Section

FIG. 1. Surface of section for Phobos with the spin axis constrained to be
perpendicular to the orbit plane. The rate of change of the orientation is

plotted versus the orientation at every periapse. Here
a=+3(B—A4)/C =0.86, and the orbital eccentricity is 0.015. The
chaotic zone engulfs the 3/2 and 1/2 states as well as the synchronous
rotation resonance.
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FIG. 2. The extent of the fixed spin-axis chaotic zone at § = /2 with the
figure of Phobos, but varying orbital eccentricities. The integrations cov-
ered only 2000 orbit periods, so the extent displayed must be viewed as a
lower limit.

ity. Because of the limited nature of the integrations, the
chaotic zone may extend significantly beyond the range plot-
ted. For instance, with e =0.015 the surface of section
shows that the chaotic zone extends from roughly 0.65 to
1.25 near @ = 7/2, whereas in the more limited integration
carried out for Fig. 2 the range is roughly 0.9-1.25. In any
case, the chaotic zone is never microscopic. Phobos must
have spent many hundreds of thousands, probably millions,
of years in the chaotic zone.

The widths of the chaotic zones for several other irregu-
larly shaped natural satellites are given in Table I. Consider-
ing the uncertainties in the orbital histories of the natural
satellites, the current orbital eccentricity has been used in
each calculation. It is plausible that this is representative of
the eccentricity at the time of capture into synchronous rota-
tion. Whether or not the eccentricity was near the current
eccentricity, the widths in Table I illustrate that the chaotic
zones for the irregularly shaped satellites are not negligibly
small. Even for Deimos (¢ = 0.81), where the eccentricity
(e=0.0005) is considered to be anomalously small (Yoder
1982), the chaotic zone cannot be ignored (Fig. 3). In fact,
since the timescale for the tidal despinning of Deimos is on
the order of 100 million years (Peale 1977), Deimos prob-
ably spent a considerably longer time in the chaotic zone
than did Phobos.

III. ATTITUDE INSTABILITY

One of the most surprising facts about the rotational dy-
namics of Hyperion is that the synchronous spin-orbit reso-
nance is attitude unstable (Wisdom et al. 1984). The spin
axis cannot maintain an orientation perpendicular to the or-
bit plane. This is also true of the chaotic zone; the slightest
deviation of the spin axis from the orbit normal leads to
chaotic tumbling. The chaotic tumbling of Hyperion is a
natural outcome of tidal evolution. Over the age of the solar
system the spin axis is brought perpendicular to the orbit
plane by the tidal torque as the spin is slowed toward syn-
chronous rotation. Upon entering the chaotic zone, the
slightest deviation of the spin axis from the equilibrium posi-
tion leads to chaotic tumbling. Such a deviation will always

Fi1G. 3. The chaotic zone for Deimos (a = 0.81) with its current eccen-
tricity of 0.0005. Even with such a small eccentricity, the chaotic zone is
not microscopic.

exist due to the numerous minor perturbations to which Hy-
perion’s obliquity is subject. It is natural to ask then whether
the more narrow chaotic zones for other irregularly shaped
natural satellites are attitude stable or not, and, if not, what is
the range of the resulting out-of-plane motion.

Attitude stability of the chaotic zone may be defined in
terms of Lyapunov Characteristic Exponents (LCEs) (Wis-
dom et al. 1984). The LCEs measure the mean exponential
rate of divergence of nearby orbits. For chaotic orbits the
distance between trajectories started sufficiently close to one
another will, on the average, grow exponentially with time.
The separation of nearby quasiperiodic orbits grows linear-
ly, on the average. For a particular reference trajectory, the
rate of exponential divergence can depend on the direction
chosen to the neighboring trajectory. For an n degree of free-
dom problem there can, in general, be n distinct rates of
exponential growth. There are » independent nonnegative
LCEs. If the Hamiltonian contains no explicit time depen-
dence, one of these must be zero, which corresponds to the
neighboring trajectory being displaced along the direction of
motion. For the time-dependent spin-orbit problem with the
spin axis taking arbitrary orientations, there are three de-
grees of freedom with no integrals. Three LCEs may then be
positive. LCEs may also be used to determine the attitude
stability of motion in the fixed-axis chaotic zone. For rota-
tion in the chaotic zone with the spin axis of the reference
trajectory fixed perpendicular to the orbit plane, at least one
of the Lyapunov exponents must be positive to reflect the
chaotic nature of the reference trajectory. The chaotic zone
is attitude unstable if two or more LCE:s are positive. The use
of LCE:s to define attitude stability of a nonperiodic orbit is a
natural generalization of the usual linear stability analysis
for fixed points or Floquet analysis for periodic orbits where
motion along the unstable eigendirection grows exponential-
ly. In any case, the result of the analysis may be directly
verified by computing a trajectory with spin axis slightly
displaced from the orbit normal.

The remarkable result is that in every case studied the
chaotic zone is attitude unstable, just as it is for Hyperion.
Even more remarkable is that in every case the e-folding time
for the growth of deviations of the spin axis from the orbit
normal is small, on the order of 5-6 orbit periods! This is true
even for Deimos with its small orbital eccentricity.
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A sample of the resulting tumbling motion for Phobos is
depicted in Figs. 4 and 5. The angular coordinates used to
represent the orientation of the body are slightly different
from those used in Wisdom et al. (1984). Let a, b, and ¢
denote a right-handed set of principal axes with the principal
moments 4 < B < C, respectively. For a triaxial ellipsoid, a is
aligned with the longest axis of the body. The orientation is
specified relative to an inertial set of axes defined at periapse,
with the x axis parallel to the planet-to-satellite line pointing
away from the planet, the y axis in the direction of the orbital
motion at periapse, and the z axis perpendicular to the orbit
plane completing the right-handed set. Initially, the abc axes
coincide with the xyz axes. Successive rotations of the abc set
by the angle 6 about the ¢ axis, the angle ¢ about the new b
axis, and then the angle — 1 about the new a axis bring the
principal axes to their actual orientation. When ¢ and ¢ are
zero, the angle 6 is the same as the angle 8 used to describe
the orientation in the fixed spin-axis case. In this case, angle
6 — fis the angle between the planet-satellite center line and
the axis of smallest principal moment of inertia (the longest
axis for a triaxial ellipsoid). For small eccentricities,
6 — f~6 — nt. With this choice of angles, ¢ directly mea-
sures the angle of the axis of smallest moment of inertia (the
long axis) from the orbit plane; this physically important
angle is a more complicated function of the orientation an-
gles in the original angular coordinates of Wisdom et al.
(1984). Finally, the angle ¥ measures the angle of rotation
about the smallest moment of inertia (the long axis). The
equations of motion are similar to those described in Wis-
domeral. (1984). The trajectory plotted in Figs. 4 and 5 was
started with the axis displaced 10~ radians from the orbit
normal, at the center of the attitude unstable 1/2 island. For
Phobos the synchronous and 3/2 spin-orbit resonances are
verified to be attitude stable, while the 1/2 resonance is atti-
tude unstable. Points are plotted 100 times per orbit, for a
total of 75 orbit periods. The resulting tumbling motion cov-
ers all values of ¢, but ¢ seems to have a limited range (Fig,.
4). The maximum extent of the variation of |@| over longer
integrations of 200 orbit periods for Phobos as well as the
other irregularly shaped satellites is given in Table 1. Figure
5 shows that there is a tendency for the long axis to point
towards the planet, but that at irregular intervals the long

Orientation of Phobos

n
2
v of 1
1
-2
-n
-m/2 /2

F1G. 4. The orientation of Phobos for 75 orbit periods. The long axis
can deviate by as much as 1.29 radians from the orbit plane, while
rotation about the long axis is complete.

Orientation of Phobos

T2 T T T T
w4 |
6-nt 0 - B
-n/4
-n/2 1 N 1
-2 ~m/4 0 /4 /2

FIG. 5. The orientation of Phobos for 75 orbit periods. There is a
tendency for the long axis to point toward Mars, but at irregular inter-
vals the long axis reverses its orientation by 180°.

axis rotates by a 7 and the other end of the satellite points
toward the planet.

This tumbling motion is fully chaotic. The results of the
calculation of the LCEs are displayed in Fig. 6. The LCEs
are the asymptotic values of the quantity y = In[d(¢)/
d(1)1/(t — t,) and measure the rates of exponential separa-
tion of nearby orbits (see Wisdom ez al. 1984). The fact that
three LCEs are positive indicates that there are no hidden
integrals.

IV. TUMBLING PHASE SPACE

With the spin axis fixed perpendicular to the orbit plane,
there is no chaotic behavior when the eccentricity is zero.
Thus, the strong nature of the attitude instability for Deimos
in its narrow chaotic zone is especially surprising. Since the
eccentricity is so small (e~0.0005), it cannot be responsible
for the chaotic-tumbling motion. This argument is strength-
ened by the fact that the extent of the out-of-plane motion is
relatively insensitive to the principal moments and orbital

Phobos Lyapunov Exponents

O T 1
T ——————— e —
10 F 4
»"'.'\'"\W
s
=~
=
w 20 g
2
30F .
-40 L .
1.0 2.0 3.0 4.0

log nt
FIG. 6. Calculations of the Lyapunov Characteristic Exponents for the
chaotic-tumbling motion of Phobos. The LCEs are the limiting values
of y for large 7.
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eccentricity of the natural satellites (see Table I). Of course,
the eccentricity does have a strong effect on the dynamics; it
is almost certainly the case that the extent of the chaotic zone
is always greater for a larger eccentricity. For instance, for
Hyperion, where the shape is similar to Phobos but the orbi-
tal eccentricity is an order of magnitude larger, the angle ¢
goes through all values. However, if the eccentricity is small
and there are still significant chaotic variations in the angles,
the chaotic behavior must be purely a consequence of the
gravity gradient torque on the out-of-round satellite. The
existence of a large out-of-the-plane chaotic zone with zero
orbital eccentricity has been confirmed numerically.

To some extent this should have been expected. Integrable
problems generally lose the full complement of integrals
upon perturbation (Poincaré 1892). While the free motion
of a rigid body is integrable, the motion of a rigid body sub-
ject to a gravity gradient torque is expected on general
grounds to be nonintegrable. In fact, while there is an analyt-
ic integral of the motion when the orbit is circular analogous
to the Jacobi integral for the (circular) restricted three-body
problem (which is the Hamiltonian in the rotating frame),
there are still three degrees of freedom. Only two are re-
quired for chaotic behavior.

Perhaps some insight into this chaotic-tumbling motion
can be achieved by reducing the problem still further. If,
besides taking the orbit to be circular, the two largest princi-
pal moments are taken to be equal, i.e., B=C, then the
Hamiltonian is cyclic in ¢, the angle of rotation about the
axis of smallest principal moment of inertia. Consequently,
the momentum conjugate to ¥, the component of the angular
momentum along the principal axis of smallest principal
moment of inertia, is conserved. There is thus another inte-
gral of the motion, which is clearly independent of the “Ja-
cobi integral,” and the problem is reducible to two degrees of
freedom. It is then possible to make surfaces of section for
the three-dimensional tumbling motion. Examination of
Fig. 5 shows that the angle & — nt frequently goes through
zero, whether or not the long axis is librating. This suggests
that a good choice for the surface of section is to plot the
momentum conjugate to ¢ vs ¢, whenever & — nt goes
through 0. When B = C, the momentum conjugate to ¢ is
simply proportional to d¢/dt, which is what has actually
been plotted. There is one complication in the computation
of the surface of section. In many examples, the Hamiltonian
is quadratic in the momentum conjugate to the section vari-
able. Resolving the ambiguity of which crossings to plot is
then easy: only those with one particular sign of the momen-
tum are displayed. With such a choice, each point on the
surface of section corresponds to a unique trajectory. In the
case at hand, the Hamiltonian is not quadratic in py, so an
alternate prescription must be made. The prescription cho-
sen is the following. Given the value of the integrals of the
motion and the coordinates of the point on the section, the
possible values of p, are solutions of a quadratic equation. If
the py corresponds to the largest of the two roots of the
quadratic equation, the point is plotted. This is a natural
generalization of the usual section for Hamiltonians that are
quadratic in the momenta.

The surface of section for a Phobos-like prolate ellipsoid is
shown in Fig. 7. Here A /C = 0.6538, and B = C. The inte-
gral p, and the “Jacobi integral” have values appropriate for
motion that is intially just at the synchronous separatrix,
with no rotation about the long axis; this is the configuration
expected of a natural satellite just before capture. The outer-

3d Surface of Section
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-n/4 -m/8 0 /8 /4

F1G. 7. Surface of section for the out-of-plane motion of a prolate, axi-
symmetric body in a circular orbit. The integrals are chosen to be those
of a body just like the synchronous rotation separatrix, with no rotation
about the long axis. The chaotic zone extends to the origin; even in this
extreme case the spin axis perpendicular to the orbit plane is attitude
unstable.

most curve is the limit imposed by the integrals. The surface
of section has a number of interesting features. First is the
fact that a large chaotic zone even exists. Next, note that the
chaotic zone extends to ¢ = 0. Even in the zero-eccentricity
case, at the point of capture into synchronous rotation the
spin axis is attitude unstable! It is also interesting to note that
there are quasiperiodic islands at large displacements of the
long axis from the orbit plane. An examination of the trajec-
tories, though, reveals that these islands are special cases of
synchronous rotation. The long axis never makes a complete
rotation by 7 relative to the planet. This is also true of the
chaotic zone for these values of the integrals. If, on the other
hand, the surface of section is computed for a somewhat
larger “Jacobi integral” for which the angle 8 — nt circulates
when ¢ is near zero, the chaotic zone still exists but no longer
extends all the way to the origin. Away from the synchro-
nous resonance, the motion near ¢ = 0 is attitude stable. In
this case, motion in the chaotic zone alternately librates and
circulates.

For completeness, when the eccentricity is zero, the Ham-
iltonian in the rotating frame (the “Jacobi integral™) is

H =1(40? + Bw} + Ca?)
+3(4a® + BB* + Cy*) —np, , (5

where a, B, and y are the direction cosines of the principal
axes on the planet-to-satellite line, and w,, ®,, and @, are
the components of the rotation vector on the principal axes.
For the case where B = C,

pe=(Asin2¢+Ccosz¢)ﬁ+Asin¢@—. (6)
dt dt
The second integral is

dé . d
p¢=A(—dem¢+—jfL). 7

In the numerical integrations, both integrals are typically
conserved to about ten significant digits.
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V. ORBITAL EVOLUTION

Dissipation of energy in a tumbling satellite may have a
significant effect on the orbital evolution of the satellite. This
section presents some initial considerations on this problem.

In terms of the orbital energy E and orbital angular mo-
mentum L, the rate of change of the eccentricity of an orbit is

02
de_ _1-€ (2L 1dE) ®
dt 2¢e \L dt E dt
while the rate of change of the semimajor axis is
lda_ _1dE 9)
a dt E dt

Variations in the orbital energy and in the angular momen-
tum will be discussed separately.

Energy is dissipated in the satellite as a result of the time-
dependent solid-body tides raised on the satellite by the plan-
et, and also by any bending the body undergoes as a result of
the applied torques and nonprincipal axis rotation. For a
synchronously rotating satellite, there is no time-dependent
tide at all unless the orbit is eccentric; in synchronous rota-
tion, the rate of energy dissipation is proportional to the
square of the orbital eccentricity. In a tumbling or nonsyn-
chronously rotating satellite, the whole magnitude of the
tide is time dependent; the rate at which energy is dissipated
in the satellite is significantly enhanced over that in a syn-
chronous rotation, especially when the orbital eccentricity is
small. The variation in the energy is always negative (it is
dissipated), and in a steady state this energy must ultimately
come from the orbital energy.

Before discussing the variation of the angular momentum,
it is helpful to first introduce the notion of the rotational or
dynamical ““state” of a system. In this context, a rotational
“state” will denote a dynamical state of the spin-orbit system
distinguishable from other dynamical states by more than
simple time translation. If there exists a trajectory that
comes arbitrarily close to two particular points in the phase
space, then those two points will be considered to belong to
the same state. While motion in a chaotic zone has not been
rigorously proven to be ergodic, in practice it appears to be
so. Thus all points in a chaotic zone belong to the same dy-
namical state. Measure-zero sets of unstable periodic orbits
are excluded from consideration. Quasiperiodic motion of
an n degree of freedom system occurs on an » torus in the
phase space, and is ergodic on that torus. Thus all points on
that torus belong to the same dynamical state since for al-
most all initial conditions on the torus trajectories eventually
come arbitrarily close to all other points on the torus. On the
other hand, trajectories on different tori belong to different
dynamical states, and so do trajectories in disjoint chaotic
zones. Chaotic trajectories are necessarily in different dy-
namical states from quasiperiodic trajectories. If the dynam-
ical system has explicit integrals of the motion, the state will
be different if the integrals have different values. All trajec-
tories in a system with one set of parameters are distinguish-
able from trajectories of the system with a different set of
parameters; changing a parameter changes the state. The
state thus indicates a component of the phase space that is
ergodically indecomposable. One property of the dynamical
state as just defined is that if the time average of some quanti-
ty computed along a trajectory in a particular state is well
defined, then it may equally well be computed by an average
over the set of points in the phase space that belong to that
state, or alternatively, the time average of the quantity along
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two different trajectories belonging to the same state will be
equal.

Since the total angular momentum is conserved, the angu-
lar momentum may only change its distribution among the
components of the system. An increase in orbital angular
momentum must be compensated by a decrease in the rota-
tional angular momentum, and vice versa. The rotational
angular momentum may be changed through the dynamical
torque or the tidal torque. The dynamical torque gives rise to
the various dynamical rotation states. In most rotation states
the rotational angular momentum varies as the trajectory
evolves, with the timescale for changes in the rotational an-
gular momentum being on the order of the orbital period. Of
course, changes in the rotational angular momentum are ex-
actly compensated by changes in the orbital momentum.
However, for a small-body near-synchronous rotation the
angular momentum in the spin is very much smaller than the
angular momentum in the orbit; the ratio being of the order
of the square of the ratio of the radius of the satellite to the
semimajor axis of the orbit. For example, for Deimos near-
synchronous rotation, the ratio of spin angular momentum
to orbital angular momentum is approximately 10~7. Evena
drastic modification of the rotation state produces a negligi-
ble change in the orbit. It is quite a good approximation to
ignore the changes in the orbit in determining the short-term
dynamical behavior. On the other hand, the timescale for
changes in a dynamical state due to tidal friction is typically
much longer than an orbital period, perhaps even millions of
orbit periods. The details of the dynamical changes that oc-
cur on the orbital timescale must be irrelevant to the evolu-
tion that occurs on the tidal timescale. Evidently, the proper-
ty of the dynamical state that is relevant to the long-term
tidal evolution is just the average angular momentum, since
changes in the average rotational angular momentum must
reflect changes in the average orbital angular momentum.
The reason for introducing the notion of state is just for the
purpose of being able to talk about those factors that affect
the average angular momentum. If the rotational angular
momentum is a well-defined quantity for all rotational
states, it is clear that different particular trajectories belong-
ing to equivalent states should have the same average angu-
lar momentum, and that the average angular momentum
can only change through a change in the dynamical state of
the system. By definition, the state does not change through
the normal dynamical evolution of the system due to dynam-
ical torques, but can only change through the external action
of the tidal torque. Only the tidal torque can change the
average angular momentum. For this approach to be useful
in the consideration of the tidal evolution of the orbit, the
timescale for a well-defined average to be established must be
shorter than the timescale for tidal evolution. It is a reasona-
ble expectation that this should be the case, but this point is
discussed further below.

The rotational state, and consequently the average angu-
lar momentum of the state, depends only on the orbital ec-
centricity and semimajor axis, the two independent ratios of
the principal moments of inertia of the satellite, and the ini-
tial conditions, although many initial conditions may corre-
spond to the same state. The ratios of principal moments will
be considered as given in this problem, and their dependence
on the state will not be further considered. The dependence
of the average angular momentum on the semimajor axis can
be explicitly given since the semimajor axis enters only
through the orbital mean motion, which in turn only deter-
mines the dynamical timescale (see Eq. (1)). Let the average
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angular momentum perpendicular to the orbit plane be de-
noted (L, ), where the angular brackets indicate time aver-
age. It is convenient to also introduce the dimensionless
average angular momentum perpendicular to the orbit plane
&, = (L,)/Cn, where nis the orbital mean motion and C'is
the largest moment of inertia. The dimensionless average
angular momentum does not depend on the semimajor axis.

As anillustration, consider the evolution of the orbit while
the rotation is locked in the synchronous spin-orbit reso-
nance. For all states that are locked in synchronous rotation
about the largest principal moment of inertia, the dimen-
sionless average angular momentum is .¥, = 1, indepen-
dent of the amplitude of libration. The average angular mo-
mentum does not depend on the eccentricity and depends
only trivially on the semimajor axis. As long as the rotation
remains locked in synchronous rotation, the dimensionless
angular momentum cannot change. Thus

L) _ 4 cdn _cdn

dt dt dt

The rate of change of the average orbital angular momentum
is exactly opposite:

(10)

d<L;trbit>="d<dL;)=“C%' (11)
This can be rewritten
1 d{Lowi) L. 1dn
(Logsit ) dt o (Lorvic ) 771?

(L,) 3 dE

. 12
<Lorbit> 2E dt ( )

The rate at which e changes due to tidal dissipation is then,
by Eq. (8),

de _ _ 1—¢? (1
dt 2e

3(L,) )_l_dE

— —_. 3
<Lorbit> E dt (1 )

Since the spin angular momentum is miniscule compared to
the orbital angular momentum, the standard result (Gol-
dreich 1963) is recovered.

The real concern here is with the determination of the
orbital variations due to the enhanced dissipation of energy
in a chaotic-tumbling state. In the case of chaotic tumbling,
the dimensionless average angular momentum depends on
the orbital eccentricity, and in the case of zero orbital eccen-
tricity, on the initial conditions as well. However, when the
orbital eccentricity is nonzero, motion in the chaotic zone
near synchronous rotation does not possess any integrals of
the motion since the three Lyapunov exponents are all posi-
tive (Sec. IIT). Thus, in this case, there can be no dependence
of the average angular momentum on initial conditions, as
long as the trajectory is in the large chaotic zone. Conse-
quently, the dimensionless average angular momentum de-
pends only on the orbital eccentricity, .&°, = .%, (e). The
average angular momentum depends on the orbital eccen-
tricity because the extent of the chaotic zone depends on the
eccentricity. Once this function is known, the effect of tidal
dissipation on the orbit can be calculated just as was done for
rotation in the synchronous resonance above. Namely, the
secular rate of change of the spin angular momentum is

d(L,) dn dZ, de
T =32CI+Cn R (14)
Dividing through by (L, ),
_l____da‘z):iﬂ’_, 1 &@ (15)
(L, dt ndt £, de dt
Thus,
l d <Lorbi[ >
(Lorvie) dt
= ___(fi(id_” 1 47, @) (16)
(Loy) \n dt £, de dt
Substituting into Eq. (8) and rearranging yields
Fd e et o) 23
dt 2e (LowieY/ E dt
(1_ 1—e (L) 1 di’,). (17
€ (Low) L, de

The factor involving (L,)/{(L,; ) in the numerator is ig-
norable. The analogous factor in the denominator is impor-
tant if the quantity

1 (L) 1 d%,
e (Lorbit) =ipz de

has a magnitude of order unity or greater. For Deimos, say,
where e = 0.0005 and (L, )/{L ;. ) ~ 1077, the factor is im-
portant if d.&, /de exceeds about 5000. Unfortunately there
appears to be no other way to determine .%, (e) other than
by numerical computation.

Considerable effort (about 500 VAX hr) has been ex-
pended in an attempt to estimate .%, (e) for the principal
moments estimated from the shape of Deimos. The results
are shown in Fig. 8. For each eccentricity three trajectories
in the chaotic zone surrounding the synchronous resonance
were integrated for 5000 orbit periods each. The diamonds
indicate the average angular momentum perpendicular to
the orbit plane for each eccentricity. The error bars indicate
an estimate of the error of these averages. The error estimate
has a contribution from the standard deviation of the mean
of each individual trajectory which is determined by consid-

Average Angular Momentum
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FIG. 8. Estimates for Deimos of the dimensionless average angular mo-
mentum perpendicular to the orbit plane, .#, = (., )/Chn, as a func-
tion of the orbital eccentricity, e.
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ering each 500 orbit-period segment as a separate experi-
ment and a contribution from the standard deviation of the
mean of the means of the three separate trajectories. The
average angular momentum was unexpectedly difficult to
determine. The averages shown in Fig. 8 are rather noisy and
are only marginally consistent with a smooth curve running
through them. Apparently, integrations much longer than
5000 orbit periods are required to obtain consistent averages
of the angular momentum. The difficulty probably arises
because any particular trajectory may spend considerable
time in small tributaries of the chaotic zone, spoiling the
average in any limited integration. This problem is particu-
larly acute in the full three-dimensional tumbling problem
since the interconnectedness of the chaotic zone in many
dimensions (the “Arnold web”) can allow the trajectory to
wander far from the primary chaotic zone. While in the re-
duced spin-orbit problem with one and one-half degrees of
freedom the chaotic zone is limited in extent, and there is
little doubt that the angular momentum has a well-defined
average, itis not clear that such an average is mathematically
well defined in the three-dimensional problem. If the average
is not well defined, then the outcome of tidal evolution will
depend on which particular part of the Arnold web the tra-
jectory explores on the tidal-evolution timescale, and the
considerations in this section will not be applicable. How-
ever, even in that case the estimates in this section will apply
to those periods when the rotation trajectory is in the main
chaotic zone near synchronous rotation. The data presented
in Fig. 8 represent the best estimate available of the function
&, (e). There is no convincing evidence in these data that
d.? ,/de is greater than about 100. Thus taking the data in
Fig. 8 at face value, the denominator in Eq. (17) may be
neglected. The resulting rate of decrease of the orbital eccen-
tricity while the rotation is in the chaotic-tumbling state then
takes the same form as for synchronous rotation

de_ _1-¢ 1 dE
dr 2¢ E dt’

Energy dissipation results from the nonperiodic solid-
body tides raised by the planet, and the deformation induced
by the chaotic tumbling itself. Dissipation of energy in a
tumbling satellite is significantly enhanced over that in a
synchronously rotating satellite since the whole magnitude
of the tide is time dependent for a nonsynchronous rotation.
For a chaotically tumbling satellite, the rate of energy dissi-
pation must be comparable to and is probably somewhat
greater than that in a nonsynchronous satellite with a regu-
lar rotation. The order of magnitude of the energy dissipated
per orbit period is

AE=p’w*R"/uQ, (19)

where p is the mass density,  is the rotational angular veloc-
ity, R is the radius of the satellite, Q is the specific dissipation
function, and u is the shear modulus (Burns and Safronov
1973). Qis of order 100, and p is of order 10'2 dyn/cm?. For
the chaotic-tumbling state,  is within a factor of 2 of the
orbital mean motion n. Shape parameters and “nutation”
angles are all of order unity, and have been neglected. Thus
the eccentricity of a chaotically tumbling satellite is damped
at a rate of order

lde  pr’R*

e dt” euQd®
This damping rate should not be taken too literally since
numerical coefficients have been consistently ignored in its

(18)

(20)

JACK WISDOM: IRREGULARLY SHAPED SATELLITES

1358

derivation. The important point is that the timescale for the
damping of eccentricity is two factors of e smaller for a cha-
otically tumbling satellite than for a synchronously rotating
satellite.

This picture of the orbital evolution for a chaotically tum-
bling satellite may be contrasted with the orbital evolution of
a nonsynchronously rotating satellite. For a nonsynchron-
ously rotating satellite, both the orbital energy and angular
momentum are modified by the tidal torques. In this case the
predicted outcome will depend on the tidal model, since dL /
dt <0 and dE /dt < 0 with E <0 are competing effects. Gen-
erally, for rapid rotation the orbital eccentricity increases,
but de/dt may change sign as synchronous rotation is ap-
proached, depending on the tidal model. .

There are two possibilities for the ultimate outcome of the
tidal evolution of a satellite in chaotic rotation. First, the
rotation trajectory may “‘stick” to some quasiperiodic island
in the phase space long enough that the rotation is captured
into the quasiperiodic island by the weak tidal torques. Such
“sticking” is a well-known feature of the motion in a chaotic
zone. Since the synchronous state dominates the phase space
when the eccentricity is small, it is the most likely final state
(presuming it is attitude stable). Alternatively, the rotation
may remain chaotic until the eccentricity has damped to
zero. Once the eccentricity is zero, further evolution depends
on variations of the “Jacobi integral.” It seems likely that the
Jacobi integral will be damped at a rate comparable to the
rate at which the rotational energy is damped, since the Ja-
cobi integral is equal to the rotational energy minus the mean
motion times the rotational angular momentum. Denoting
the “Jacobi integral” by J, the damping rate is of order

Ldl__prR?
J dt”T  uQ

where Eq. (19) has again been used for the rate of dissipa-
tion of rotational energy and the rotational energy has been
taken to be of order Cn?. The change in the Jacobi integral
needed to significantly reduce the chaotic zoner is presum-
ably less than the difference in the Jacobi integral at the se-
paratrix and the Jacobi integral of damped synchronous li-
bration, which is of order Cn?. Comparing the two damping
rates, Eqs. (20) and (21), the latter is larger by a factor a%?/
R 2, where the eccentricity to be used is that used in calculat-
ing the eccentricity damping rate. Thus if the chaotic tum-
bling did persist to the point of completely damping the ec-
centricity, the chaotic tumbling would then be damped at a
somewhat faster rate through the secular damping of the
rotational “Jacobi integral,” J.

In summary, the rotational tumbling motion in the large
chaotic zone near synchronous rotation leads to a rapid
damping of the orbital eccentricity on the timescale roughly
given by Eq. (20), which is two factors of the orbital eccen-
tricity shorter than the timescale for damping the eccentric-
ity while in synchronous rotation.

) (21

VI. DISCUSSION

The chaotic tumbling of Hyperion is no longer just an
isolated curiosity. Rather, chaotic tumbling is a natural and
inevitable stage in the rotation histories of all the irregularly
shaped natural satellites, regardless of their orbital eccen-
tricity. The large eccentricity of Hyperion’s orbit simply ex-
acerbates the chaotic tumbling which would have occurred
in any case. The regular progression of the spin axis driven to
the orbit normal by the tidal torque, while the spin slows and

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1987AJ.....94.1350W

FIOB7AT.C 72027 I350W

1359 JACK WISDOM: IRREGULARLY SHAPED SATELLITES 1359

is ultimately captured into the final synchronous rotation
state, is now see to be interrupted by the birth pangs of a
period of chaotic tumbling. Ultimately, chaotically tum-
bling satellites are captured into a state that is stable to
further tidal dissipation, which in every case observed is the
synchronous state. Even if other states are stable, with such
small eccentricities the synchronous state is by far the largest
quasiperiodic island and could consequently be expected to
be the most probable endpoint. Hyperion is still in the chao-
tic zone today because the despinning timescale is so long
and the synchronous state is attitude unstable for Hyperion.
Unfortunately, it is not yet possible to estimate the capture
probability or the time spent in the chaotic zone. Simulations
for Hyperion indicated that trajectories often spend much
more time in the chaotic zone than they would if that part of
the phase space had been regular. Qualitatively, motion in
the chaotic zone is so irregular that the weak tidal torque
cannot make any secular progress. Capture from the chaotic
zone instead relies on the trajectory being temporarily stuck
to the border for a long enough time that the tidal torque can
remove it from the chaotic zone (Wisdom ez al. 1984).

The new understanding of the rotation histories of the
irregularly shaped natural satellites is interesting and impor-
tant in itself; the world works in a surprising way. Neverthe-
less, are there any directly observable consequences of this
episode of chaotic tumbling for the irregularly shaped satel-
lites? Several possibilities come to mind. The first is Mir-
anda. Is it possible that its exotic surface features are a result
of a period of chaotic tumbling? This appears unlikely.
While the enhanced tidal dissipation during a period of
chaotic tumbling could have provided a significant heat
source, the attitude instability described above occurs only
as the synchronous rotation state is entered. For Miranda
this must have occurred soon after its formation, since the
timescale for tidal despinning to synchronous rotation is
only 300 000 yr (Peale 1977). Thus the episode of chaotic
tumbling associated with the entry into synchronous rota-
tion would have occurred too close to the time of formation
to account for the disparate ages of the features seen on Mir-
anda.

The surface of Phobos is marked by a series of linear
grooves. A number of possible causes for these grooves have
been suggested. Soter and Harris (1977) suggested the
grooves were caused by increasing tidal stresses as the orbit
of Phobos decays. This would imply that the grooves are
young. However, subsequent examination of the number of
craters superimposed on the grooves indicated that the
grooves are old (greater than 10° yr). Thomas et al. (1978)
suggested that since the grooves are most prominent near the
largest crater, Stickney, they may be a result of the event that
created that crater. Weidenshilling (1979) objects that the
grooves bear no simple relationship to the crater, and claims
that since some of the grooves show cross cutting the grooves
did not form simultaneously. Weidenshilling proposes in-
stead that the event that created Stickney broke the pre-
viously established synchronous rotation lock, and the tidal
stresses from the subsequent “nutation” caused the faulting
along planes of maximum shear stress, producing the system
of grooves. In this scenario, more grooves appear near Stick-
ney because the material was weakened by the impact. The
study reported in this paper has now established that chaotic
tumbling is a natural part of the rotation history of Phobos,
whatever eccentricity Phobos had at the time of capture into
synchronous rotation. If a nutation that would result from

an impact is capable of creating the grooves, then certainly
the chaotic tumbling that Phobos underwent as it entered
synchronous rotation could have done the same. Still, Stick-
ney must have already been present when the grooves were
formed since there must be some reason for the association of
the grooves with the crater. Another possibility, following
Weidenshilling, is that the impact that created Stickney
drove Phobos into the chaotic zone and the stresses from the
resulting chaotic tumbling created the grooves. Displacing
the long axis from the orbit plane by 20° can initiate chaotic
tumbling. This places an upper limit on the amplitude of a
regular “nutation” in synchronous rotation (however, see
Sec. IV). The impact hypothesis of Thomas et al. is still the
simplest explanation for the grooves on Phobos.

If the grooves on Phobos were a result of a period of chao-
tic tumbling as the synchronous state was entered, then there
may be grooves on other irregularly shaped satellites since
they have all experienced a period of chaotic tumbling. Does
the lack of grooves on Deimos then rule out the possibility
that the grooves on Phobos were created by chaotic tum-
bling? Tidal stresses arise from the gravitational potential of
Mars as well as the centrifugal potential of the chaotic rota-
tion itself. Using Kelvin’s formula for the displacement Love
number and recalling that the rate of rotation of a chaotical-
ly tumbling body is of the same order as the orbital mean
motion, the tidal stresses are all proportional to R %a~3,
where R is the radius of the satellite and a is the semimajor
axis. Deimos is smaller than Phobos and farther from Mars.
Currently, the ratio of the semimajor axes is 2.5, but all orbi-
tal histories of Phobos and Deimos place the satellites closer
to one another in the past since the corotation radius lies
between them. The grooves on Phobos are at least 10° yr old,
most orbital histories would then place Phobos beyond 4
Martian radii, where the ratio of semimajor axes must have
been less than 2. Deimos is roughly half the size of Phobos.
The tidal stresses would then have differed by a factor in the
neighborhood of 30. Perhaps this difference in tidal str<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>