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A plot of spin rate versus orientation when Hyperion is at the pericenter of its orbit (surface of
section) reveals a large chaotic zone surrounding the synchronous spin-orbit state of Hyperion, if
the satellite is assumed to be rotating about a principal axis which is normal to its orbit plane. This
means that Hyperion’s rotation in this zone exhibits large. essentially random varniations on a short
time scale. The chaotic zone is so large that it surrounds the 1/2 and 2 states, and libration in the 3/2
state is not possible. Stability analysis shows that for libration in the synchronous and 1/2 states,
the orientation of the spin axis normal to the orbit piane is unstable, whereas rotation in the 2 state
is attitude stable. Rotation in the chaotic zone is also attitude unstable. A small deviation of the
principal axis from the orbit normal leads to motion through all angles in both the chaotic zone and
the attitude unstable libration regions. Measures of the exponential rate of separation of nearby
trajectories in phase space (Lyapunov characteristic exponents) for these three-dimensional mo-
tions indicate the the tumbling is chaotic and not just a regular motion through large angles. As tidal
dissipation drives Hyperion’s spin toward a nearly synchronous value, Hyperion necessarily enters
the large chaotic zone. At this point Hyperion becomes attitude unstable and begins to tumble.
Capture from the chaotic state into the synchronous or 1/2 state is impossible since they are also

attitude unstable. The 3/2 state does not exist. Capture into the stable 2 statc is possible, but
improbable. It is expected that Hyperion will be found tumbling chaotically.

I. INTRODUCTION

The rotation histories of the natural satel-
lites have been summarized by Peale
(1977). Most of the natural satellites fall
into one of the two well-defincd categories:
those which have cvolved significantly due
to tidal interactions and those which have
essentially retained their primordial spins.
The exceptions are Hyperion and lapetus,
for which the time scales to despin to spin
rates which are synchronous with their re-
spective orbital mean motions are esti-
mated to be on the order of one billion
years. However, it has been known for

* Paper presented at the **Natural Satellites Confer-
ence,’” Ithaca, N.Y.. July 5-9, 1983.

some time that lapetus rotates synchro-
nously (Widorn, 1950). Since the time scale
for the despinning of Hyperion is somewhat
less than that for lapetus, it is likely that
Hyperion has significantly evolved as well.

As a satellite tidally despins, it may be
captured in a variety of spin-orbit states
where the spin rate is commensurate with
the orbital mean motion. Mercury, how-
ever, is the only body in the solar system
which is known to have a nonsynchronous
yet commensurate spin rate (see Goldreich
and Peale, 1966). Among the tidally
evolved natural satellites, where the spin
rates are known the satellites are all in syn-
chronous rotation, and in those cases
where the spin rate is not known the proba-
bility of capture in a nonsynchronous state
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is small. Most of the tidally evolved satel-
lites are expected to be synchronously ro-
tating. Hyperion is the only remaining pos-
sibility for an exotic spin-orbit state (see,
¢.g., Peale, 1978). We shall see that it may
indeed be exotic.

In their original paper on spin-orbit cou-
pling, Goldreich and Peale (1966) derive a
pendulum-like equation for each spin—orbit
state by rewriting the cquations of motion
in terms of an appropriate resonance vari-
able and eliminating the nonresonant, high-
frequency contributions through averaging.
The strength of each resonance depends on
the orbital eccentricity and the principal
moments of inertia through (B — A)/C. As
long as (B — A)/C < 1, averaging is a good
approximation and the resulting spin states
are orderly. However, the figurc of Hyper-
ion has been determined from Voyager 2
images (Smith et al., 1982; T. C. Duxbury.
1983, personal communication) and (B —
A)/C = 0.26. This is significantly larger than
the hydrostatic value assumed in Peale
(1978), and averaging is no longer an appro-
priate approximation. In fact, the reso-
nance overlap criterion (Chirikov, 1979)
predicts the presence of a large zone of cha-
otic rotation.

In this paper, we reexamine the problem
of spin—orbit coupling for those cases
where averaging is not applicable, with spe-
cial emphasis on parameters appropriate
for Hyperion. In the next section, the prob-
lem is recalled and the qualitative features
of the nonlinear spin—orbit problem are dis-
cussed. Onc mechanism for the onset of
chaos, the overlap of first-order reso-
nances, is briefly reviewed and the reso-
nance overlap criterion is used to predict
the critical value of (B — A)/C above which
there is large-scale chaotic bchavior. In
Section IlI, the spin—orbit phasc spacc is
numerically explored using the surface of
section method. The existence of the large
chaotic zone is verified, and the critical
value for the onset of chaos is compared to
the prediction of the resonance overlap cri-
terion. In Section II and III it is assumed
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that the spin axis is normal to the orbit
planc. In Section 1V the stability of this ori-
entation is examined for the spin-orbit
states, where it is shown that for principal
moments appropriate for Hyperion the syn-
chronous and 1/2 spin-orbit states are atti-
tude unstable! In Section V rotation in the
chaotic zone is also shown to be attitude
unstable. The resulting three-dimensional
tumbling motions are considered in Section
VI, and shown to be fully chaotic. Conse-
quences of these results for the tidal evolu-
tion of Hyperion are discussed in Section
VII and it is concluded that Hyperion will
probably be found to be chaotically tum-
bling. A summary follows in Section VIII.

11. SPIN-ORBIT COUPLING REVISITED

Consider a satellite whose spin axis is
normal to its orbit plane. The satellite is
assumed to be a triaxial ellipsoid with prin-
cipal moments of inertia A < B < C, and C
is the moment about the spin axis. The orbit
is assumed to be a fixed cllipse with semi-
major axis «, eccentricity e, true anomaly f.
instantaneous radius r. and longitude of pe-
riapse w, which is taken as the origin of
longitudes. The oricntation of the satellite’s
long axis is specified by & and thus ¥ — f
measures the orientation of the satellite’s
long axis relative to the planet-satellite cen-
ter line. This notation is the same as that of
Goldreich and Peale (1966). Without cxter-
nal tidal torques, the equation of motion for
¥ (Danby, 1962; Goldreich and Peale, 1966)
is

Y wy .
s 2 in 29 — H =
- + 57 Sin 28 - f) =0. (N

where wj = 3(B — A)/C and units have been
chosen so that the orbital period of the sat-
ellite is 27 and its semimajor axis is one.
Thus the dimensionless time 7 is equal to
the mean longitude. Since the functions r
and fare 27 periodic in the time. the second
term in Eq. (1) may be cxpanded in a
Fourier-like Poisson series giving
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9
dr

+ % mzx H (% e) sin(29 — mi) = 0.

The coefficients H(m/2,¢) are proportional
to ™21 and are tabulated by Cayley
(1859) and Goldreich and Pecale (1966).
When e is small, H(m/2,e) = —ie. 1, e for
m/2 =}, 1, 3, respectively. The halt integer
m/2 will be denoted by the symbol p.
Resonances occur whenever one of the
arguments of the sine functions is nearly
stationary, i.e., whenever (dd¥/dt) — p| < 3.
In such cases it is often useful to rewrite the
equation of motion in terms of the slowly

varying resonance variable y, = ¢ — pt,
dvy, o}
d?;’ = H(p e) sin 2y,

wn

+ 7"20 H (p + g ¢’) sin2y, — nt) = 0.
(2)

If w, is small enough the terms in the sum
will oscillate rapidly compared to the much
slower variation of vy, determined by the
first two terms and consequently will give
little net contribution to the motion. As a
first approximation for small wg, then, these
high-frequency terms may be removed by
holding vy, fixed and averaging Eq. (2) over
an orbital period. The resulting equation is

&
dtyf + ‘—"—"11(p e) sin 2y, = 0

and is equivalent to that for a pendulum.
The first integral of this equation is

EA

» =3\ H(p,e) cos 2v,.

v, librates for I, < [,5 and circulates for 1,, >
1,5, where the scparating value IS = = (wi/4)
IH(p e)|. For I, < I, and H(p, e) >0, v
librates about zero; while for I, < 1,5 and
H(p.e) < 0, vy, librates about #/2, In both
cases the frequency of small- dmplitude 0s-
cillations is woVI|H(p,e)|. For I, = LS, vy

follows the infinite period separatrix which
is asymptotic forward and backward in time
to the unstable equilibrium. The half-width
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of the resonance is characterized by the
maximum value of dy,/dt on the separatrix.
When v, librates |dy,/dt] is always less than
this value which is equal to woV|H(p.¢)|.
Averaging is most useful for studying the
motion near a resonance when the reso-
nance half-widths are much smaller than
their separation. In this case, most solu-
tions of the actual equation of motion differ
from those of the averaged cquations by
only small regular oscillations resulting
from the nonresonant, high-frequency
terms. An important exception occurs for
motion near the infinite-period separatrix
which is broadened by the high-frequency
terms into a narrow chaotic band (Chirikov,
1979). While the band is present for all val-
ues of w, 1t is extremely narrow for small
wy. Chirikov has given an cstimate of the
half-width of this chaotic separatrix, which
is expressed in terms of the chaotic varia-

tions of the integral I, viz.,
L, -3

w, =
P
18

= 4eNlel -2,

where ¢ is the ratio of the coefficient of the
nearest perturbing high-frequency term to
the coefficient of the perturbed term, and A
= (Mw is the ratio of the frequency differ-
ence between the resonant term and the
nearest nonresonant term ({}) to the fre-
quency of small-amplitude librations (w).
For the synchronous spin-orbit state per-
turbed by the p = 3 term, ¢ = H(Z.e)/H(1,¢)
= (7¢)/2 and A = l/w,. Thus

1| - 1|S 14me

1|‘ Wy

e~ 2wp) . ( 3 )

For Mercury, for instance, where w, =
0.017 (for (B — A)Y/C = 10~%y and ¢ = 0.206,
the width of the chaotic region associated
with the synchronous state is w; = 1.4 X
1073 and a similar estimate for the width of
the p = 3/2 chaotic band gives w;; = 5.4 X
1074} Averaging is certainly a good approx-
imation for Mercury. On the other hand,
the width of the chaotic layer depends c¢x-
ponentially on wy, and as w, increases the
size of the chaotic separatrix increases dra-
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matically. Now most of the natural satel-
lites are expected, on the basis of hydro-
static equilibrium, to have values of w,
larger than that expected for Mercury, in
several cases approaching unity (Peale,
1977). At such large w, chaotic separatrices
are a major featurc in the phase space. In
studying the rotations of the natural satel-
lites caution must be exercised when using
the averaging method.

The widths of the libration regions also
8row as wp increases. At some point their
widths, as calculated above using the aver-
aging method. are so large that the reso-
nances begin to overlap. Analyzed sepa-
rately, libration would be expected in each
of two neighboring resonances. However,
simultaneous libration in two spin-orbit
states is impossible. The result is wide-
spread chaotic behavior. An estimate of the
wy at which this happens is provided by the
Chirikov resonance overlap criterion. This
criterion states that when the sum of two
unperturbed half-widths equals the separa-
tion of resonance centers, large-scale chaos
ensucs. In the spin-orbit problem the two
resonances with the largest widths are the p
= 1 and p = 3/2 states. For thesec two states
the resonance overlap criterion becomes

1

wROVIH(1,e)| + ROV |H(3/2.e)] = 3

or

1
RO —

@ 2+ Vide @
For e = 0.1, the mean eccentricity of Hype-
rion, the critical value of wy, above which
large-scale chaotic behavior is expected is
woR® = 0.31. This is well below the actual
value of Hyperion's wy, which has been de-
termined from Voyager 2 images to be wg =
0.89 + 0.22 (T. C. Duxbury, 1983, personal
communication). It is expected then that
for Hyperion there is a large chaotic zone
surrounding (at Icast) the p = 1 and p = 3/2

states, and possibly more.
These predictions are verified in the next
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section, where the spin—orbit phase space
is investigated numerically using the sur-
face of section method.

III. THE SPIN-ORBIT PHASE SPACE

Most Hamiltonian systems display both
regular and irregular trajectorics. The
phasc space is divided: there are regions in
which trajectories behave chaotically and
regions where trajectories are quasiperiodic
(Hénon and Heiles, 1964). The simplest and
most intuitive mecthod of determining
whether a trajectory is chaotic or quasipe-
riodic is the surface of section method. The
spin—orbit problem, as defined in the last
section. iIs 27 periodic in the dimensioniess
time. A surface of section is obtained by
looking at the system stroboscopically with
period 27. A natural choice for the scction
is to plot d¥/dt versus ¥ at every periapse
passage. The successive points define
smooth curves for quasiperiodic trajecto-
ries; for chaotic trajectorics the points ap-
pear to fill an area on the section in an ap-
parently random manner. It is a remarkable
property of Hamiltonian systems that these
two types of behavior are usually readily
distinguishable and that they arc generally
both present on any surface of section.

Because of the symmetry of a triaxial ¢l-
lipsoid, the oricntation denoted by & is
equivalent to that denoted by ¥ + 7. Conse-
quently, ¥ may be restricted to the interval
from 0 to 7. The spin-orbit states found in
the previous section by the averaging
method are states wherc a resonance vari-
able y, = ¥ — pt librates. For cach of these
states d¥/dr has an average value precisely
equal to p. and ¥ rotates through all valucs.
If attention is restricted, however, to the
times of periapsc passage. i.e., ¢ = 2wn,
then cach vy, taken modulo = is simply ¥. A
libration in y, becomes a libration in J on
the surface of section. For quasiperiodic h-
bration successive points trace a simple
curve on the section near dd¥/dr = p which
covers only a fraction of the possible inter-
val from 0 to 7. For nonresonant quasipe-
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FiG. 1. Surface of section for wy, = 0.2 and ¢ = 0.1.
d¥/dr versus ¥ at successive periapse passages for ten
separate trajectories: three illustrating quasiperiodic
libration, three illustrating the surrounding chaotic lay-
ers and four illustrating that quasiperiodic rotation
separates the chaotic zones.

riodic trajectories, all y, rotate, and succes-
sive points on the surfacc of section will
trace a simple curve which covers all values
of #. For small w,, resonant states are sepa-
rated from nonresonant states by a narrow
chaotic zone, for which successive points
fill a very narrow areca on the surface of
section. The surfacc of section displayed in
Fig. 1 illustrates these various possibilities
for wy = 0.2 and ¢ = 0.1. Equation (1) was
numecrically integrated for ten separate tra-
jectories and d¥/dt was plotted versus ¢ at
every pecriapse passage. Three trajectorics
illustrate quasiperiodic libration in the p =
1 (synchronous), p = 1/2, and p = 3/2
states. Three trajectories illustrate the cha-
otic separatrices surrounding each of these
resonant states, and four trajectories show
that each of these chaotic zones is sepa-
rated from the others by impenetrable non-
resonant quasiperiodic rotation trajecto-
ries. Five hundred successive points are
plotted for each quasiperiodic trajectory,
and 1000 points for each chaotic trajectory.

As w, is increased both the resonance
widths and the widths of the chaotic separa-
trices grow. The resonance overlap crite-
rion predicts that the chaotic zones will be-
gin to merge when o, > @R, where woR? is

given by Eq. (1). For Hypcrion, ¢ = 0.1,
and wg®® = 0.31. Numerically, we find that
the p = 1 and p = 3/2 chaotic zones merge
between wy = 0.25 and wy = 0.28. The pre-
diction of the resonance overlap criterion is
in excellent agreement with the numerical
results, especially considering that o, var-
ics over two orders of magnitude for the
natural satellites.

As wy ts further increased the simplicity
of the picture developed for small w, disap-
pears. The now large chaotic zone sur-
rounds more and more resonances. and the
sizes of the principal quasiperiodic islands
decrease. Figure 2 illustrates the main fea-
tures of the surface of section for ¢ = 0.1
and wy = 0.89, values appropriate for Hype-
rion. The chaotic sea is very large, sur-
rounding all states from p = 1/2to p = 2.
Notice the change in scale from Fig. 1. The
tiny remnant of the p = 1/2 island is in the
lower center of the chaotic sea; the p = 3/2
island has disappcared altogether. The sec-
ond-order p = 9/4 island in the top center of
the chaotic zone is now one of the major
features of the section. A total of 17 trajec-
tories of Eq. (1) were used to generate this
figurc: eight quasiperiodic librators. illus-
trating the p = 1/2, 1, 2. 9/4, 5/2. 3, and 7/2
states, five nonresonant quasiperiodic rota-
tors. and four chaotic trajectories (one for

Fi1G. 2. Surface of section for wy, = 0.89 and ¢ = 0.1.
Hyperion's spin—orbit phase space is dominated by a
chaotic zone which is so large that even the p = 12
and p = 2 states are surrounded by it.



FI1G. 3. Major island centers versus w,. Each island
may be identified by the value of d¥/dr at wy = 0.
except for the second synchronous branch which ap-
pears in the upper right quadrant. A broad line indi-
cates that the island is surrounded by the large chaotic
zone. These resonance curves summarize the surfaces
of section by showing which states may be reached by
traveling in the chaotic sea for any particular w,. The
dotted lines show the usual linear approximation for
the forced librations in the synchronous state, while
the dashed lines show a much superior nonlincar ap-
proximation.

each chaotic zone). Two thousand points
are plotted in the large chaotic sea.

While the average value of dd/dt is pre-
cisely p for a quasiperiodic librator in state
p, on the surface of section the island cen-
ters are displaced from these values. This
displacement results from a forced libration
with the same period as the orbital period
and amplitude (in the variations of ¥ and
d6/dr) equal to the displacement. This phe-
nomenon is familiar from the forced libra-
tion of Phobos (Duxbury., 1977; Peale,
1977). A convenient way to summarize the
results of the surfaces of section for various
wy is to plot the location of all the major
island centers. The resonance centers oc-
curat 3 = 0or 9 = 7/2, soitis sufficient to
plot only d¥/dt versus w,. This plot is pre-
sented in Fig. 3 for an orbital cccentricity of
0.1. Curves with different symmetry may
cross. For example, the p = 1 and p = 1/2
curves cross, yct the islands are always dis-
tinct since their centers occur at different
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values of . Whenever the island was sur-
rounded by the large chaotic sea. the line
has been broadened. The resonance curves
in Fig. 3 thus give a clear picture of which
states may be visited by traveling in the
chaotic sca for any particular w,. It is inter-
esting to note that for wy within the range
1.27 < wy < 1.36 two different synchronous
islands are simultancously present.

For the large w, and ¢ appropriate for Hy-
perion the forced librations are not well ap-
proximated by the linear theory that was
used for Phobos. However. good approxi-
mations are obtained from the nonlincar
method of Bogoliubov and Mitropolsky
(1961). If we define ¢, = ¢ — pfand Eq. (1)
is rewritten with the true anomaly as the
independent variable, the equation of mo-
tion for ¢, becomes

Iz > . . [ I.
(1 + ecosf) ‘d.w“, — 2esin f (‘p + ‘%}"—)
+ %6 sin 2(, + (p — D = 0. (5)

The island centers are fixed points on the
surface of section, thus ¥,(f) is 27 periodic.
This suggests that ¥, be written as a Fourier

series, W,(f) = ¥," + > Ut sin kf. ¥,° as-
A1

sumes a value of 0 or /2 depending on
whether libration is about ¢ equal to 0 or
w2, respectively, and only sine terms are
included since the equation of motion is in-
variant under a simultancous change in sign
of ¥, and f. A first approximation to the
solution is obtained by retaining only the
first term (kK = 1) in this Fourier series. Sub-
stituting this into Eq. (5). multiplying by
sin(f) and integrating from 0 to 27 yields an
implicit cquation for the amplitude v,

Wil 320" + (=170 (20,1 -
(2wp‘ + 4(’[))( -1 )‘2\11/,0).'7
where the J, are the usual Bessel functions.

The dashed line in Fig. 3 shows the solution
to this equation for p = 1, where

4 _ dyy df _ y (1 + e
U df) PR R TRt
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on the surface of section (at periapse). Evi-
dently, cven one term in this Fourier series
is a much better representation of the full
solution than the usual linear solution (see
Pecale, 1977) which is drawn as a dotted line
in Fig. 3. Though they are not drawn in Fig.
3 the nonlinear approximations for p = 1/2
and p = 3/2 are also quite good.

Up to now it has been assumed that the
spin axis is perpendicular to the orbit plane.
However, Fig. 2 bears little resemblance to
the picture of spin-orbit coupling devel-
oped for small w,. In the next scction this
question of attitude stability is reevaluated
in this now strongly nonlinear regime.

" IV. ATTITUDE STABILITY OF ROTATION AT
THE ISLAND CENTERS )

Consider now the fully three-dimensional
motion of a triaxial ellipsoid in a fixed ellip-
tical orbit, which is specified as before. Let
a, b, and ¢ denote a right-handed set of axes
fixed in the satellite, formed by the princi-
pal axes of inertia with moments A < B <
C, respectively. In this case Euler's equa-
tions are (Danby, 1962)

dw, 3
A%—wbw,(B—C)=—jBy(B—C).

F
o _ C-A) = -2 ya(C - A
7 w w,(C — )——'—5701(,— )
(6)

dw,. 3
C—p — @A — B) = — 5 aB(A - B),

where w,, w,, and o, are the rotational an-
gular velocities about the ‘three axes «a, b,
and ¢, respectively, and «, 8, and y are the
direction cosines of the planet to satellite
radius vector on the same three axes.

To solve these equations, a set of gener-
alized coordinates to specify the orientation
of the satellite must be chosen. The Euler
angles (as specified in Goldstein, 1965) are
not suitable for this purpose because the
resulting equations have a coordinate sin-
gularity when the spin axis is normal to the
orbit plane, which is just the situation under
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study. A more convenient set of angles has
therefore been chosen and is specified rela-
tive to an inertial coordinate system xyz
which is defined at periapse. The x axis is
chosen to be parallel to the planct to satel-
lite radius vector, the y axis parallel to the
orbital velocity, and the z axis normal to the
orbit plane so as to complete a right-handed
coordinate system. Three successive rota-
tions are performed to bring the abc axes to
their actual orientation from an orientation
coincident with the xyz set of axes. First,
the abc axes are rotated about the ¢ axis by
an angle 9. This is foliowed by a rotation
about the a axis by an angle ¢. The third
rotation is about the b axis by an angle 5.
The first two rotations are the same as the
Euler rotations, but their names have been
interchanged. In terms of thesc angles the
three angular velocitics are

.
w, = dr COs ¢ SIn Y i cos U,

dd . dy
wb:ESlnga'FE,

o= COS ¢ COSs Yr 4 Sin U,

and the three direction cosines arc

a = cos ¥ cos(d — f)
— sin ¢ sin ¢ sin(d — f),
= — cos ¢ sin(¥ — f),
v = sin ¢ cos(¥ — f)

+ cos P sin ¢ sin(d — f).

The equations of motion for 9, ¢, and ¢ are
then derived in a straightforward manncr.
For reference, the three canonically conju-
gate momenta are

Ps = —Aw,C0Ss ¢ sin  + Bw,sin ¢

+ Cw, £OS$ ¢ COS Y,
P, = Aw,cos ¥ + Ca,sin i,
pu, = Bwb.

When ¢, ¢, p, and p, are set equal to
zero, they remain equal to zero. In this
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equilibrium situation the spin axis is normal
to the orbit plane and ¥ is identical to the &
used in the two previous sections. At the
island centers ¥(¢) is periodic and the stabil-
ity of this configuration may be determined
by the method of Floquet multipliers (see,
e.g., Poincaré, 1892; Cesari, 1963; Kane,
1965). A trajectory near this periodic trajec-
tory is specified by 9’ = 3 + 89, " = ¢ +
8o, ¥ = ¢+ 8, ps = ps + 8py,p, = p, +
dp, and py = p, + 8p,. The equations of
motion for the variations 83, 8¢, 8y, etc.
are then linearized in the variations, giving
six first-order linear differential equations
with periodic coefficients. Integration of
these equations over one period for six lin-
early independent initial variations (83 = 1,
S¢ = &y = dps = 8p, = 8p, = 0,89 = 0, by
=1, 8¢ = 8py = 3p,, = 8p, = 0; etc.) defines
a linear transformation which maps an arbi-
trary set of initial variations to their values
one period later. The evolution of the varia-
tions over several periods is obtained by
repeated application of this linear transfor-
mation. The eigenvalues of this linear
transformation are called the Floquet multi-
pliers, and determine the stability of the
original periodic solution. Namely, if any of
the Floquet multipliers have a modulus
greater than one, then repeated application
of the linear transformation will lead to ex-
ponential growth of the variations and the
periodic solution is unstable; while (linear)
stability is indicated if all the multipliers
have modulus equal to one. Because of the
Hamiltonian nature of this problem, every
multiplier may be associated with another
multiplier for which the product of the two
moduli is equal to one (Poincaré, 1892).
Thus instability is indicated by any multi-
plier with modulus not equal to one.

Two simplifications of this procedure
were employed. Rather than explicitly lin-
earize the equations of motion about the
periodic reference trajectory, the variations
were determined by directly integrating a
nearby trajectory. The initial phase-space
separation was taken to be 10 7; the results
are insensitive to this initial separation as
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F1G. 4. Attitude stability diagram for the synchro-
nous island center. A circle indicates stability, a plus
sign indicates instability with one unstable direction
and an asterisk indicates instability with two unstable
directions. For most principal moments within the er-
ror ellipsoid of Hyperion the synchronous island is
attitude unstable!

long as it is small enough. The characteris-
tic equation is a sixth-order polynomial
equation, which is cumbersome to solve.
Fortunately, it may be explicitly factored
into the product of a quadratic equation,
which determines the stability of the ¢ mo-
tion with the spin axis normal to the orbit
plane, and a quartic equation which deter-
mines the attitude stability. Of course, the
¥ motion is always stable for the island cen-
ters.

Figure 4 displays the results of a number
of calculations of the Floquet multipliers
for the centers of the synchronous islands,
with ¢ = 0.1, for various principal mo-
ments. Because Eqs. (6) are linear in the
moments, it is sufficient to specify only the
two principal moment ratios, A/C and B/C.
A grid of these ratios was studied, with a
basic grid step of 0.025 for both ratios. The
dashed lines are lines of constant wg. Since
the lower synchronous island disappears
for wy > 1.36, this region has been hatched.
Also, for @y near 0.5, the synchronous is-
land bifurcates into a period doubled pair of
islands, neither of which is centered at ¥ =
0. Consequently, for w, = 0.55 it was the
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F1G. 5. Attitude stability diagram for the p = 1/2
island center. For principal moments within the error
eliipsoid of Hyperion the p = 1/2 island is also mainly
attitude unstable. The symbols are the same as those
in Fig. 4.

attitude stability of this island pair which
was studied. Whenever the Floquet analy-
sis indicated stability a small circle is plot-
ted. Instability is denoted by a plus sign if
one pair of multipliers had moduli not equal
to one, and by an asterisk if two pairs of
multipliers had moduli not equal to one.
The resulting regions of stability and insta-
bility are complicated, and it is expected
that even more structure would be found if
the gnd size were reduced (Kane, 1965).
The error ellipsoid for the actual figure of
Hyperion, as determined by Duxbury, is
also shown. The surprising result is that for
most values of the principal moments
within this ellipsoid, rotation at the synchro-
nous island center is attitude unstable! Fig-
ures 5 and 6 show the results of similar cal-
culations for the p = 1/2 and p = 2 island
centers, respectively. Again, for most val-
ues of wy within the error ellipsoid, rotation
at the p = 1/2 island center is attitude unsta-
ble. On the other hand, except for a few
isolated points, the p = 2 state is attitude
stable. These isolated points of instability
are associated with narrow lines of internal
resonance, where the fundamental frequen-
cies of small-amplitude oscillations are
commensurate either among themselves or
with the orbital frequency. The diagram for
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the p = 9/4 state is similar to that for the p
= 2 state, and mainly indicates stability.
The p = 3/2 state is likewise mainly stable,
but exists only for wy < 0.56.

To summarize, for principal moments
within the error ellipsoid for Hyperion the
synchronous (p = 1) and p = 1/2 states are
mainly attitude unstable, while the p = 2
and p = 9/4 states are stable. Except for
certain moments of inertia near the edge of
the error ellipsoid in Fig. 4, Hyperion has
no stable synchronous state.

The method of Floquet multipliers is not
suitable to determine the attitude stability
of rotation in the chaotic zones since the
reference trajectory is no longer periodic.
For this purpose the Lyapunov characteris-
tic exponents are introduced in the next
section.

V. ATTITUDE STABILITY OF ROTATION IN
THE CHAOTIC ZONE

The repeated application of a linear oper-
ator leads to exponential growth if one or
more of its eigenvalues has modulus greater
than one, and to oscillatory behavior if all
the eigenvalues have moduli equal to one.
The Floquet multipliers introduced in the
last section are thus indicators of exponen-
tial deviation from the periodic trajectory.

0.8

8/C
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F1G. 6. Attitude stability diagram for the p = 2 island
center. This state is predominantly attitude stable. The
symbols are the same as those in Fig. 4.
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They may be calculated from a characteris-
tic equation determined from a numerical
integration over one orbit period because
the reference trajectory is periodic and the
variations are being subjected to the same
**forces’’ over and over again. When there
is no underlying periodicity, the Floquet
mecthod is not uscful. Rather, a measure
of exponential separation is provided by
the Lyapunov characteristic cxponents
(LCEs). The l.yapunov characteristic ¢x-
ponents play a dual role in this paper. In
this section, they are defined and used to
determine the attitude stability of the large
chaotic zone, while in the next section they
are used as indicators of chaotic behavior.
(See Wisdom (1983) for more discussion of
these exponents.)

The LCEs measure the average rate of
exponential separation of trajectories near
some reference trajectory. They are defined
as

In[d(1)/d(ty)]

A = lim 70 = lim

where

d(t) =
V89 + 8> + 8 + dpy’ + 8p.t + 8p,’.

the usual Euclidean distance between the
reference trajectory and some neighboring
trajectory. The variations 89, 8¢, 8, etc.
satisfy the same six linear first-order differ-
ential equations as in the last section. The
difference is that now the reference trajec-
tory need no longer be periodic. In gencral,
as the direction of the initial displacement
vector is varied, A may take at most N val-
ues, where N is the dimension of the sys-
tem. In Hamiltonian systems, the A; arc ad-
ditionally constrained to come in pairs: for
every A; > O there is a A; < 0, such that A; +
A; = 0. Thus in the spin-orbit problem only
three LCEs are independent; it is sufficient
to only study those which are positive or
zero. (For a review of the mathematical
results regarding LCEs see Benettin er al.
(1980a)).
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In this section we are concernced with at-
titude stability. In all cases the reference
trajectory has its spin axis normal to the
orbit planc. An attitude instability is indi-
cated if the spin axes of neighboring trajec-
tories exponentially separate from the equi-
librium orientation. If the reference
trajectory is quasiperiodic then one pair of
LCEs must be zero, and instability is indi-
cated if any other LCE is nonzero. On the
other hand. if the reference trajectory is
chaotic, onc LCE must be positive (sce
Section V1), and attitude instability is indi-
cated if two or more LCEs arc positive. In
cases where the reference trajectory is peri-
odic there is a correspondence between the
Floquet multipliers. «;. and the LCEs. A,
viz., for every I there is a j such that A, =
(Inje; )/ T, where T is the period of the refer-
ence trajectory. For every Floquet multi-
plicr with modulus greater than one, there
is a Lyapunov exponent greater than zero.

The calculation of the largest LCE is not
difficult, but to dectermine the attitude sta-
bility of the large chaotic zone it is neces-
sary to determine at least the two largest
LCEs, as one exponent must be positive to
reflect the fact that the reference trajectory
is chaotic. Becausc several different rates
of exponential growth are simultancously
present, the numerical determination of
more than the largest LCE is not a trivial
task. The algorithm used here is that de-
vised by Benettin et al. (1980b).

The infinite ltmit in Eq. (7) is of course
not reached in actual calculations. If A = 0,
then d(1) oscillates or grows lincarly and
(1) approaches zero as In(t)/t. If, however,
A # 0 then (1) approaches this nonzero
limit. These two cases are easily distin-
guished on a plot of log y(¢) versus log ¢,
where the In(#)/t behavior appears roughly
as a line with slope —1. This is illustrated in
Fig. 7 where calculations are presented of
the three largest L.CEs for the synchronous
island center with moments appropriate for
Hyperion (A/C = 0.5956 and B/C = 0.8595).
Two L.CEs are approaching a (positive)
nonzero limit and one has the behavior ex-
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log‘ot

Fi1G. 7. Lyapunov characteristic exponents for the
synchronous island center with moments appropriate
for Hyperion. Two exponents are positive and the
third has the behavior expected of a zero exponent.

pected of a zero exponent. This verifies the
result of the Floquet analysis that with
thesc moments rotation in the synchronous
island is attitude unstable. As a further
check, the attitude stability of all the syn-
chronous island centers previously deter-
mined by the Floquet method were redeter-
mined with the [LCEs. In all cases the two
methods agreed, both qualitatively and
quantitatively.

Finally, the stability diagram for the large
chaotic zone is shown in Fig. 8. For all val-
ues of A/C and B/C which were studied,
reference trajectories in the large chaotic
zone with axes perpendicular to the orbit
plane have three positive LCEs. This indi-
cates attitude instability; small displace-
ments of the spin axis from the orbit normal
grow exponentially for all trajectories in the
large chaotic sea!

The LCEs also provide a time scale for
the divergence of the spin axis from the or-
bit normal. Since ncighboring trajectories
separate from the reference trajectory as
eV, the e-folding time for exponential diver-
gence is 1/A. For quasiperiodic (or periodic)
reference trajectories the appropriate A to
use is the largest LCE; for chaotic refer-
ence trajectories the second-largest LCE is
appropriate since at least one of the first
two is associated with attitude instability.
For values of the principal moments near
those of Hyperion these A\’s are both near
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0.1. The e-folding time is thus of order 10 or
only two orbital periods! These attitude in-
stabilities arc very strong.

VI. CHAOTIC TUMBLING

Almost all trajectories initially near a
chaotic reference trajectory separate from
it exponentially on the average, while al-
most all trajectories initially near a quasipe-
riodic refercnce trajectory separate from it
roughly linearly. Chaotic behavior can thus
be detected by examining the behavior of
neighboring trajectories. The rate of expo-
nential divergence of nearby trajectorics is
quantified by the Lyapunov characteristic
exponents which were introduced in the
last section. A nonzero LCE indicates that
the reference trajectory is chaotic. If all of
the LCEs are zero then the refcrence tra-
jectory is quasiperiodic. More gencrally,
every pair of zero exponents indicates the
existence of an ‘‘integral”’ of the motion.
The trajectory is ‘‘integrable’ if all LCEs
are zero.

In the previous two sections several
cases of attitude instability were found.
However, the methods used are only indi-
cators of linear instability since the equa-
tions of motion for the variations were lin-
earized. It is possible that when the
orientation of the spin axis normal to the

08

8/C
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F1G. 8. Attitude stability diagram for the large cha-
otic zone. In all cases studied the large chaotic zone is
attitude unstable.
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log \0"

FiG. 9. Three Lyapunov characteristic exponents
for two trajectories whose axes were initially slightly
displaced from the orbit normal. The resulting tum-
bling motion is fully chaotic: there are no zero expo-
nents. The LCEs for the two trajectories are approach-
ing similar values.

orbit plane is unstable, the spin axis never-
theless remains near that orientation or pe-
niodically returns to it. This turns out not to
be the casc. Wherever the linear analyses
indicated instability a trajectory slightly
displaced from the equilibrium orientation
was numerically integrated. In every case,
the spin axis subsequently went through
large variations and the ¢ body axis went
more than 90° from its original orientation
perpendicular to the orbit plane. Still, these
large excursions could be of a periodic or
quasiperiodic nature.

A calculation of the LCEs for one of
these trajectories which originates near the
equilibrium has been made to answer this
question. The algorithm of Benettin et al.
(1980b) was again used to avoid the numeri-
cal difficulties in calculating several LCEs.
However, an additional difficulty was en-
countered, namely, the equations of motion
as described in Section 1V become singular
when ¢ = #/2. At this point the 6 rotation
and the ¢ rotation become parallel. Since
all of the angles go through large variations
this singularity is frequently encountcred.
To navigate past this coordinate singular-
ity, a change of coordinates was made to
the usual Euler angles, which are singular
at ¢ = 0. (The first two Euler rotations are
the same as those used here. but the third is
a rotation about the ¢ axis by the angle .
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When ¢ = 0, the 3. and the . rotations
are parallel.) Figure 9 shows the results for
two trajectories with initial conditions ¢ =
0.1, ¢ = 0.01, dp/dt = 0, dip/dt = 0, and &/
dt = 1. One of them began with & = /2 and
the other at ¥ = #/2 +~ 1/2. The principal
moments are A/C = 0.5956 and B/C =
0.8595, values appropriate for Hyperion.
The initial conditions are such that the
motion by itself would be chaotic, i.e., the
trajectory with the axis of rotation fixed
perpendicular to the orbit plane would lie in
the large chaotic zone. The three LL.CEs for
the two trajectories arc approaching
roughly the same limits. The results show
clearly that the tumbling motion is fully
chaotic; none of the L.CEs is zero.

VIIL. TIDAL EVOLUTION

We have scen many qualitatively new
features in the rotational behavior of satel-
lites with large w, in cccentric orbits. New
features also appear in their tidal evolution.
In general, tidal dissipation tends to drive
the spin rate of a satellite to a value near
synchronous (e.g., Peale and Gold, 1965).
In this process the satellite has most likely
passed through several stable spin-orbit
states where libration of its spin angular ve-
locity about a nonsynchronous value could
be stabilized against further tidal evolution
by the gravitational torque on the perma-
nent asymmetry of the satellite’s mass dis-
tribution. Whether or not the satellite will
be captured as it encounters one of these
spin—-orbit states depends on the spin angu-
lar velocity as the resonance variable y, en-
ters its first libration. If the spin rate is be-
low a critical value capture results, and
otherwise the satcllite passes through the
resonance. In most situations there is not
enough information to determinc if this
condition is satisfied and capture probabili-
ties may be calculated by introducing a suit-
able probability distribution over the initial
angular velocity. For instance, the capture
probability may be defined as the ratio of
range of the first integral /, which leads to
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capture to the total range of /, allowing a
first libration (Goldreich and Peale, 1966).

This standard picture of the capture pro-
cess implicitly assumes that the behavior
near the separatrix is regular and thus well
described by the averaged equations of mo-
tion. In general, though, the motion near a
separatrix in a nonlinear dynamical system
is not regular but chaotic. The calculation
of capture probabilities is a well-developed
art (sce Henrard, 1982; Borderies and
Goldreich, 1984), but the cffect of the cha-
otic separatrix has never been mentioned.
Of course, when w, is very small the cha-
otic separatrix is microscopically small,
and even a very small tidal torque can
sweep the system across the chaotic zone
so quickly that it has esscntially no effect.
On the other hand, for larger w, where the
chaotic zones are sizable, the simple cap-
ture process described above is qualita-
tively incorrect. While still fundamentally
deterministic, the capture process now in-
volves the randomness inherent in determi-
nistic chaos. Probabilities still arise from
unknown initial conditions, but now the
outcome is an extremely sensitive, essen-
tially unpredictable function of these initial
conditions. The capture procecss is more
properly viewed as a random process.

Following Goldreich and Peale (1966). let
AE denote the change in the integral /, over
one cycle of the resonance variable vy, due
to the tidal torque. When AFE is much
smaller than the width of the chaotic se-
paratrix 2w,[, the chaotic character of the
separatrix may be expected to have a signifi-
cant effect on the capture process. For the
p = 3/2 state of a ncarly spherical body this
condition is

15k,R? - (l)slep eV TED
8 nQ Te’  wqy '

where k, is the Love number, 1/Q is the
specific dissipation function, R is the ratio
of the radius of the body to the orbit semi-
major axis, and w is the satellite to planct
mass ratio. With parameters appropriate
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for Mercury this inequality is satisfied for
all wy > 0.075. This critical w is only a little
more than four times Mercury's actual w,
as assumed in Goldreich and Peale (1966)!
The chaotic separatrix should not be
blithely ignored.

If wy is much larger a trajectory may
spend a considerable amount of time in a
chaotic zone before escaping or being cap-
tured. Motion in a chaotic zone depends
extremely secnsitively on the initial condi-
tions. Capture will occur if, by chance, the
trajectory spends enough time near the bor-
der of the libration zone for the tidal dissi-
pation to take it out of the chaotic region;
escape occurs if, by chance, the trajectory
spends enough time necar the border of reg-
ular circulation for the tidal dissipation to
move it into the regular region. For a value
of wy as large as that of Hyperion, the pic-
ture is even more complicated since many
islands arc accessible to a traveler in the
large chaotic sea. Once a trajectory has en-
tered the large chaotic zone, it may repeat-
edly visit each of the accessible states be-
fore finally being captured by one of them.
In numerical ¢xperiments, this odyssey fre-
quently takes a very long time, as com-
pared to capture without a chaotic zone
where capture or cscape is decided perma-
nently on a single pass through a reso-
nance. These experiments were performed
with principal moments appropriate for Hy-
perion, the spin axis normal to the orbit
plane and a tidal torque given by

_— Cdd - /)
B S dt
which is appropriate when the tidal phase
lag is simply proportional to the frequency
(Goldreich and Peale, 1966). The constant
C was chosen for computational conven-
ience to be of order 107}, Capturc in cach
accessible state appears to be possible,
though the synchronous statc was the most
common endpoint.

Normally, tidal dissipation not only
drives the spin ratc toward a value near
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synchronous, but also drives the spin axis
to an orientation normal to the orbit plane.
Thus, in Goldreich and Peale (1966). for in-
stance, this orientation for the spin axis is
simply assumed. The discussion of tidal
evolution is now complicated by the rather
surprising results of Sections [V, V. and VI
where it was found that in many cases the
orientation of the spin axis perpendicular to
the orbit plane is unstable. In particular, the
large chaotic zone is attitude unstable (Sec-
tion V). So as soon as the large chaotic
zone is entered the spin axis leaves its pre-
ferred orientation and begins to tumble cha-
otically through all orientations (Section
VI). Capture into onc of the attitude-stable
islands is still a possibility. However. for
Hyperion, the only attitude-stable end-
points which are accessible, once the large
chaotic sea has been cntered. are the p = 2
and p = 9/4 states. The synchronous and p
= 1/2 states are attitude unstable for most
values of the principal moments within the
error ellipsoid of Hyperion and the p = 3/2
state does not exist for wy, above 0.56 (Sec-
tion IV). Occasionally, the tumbling satel-
lite may come near one of the attitude-sta-
ble islands with its spin axis perpendicular
to the orbit plane. If it lingers long enough it
may be captured. However, the chaotic
zone is strongly chaotic (A = 0.1) and the
tidal dissipation is very weak (the time
scale for the despinning of Hyperion is of
the order of the age of the Solar System). It
may take a very long time for this tumbling
satellitc to enter an orientation favorable
for capture to occur. Judging from the long
times requircd in the numerical cxperi-
ments for capture to occur even when the
spin axis was fixed in the required direction
it seems to us unlikely that Hyperion has
been captured. We expect that Hyperion
will be found to be tumbling chaotically.
Preliminary obscrvations of a 13-day pe-
riod (Thomas et al., 1984; Goguen, 1983)
support this conclusion that capture has not
occurred. We should point out that the tra-
ditional method of determining periods
from light variations involves observations
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which are separated by times longer than
the period of variation and the period is de-
termined by folding these observations
back on each other with an assumed period
which is varied until the scatter of points
about a smooth curve is minimized. This
method will not yield meaningful results if
the period of the observed object varies
markedly on a time scale which is short
compared to the time spanning the observa-
tions. Hence the determination of a chaotic
light curve requircs many magnitude obser-
vations per orbit period carried out over
several orbit periods.

VIlI. SUMMARY

Hyperion’s highly aspherical mass distri-
bution and its large, forced orbital eccen-
tricity rendcers inapplicable the usual theory
of spin orbit coupling which relies on the
averaging method. In fact, for much smaller
(B — A)/C the resonance overlap criterion
predicts the presence of a large chaotic
zone in the spin—orbit phase space. and nu-
merical exploration using the surface of
section method has verified its presence.
For Hyperion, this chaotic zone is so large
that it engulfs all states from the p = 1/2
state to the p = 2 state. The p = 3/2 state
has disappeared altogether, and the second-
order p = 9/4 island is a prominent feature
on the surface of section.

Hyperion could stably libratc in the syn-
chronous spin—orbit state if the spin axis
were able to remain normal to the orbit
planc. However, for most values of the
principal moments within the error ellipsoid
for Hyperion, Floquet stability analysis in-
dicates that rotation within the synchro-
nous island is attitude unstable. A small ini-
tial displacement of the spin axis from the
orbit normal grows exponentially and the
axis appears to pass through all orienta-
tions. Likewise, the p = 1/2 state is attitude
unstable for most principal moments near
those estimated for Hyperion. The only at-
titude-stable islands in the large chaotic sea
are the p = 2 and p = 9/4 states.
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The orientation of the spin axis perpen-
dicular to the orbit plane is likewise unsta-
ble for trajectories in the large chaotic
zone. This is indicated by the Lyapunov
characteristic exponents which measure
the rate of exponential separation of neigh-
boring trajectories. Small displacements of
the spin axis from the orbit normal lcad to
large displacements. Lyapunov character-
istic exponents for the resulting tumbling
motion indicate that it is fully chaotic; there
are no zero exponents.

Over the age of the solar system, tidal
dissipation can drive Hyperion’s spin to a
near synchronous value. The probability of
the spin being captured into any of the
spin—orbit states with p > 2 s negligibly
small, and Hyperion will have necessarily
entered the large chaotic zonc. At this
point, Hyperion's spin axis becomes atti-
tude unstable, and Hyperion begins to tum-
ble chaotically with large, essentially ran-
dom variations in spin rate and orientation.
Tidal dissipation may lead to capture if Hy-
perion’s spin comes close enough to one of
the attitude-stable islands with its spin axis
perpendicular to the orbit planc. However,
judging from the long times required in nu-
merical experiments for capture to occur
even when the spin axis was fixed in the
required oricntation and the fact that the
tidal dissipation is very wecak (the time
scale for the despinning of Hyperion is on
the order of one billion years), it seems to
us unlikely that capture has occurred. We
expect that Hyperion will be found to be
tumbling chaotically as more extensive ob-
servations conclusively define its rotation
state. If this chaotic tumbling is confirmed,
Hyperion will be the first example of cha-
otic behavior among the permanent mem-
bers of the solar system.
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