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ABSTRACT

Wisdom, Peale, and Mignard (1984) predicted Hyperion to be in a state of chaotic rotation. Simula-
tions indicate that very precise and well-sampled observations over a few orbit periods are necessary to
test this prediction (Peale and Wisdom 1984). I have obtained such a dataset by observing Hyperion for
10 weeks (3.5 orbit periods) at McGraw-Hill Observatory in Arizona using a CCD camera in 1987.
Phase-dispersion minimization analysis of the resulting light curve definitively shows that Hyperion is
not in any periodic rotation state, thus strongly suggesting it is chaotic (Klavetter 1989). I therefore
extended the original dynamical model of Wisdom ez al. (1984) to include all the modifications neces-
sary to fit the light curve. Numerical simulations indicate the best method used in fitting is (1) choose a
well-sampled subset of the light curve to search for and find the area in phase space that approximates
the best initial condition, and then (2) fit using some minimization technique to this subset, add the
next observation point, and repeat the process for the entire light curve. I conducted such a search and
fitting procedure, marginally sampling the necessary phase space. My best fit has residuals comparable
with the internal uncertainties of the data. The moment ratios fitted are comparable to those predicted
from the Voyager-derived shape and are consistent with the satellite having a uniform density distribu-
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tion.

1. INTRODUCTION

Hyperion (SVII) is unique in the solar system. This satel-
lite of Saturn is the only major body presently rotating cha-
otically, as demonstrated by this work and Klavetter (1989)
(hereafter referred to as Paper I). In Paper I, a well-sampled
light curve was presented from observations made at the
McGraw-Hill Observatory (MHO) with a CCD photome-
ter. Simple periodic-fitting analysis was done. No regular/
periodic rotation state was found that approximated the
data. Thus, I attempt to determine Hyperion’s rotation state
with a model developed from the dynamics outlined in Wis-
dom et al. (1984). The results of these dynamical investiga-
tions demonstrate the chaotic nature of Hyperion’s rotation
and are consistent with Hyperion having a uniform mass
distribution.

Table I is a summary of Hyperion’s physical characteris-
tics. Note the large axial ratios. No other large satellite has
an odd shape. Mimas, for example, is about the same size as
Hyperion, yet is well approximated by a nearly spherical
ellipsoid. Since Hyperion has such an aspherical shape, it is
natural to ask how it could have obtained this shape. It is
difficult to determine the relative importance that fragmen-
tation processes and tidal/gravitational forces have had in
shaping Hyperion due to a lack of information concerning
collisions and material strengths. Smith ef al. (1982) pro-
posed a model in which collisional fragmentation and reac-
cretion, perhaps even multiple collisions and reaccretions,
account for many of the observed characteristics of the Sa-
turnian satellites. Thomas ef al. (1983) stated that it was
unnecessary to invoke such a “spectacular” explanation for
the origins of many of the Saturnian satellites. They noted
that cratering statistics indicate that any fragmentation and
reaccretion must have occurred at least a few billion years
ago based on the crater counts observed. Farinella et al.
(1983) proposed a model in which Hyperion is the “core” of
a disrupted predecessor. Their calculations indicate that the
4:3 orbital resonance with Titan would prevent any reaccre-
tion of secondary fragments, which would either fall into
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Titan or would escape from the Saturn system. While the
origin of Hyperion is an interesting question, I will deal with
the consequences of Hyperion’s shape rather than how it was
formed.

The Voyager spacecraft provided a wealth of new informa-
tion concerning Hyperion. The Voyager 2 determination of
the shape of Hyperion directly led to the prediction of its
chaotic rotation (Wisdom ez al. 1984). Unfortunately, only
about 50% of Hyperion was observed by Voyager at high
resolution (Thomas and Veverka 1985) so the shape is still
uncertain, and it is impossible to map the surface of Hyper-
ion with the topographic features observed. The following
results are reported by Thomas and Veverka (1985). Al-
though Hyperion’s shape is not precisely ellipsoidal, the
best-determined dimensions are 185X 140% 113 4- 10 km.
Hyperion’s average normal reflectance is 0.21 at 0.47 um
and any variations in albedo are essentially averaged out
over the disk. Its color is redder than Phoebe but is nearly the
same as the dark (leading) side of Iapetus. While there are
identifiable craters, the crater density is low compared to
other Saturnian satellites. Figure 1 [Plate 59] is one of the
highest-resolution images of Hyperion taken by Voyager 2.
This figure clearly shows Hyperion’s highly aspherical
shape, which can roughly be described as ellipsoidal from
some aspects (see Sec. IV and Fig. 13 for another view).
Unfortunately, the Voyager spacecraft was not able to deter-
mine Hyperion’s mass. Voyager was not able to independent-
ly determine the principal moments of inertia, but these can
be calculated if a uniform density is assumed.

The inner satellites of Saturn are mostly ice, as conclusive-
ly demonstrated by Voyager determination of masses and
radii which showed that their densities were of the same
order as water ice (Smith et al. 1982). Unfortunately, there
is no good mass determination of Hyperion. In principle, a
mass could be computed from consideration of the 4:3 Ti-
tan—Hyperion orbital resonance, but Titan is so much more
massive than Hyperion that this is impractical. Cruikshank
and Brown (1982) calculated a geometric albedo of p,
=0.28 4 0.04 for a Hyperion with an effective radius of
140 4 19 km. This is consistent with the value found by Tho-
len and Zellner (1983) of 0.19-0.25. They give a range of
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TABLE I. Physical properties of Hyperion.

Property Value Reference
radius 185x140x 113+ 10 km Thomas and Veverka 1985
mass unknown
density unknown
geometric albedo 0.19 - 0.25 Tholen and Zellner 1983
surface composition dirty ice Clark et al. 1984
semimajor axis 24.55 R Woltjer 1928
Distance from Saturn in 1987:
maximum at elongation 239 arcsec
minimum at conjunction 86 arcsec
orbital period 21.277 days Woltjer 1928
rotational period chaotic Wisdom ez al. 1984, Klavetter 1989
eccentricity 0.1042 (forced) Woltjer 1928
inclination 0.43° Woltjer 1928
Vo = 14.2 (see Table II)
B-V =0.74 (see Table IT)
V-R 0.41 +0.02 Klavetter 1989
J 13.0£0.10 Cruikshank 1979
J-H 0.15 £ 0.05 Cruikshank 1979
J-K -0.03 £ 0.07 Cruikshank 1979
J-L >0.55 Cruikshank 1979
lightcurve amplitude = 0.5 Thomas and Veverka 1985

values since they did not know the aspect of the satellite.
These values are similar to those found for some asteroids
and rocky bodies, but typically less than most icy satellites.
Infrared measurements in the region 1.5-2.6 gm by Cruik-
shank and Brown (1982) and Clark et al. (1984), however,
strongly indicate the presence of water ice on Hyperion’s
surface. It is unknown if water ice is a major constituent of
Hyperion’s bulk composition or if water ice is just a part of a
dirty-frost regolith. Chapman and McKinnon (1986) ar-
gued that central peaks would not be found in the largest
craters if Hyperion were silicate due to the greater effective
strength of cratered rock debris compared to ice. Since they
reported finding central peaks in such craters, they believe
Hyperion to be an icy satellite. Cruikshank et al. (1983)
proposed a model in which Phoebe, or some other outer Sa-
turnian body, “hails” dust down to Iapetus and Hyperion.
This scenario would not constrain the composition but it
could account for Hyperion’s relatively low albedo if an icy
composition is assumed. Although the colors of the leading
(dark) side of Iapetus and Hyperion are similar, Tholen and
Zellner (1983) have shown that the broadband colors of
Hyperion and Phoebe differ significantly. While this is an
interesting area of research, the surface characteristics or
bulk composition of Hyperion will not directly affect the
dynamics. It will be shown, however, that the principal mo-
ments of inertia can be constrained using dynamical consid-
erations. Thus, it is important to consider how different
compositional stratifications could affect the moments and
the dynamics.

The rotation state of Hyperion can be examined using
well-sampled, precise, ground-based observations. Paper I

details the previously published observations that attempted
to determine Hyperion’s rotation state. All previous datasets
areinadequate to resolve Hyperion’s rotation state unambig-
uously because they are undersampled and have large uncer-
tainties due to the background light gradient of Saturn.

Table II lists the previous measurements of Hyperion’s
photometric properties. There is general agreement among
observers, especially since all measurements strongly de-
pend upon the aspect of the satellite which no observer knew
at the time of the observations. The mean opposition magni-
tude of Hyperion is ¥,~14.3 with colors of B — V'=0.74
and ¥ — R = 0.41 4 0.02 (see Paper I). In addition, Cruik-
shank (1979) reports the infrared colors listed in Table L.
Due to the large light-curve amplitude and the seemingly
random nature of chaos, it is possible to unintentionally ob-
serve Hyperion preferentially when it is brighter, for exam-
ple, than its mean opposition magnitude unless it is sampled
nearly every night. Another aspect of Hyperion’s light curve
not known until recently, the opposition surge (Paper I), is
exemplified by the observations of Franklin and Cook
(1974). They report a mean opposition magnitude signifi-
cantly brighter than all other observers, but both of their
observations were made near opposition, at solar phase an-
gles a<0.3°. This is the expected effect of the opposition
surge, so these observations, corrected for the phase effect,
are consistent with the others. Any discrepancies in the pho-
tometric properties listed in Table IT may be due, in part, to
the nature of Hyperion’s rotation state.

In Sec. II, I will discuss the theory necessary to under-
stand the chaos arising from the spin-orbit coupling in the
Hyperion—-Saturn system. The dynamics covered in Sec. II
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TaBLE I1. Hyperion’s photometric properties.

Observer Vo' B-V il Am® N¢
Harris (1961) 14.16 0.69 5
Andersson (1974) 14.16 0.78 0.025 0.10 13
Franklin and Cook (1974) 13.93° --e- 2
Degewij et al. (1980) 14.18 0.77 0.380f 0.36 12
Goguen ez al. (1983) 14.20 - 0.037 0.48 18
Tholen and Zellner (1983) 14.36 0.73 2
Conner (1984) 14.82 0.69 ---- 0.51 8
Klavetter (1985) 14.42 0.77 -—-- 0.45 16
Thomas and Veverka (1985)% ---- -—-- >0.018 0.52 14
Binzel et al.(1986) 14.42 ———- - 1.10 8
Klavetter (1989) 14.23 0.056" 0.53 38

Mean opposition magnitude.
Linear phase coefficient.
Lightcurve amplitude.

Total number of nights observed.

Voyager observations.
Not including opposition surge.

Twmme A0 g

are results from investigations by Wisdom et al. (1984) and
provide the theoretical framework for this work. Section I1I
outlines the different methods used to analyze Hyperion’s
rotation state and fully develops the dynamical model used
in the fits to my light curve. I will discuss the results and
consequences of this research in Sec. IV. The final section
lists my conclusions.

II. DYNAMICS

Chaotic motion is deterministic but unpredictable motion
due to exponential divergence of nearby initial conditions
(Hénon and Heiles 1964; Wisdom 1987). Chaos is not ran-
dom, it is deterministic. This apparent contradiction will be
resolved in this section. I will review the work of Wisdom et
al. (1984) and discuss the theoretical prediction of Hyperi-
on’s chaotic rotation. Various definitions and explanations
will be presented which will be used in the analysis and fit-
ting of the light curve (Sec. III).

Until recently, Mercury was the only object in the solar
system known to have a commensurate yet nonsynchronous
spin rate. Goldreich and Peale (1966) discussed spin-orbit
coupling in the solar system and the capture probability of an
object evolving into resonance due to tides. They derived a
pendulumlike equation for spin-orbit coupling states by
averaging nonresonant terms over an orbit period. Wisdom
et al. (1984) demonstrated that this averaging technique is

not applicable when the width of the resonance is compara- .

ble to the widths between resonances. The width of a reso-
nance increases with w, where w?2=3(B—.4)/C and
A < B < Care the principal moments of inertia. @, is a quan-
tity that increases as a uniform body becomes less spherical.
Thus, as a uniform body becomes more ellipsoidal, the
widths of the resonances get large.

If the widths of the resonances get too large, their separa-
trices will begin to overlap. Physically, this means that a
body would apparently be in two rotation states at the same

Both observations at <0.3° solar phase angle.
This is an "adopted value" for all outer solar system objects and not measured for Hyperion.

time, such as rotating in the synchronous and the 3:2 state
simultaneously. Since it is impossible for a body to be in two
resonances at once, chaotic behavior results when this over-
lap occurs (see Wisdom ef al. 1984 for a complete discussion
and Wisdom 1987 for background material). The approxi-
mate point at which this happens is given by the Chirikov
resonance overlap criterion (Chirikov 1979). Considering
the synchronous and 3:2 states, Wisdom et al. (1984) use the
Chirikov overlap criterion to show

wR® = 1/(2 + 14e).

At the eccentricity of Hyperion, the critical value is o§°
= 0.31. Above this value, chaotic behavior will be wide-
spread throughout phase space. For Hyperion,
, = 0.89 4 0.22 (Duxbury, as reported by Wisdom e? al.
1984), much larger than the critical value. Clearly, chaos is
expected in an investigation of the rotational phase space of
Hyperion.

The phase space of Hyperion can be investigated numeri-
cally. To do this, the equations of motion are needed. Fol-
lowing Wisdom et al. (1984), an ellipsoid model is used with
a,b,c defining a right-hand set of axes fixed in the satellite
corresponding to the principal moments of inertia4 < B < C,
as illustrated in Fig. 2. In this case, Euler’s equations are

do,
A2 —0,0,(B-0) = —%By/(B— 0),

Bd;’t” — w,0,(C—A) = —%ya(C—A), (1)
do,
c = —0,0,4—B) = —%aB(A—B),

where w,, w,, and , are the rotational angular velocities
about the body axis and r is the Saturn—Hyperion distance.
The angles @, 3, and y are the direction cosines with respect
to the planet-to-satellite radius vector of the three body axes.
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o, B, ¥ are the direction cosines

FIG. 2. Definition of the body frame, Saturno-
centric (reference) frame at periapse, and di-

y rection cosines.
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Units are chosen such that the semimajor axis is one, the
orbital period is 277, and the dimensionless time is the mean
anomaly. All angles are in radians and the corresponding
angular velocities are in dimensionless units of rotations per
revolution.

Two sets of generalized coordinates are necessary to solve
these equations since there will be situations in which a sin-
gularity is encountered in any coordinate system and it will
be necessary to switch to another coordinate system. One set
of coordinates will be the usual Euler angles (Goldstein
1981). The other system will be that chosen by Wisdom et al.
(1984) and hereafter referred to as the Wisdom coordinates.
Both coordinate systems have a reference frame defined at
periapse as follows: the x axis is parallel to the planet-to-
satellite vector, the y axis is parallel to the orbital velocity,
and the z axis is normal to the orbit plane, completing a right-
hand coordinate system. (See Fig. 2.) The three rotations
defining the Euler angles, as illustrated in Fig. 3, are defined
by the following rotations. First, the body axes are rotated

X

Fi1G. 3. Rotations defining the Euler angles. The axes are labeled as in Fig. 2.

about the z axis by an angle 6. Next is a rotation about the
new x axis, the x’ axis in Fig. 3, by an angle ¢. The third
rotation is about the new z axis, the ¢ axis, by an angle . The
transformation from the Saturnocentric axes to the body
axes using the Euler angles is derived in Appendix A. The
Wisdom coordinate system differs in the third rotation 3",
which is about the new y axis. In either coordinate system,
the rotations 6, ¢, and ¢ describe the spatial orientation of
the ellipsoid.

I will derive the equations of motion for the Euler coordi-
nates. Wisdom et al. (1984) outline the derivation of the
equations of motion for the Wisdom coordinates. The com-
ponents of the angular velocities about the body axes in
Euler coordinates are

w, = 0sin @ sin ¥ + @ cos ¥,
@, =95in<pcos:/z—¢sin ¥, (2)
w.=0cosp + ¢

as derived in Appendix B.
The direction cosines are

a = cos 6 cos ¥ — sin 6 cos @ sin ¥,
= — cos @sin ¢ — sin & cos @ cos ¥, (3)
¥ = sin @ 'sin @,

as derived in Appendix C. The equations of motion are de-
rived by differentiating Eq. (2) with respect to time and
substituting Eqs. (1) and (3) into the new second-order
equations. These are then the equations of motion. The de-
tails of the derivation are given in Appendix D. The variables
used in the equations of motion, 6, 6, ¢, ¢, ¢, and ¢ are the
dynamical state variables. These state variables, as well as
two parameters related to the principal moments of inertia
(see Sec. III), define a rotation state. If the rotation state is
specified at a certain time, such as the true anomaly, it is
known as an initial condition.

It has already been demonstrated using the Chirikov over-
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lap criterion that the phase space of Hyperion’s spin-orbit
coupling will exhibit large scale chaos. As posed, however,
the phase space is six dimensional and difficult to visualize
(in this paper, phase space is the number of dimensions un-
der investigation). If the spin axis is fixed perpendicular to
the orbital plane, as would be expected for a tidally evolved
synchronously rotating satellite, and the corresponding an-
gular velocity 6 is the only nonzero component of the veloc-
ity vector, the phase space is reduced to two dimensions with
explicit time dependence. This is the case in which the spin
axis of the satellite is constrained to be perpendicular to the
orbit plane. With these constraints, Goldreich and Peale
(1966) derive the equation of motion for € without external
torques as

0 + (02/2P)sin 2(60 — f) =0.

where f is the true anomaly of the satellite. This is just a
special case of the full three-dimensional problem, however,
with ¢ = ¢ = ¢y = ¢y = 0. The problem is now reduced to
one that can be easily visualized by a Poincaré plot, or sur-
face of section, in which the angular velocity is plotted versus
the orientation at every periapse passage. Wisdom et al.
(1984) demonstrate the onset and growth of chaos as w,
increases. When o, is as large as Hyperion’s value, chaosis a
major feature of phase space. Figure 4 is the surface of sec-
tion appropriate for Hyperion. In a surface of section, quasi-
periodic zones are identified by the individual points that lie
on a well-defined curve. The apparently random assem-
blages of points are the chaotic regions.

During Hyperion’s tidal evolution, the satellite is driven
towards the synchronous state and inevitably ends up in the

1859

large chaotic zone seen in Fig. 4. Wisdom et al. (1984) dem-
onstrate that Hyperion is attitude unstable for the synchro-
nous state and the 1:2 rotation state. That is, infinitesimal
deviations of the orbital axis from the perpendicular to the
orbital plane will cause further deviations that grow until the
satellite starts to tumble. Only the small 9:4 and 2:1 rotation
states are attitude stable. Thus, there is virtually no possibil-
ity of Hyperion entering the synchronous or 1:2 state since
the chaotic zone is also attitude unstable. Capture into any
other state is extremely unlikely since Hyperion must enter
the state with the spin axis “randomly” oriented perpendicu-
lar to the orbital plane and must also stay in the special con-
figuration long enough for the weak tidal dissipation to cap-
ture the satellite into the stable rotation state. Numerical
simulations support this expectation (Wisdom ez al. 1984).

The above analysis was of a restricted model in which the
spin axis was set perpendicular to the orbital plane. The evi-
dence has clearly demonstrated Hyperion’s chaotic nature,
but the full equations of motion have not yet been fully ex-
plored. Fortunately, these equations can be used to predict
the nature of Hyperion’s rotation state using Lyapunov
characteristic exponents. Lyapunov exponents measure the
average rate of exponential separation of nearby trajectories
(see Wisdom 1983 for a more complete discussion). A non-
zero Lyapunov exponent indicates the reference trajectory is
chaotic while zero exponents indicate quasiperiodic motion.
Wisdom et al. (1984) calculate Lyapunov exponents for a
number of trajectories and find them to be nonzero, indicat-
ing chaotic behavior for the Hyperion system. The Lya-
punov exponents can also be a measure of the timescale for
diverging initial conditions. The values found for the Hype-

Hyperion Surface of Section

4.0 T T

FIG. 4. Surface of section for Hyperion. The
equations of motion are integrated and the
orientation versus spin rate is plotted at each
periapse passage. Quasiperiodic areas are sur-
rounded by points that form a nearly contin-
uous curve. Chaotic areas are the seemingly
random scatter of points. Fifteen initial condi-
tions were integrated for 300 points each to
produce this plot. The synchronous, 1:2, and
2:1 rotation states, are completely surrounded
by the large chaotic zone. The 3:2 state is non-
existent.
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rion system indicate that initially close rotation states widely
diverge in only two orbital periods.

One important aspect of chaotic motion often ignored by
previous observers of Hyperion is the constraint of gathering
data on a chaotic system. Wisdom et al. (1984) point out
that meaningful results will not be obtained if the period of
the observed object varies on a timescale that is short com-
pared to the time between the observations. If an object is
rotating chaotically, techniques in which the data are folded
back cannot be used to obtain meaningful results. Quasiper-
iodic solutions are not only possible, but common with un-
dersampled data that is folded back and subjected to least
squares analysis (Peale and Wisdom 1984). Thus, the 13.1
day period derived from Voyager data (Thomas et al. 1984;
Thomas and Veverka 1985) does not imply any regular rota-
tion period since the data are undersampled (see Paper I).
Only with a sampling rate of about one observation per 1.5
days will be ambiguities be resolvable (Peale 1986; Peale and
Wisdom 1984).

III. ANALYSIS

The observations and data reduction techniques have
been published in Paper I (Klavetter 1989). Figure S is the
raw Hyperion light curve, reproduced from Paper I (Fig. 2
of that paper). Note the opposition surge (or spike) near
periapse. Refer to Paper I for details of the data acquisition
and reduction.

Analysis of my observations will be carried out on two
independent levels: period determination and dynamical fit-
ting. First, I will review the period-determination analysis
for timescales ranging from hours to months. It has been
demonstrated that there is no plausible period that can de-
scribe the light curve, even considering the observational
and phase-fitting uncertainties (Paper I). Because of this
lack of a coherent period in the light curve and the theoreti-
cal expectation that Hyperion is chaotically tumbling, a sec-
ond analysis will be carried out based on the dynamical mod-
el derived in Sec. IL. It is important to note that any

Raw Lightcurve

13.8 O O Full Moon
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F1G. 5. Raw Hyperion light curve. Measured Johnson R magnitudes uncor-
rected for mean opposition distance or solar phase angle versus time in days
after 01/00/87. Error bars are not shown for points having an uncertainty
less than 0.01 mag (the size of the dot).
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conclusion inferred from the period determination is inde-
pendent of the dynamical fitting.

In subsec. a, I will review the period determination tech-
niques used to examine any regularities in Hyperion’s light
curve. In the next subsection, I will derive various modifica-
tions to the model presented in Sec. II such that chaotic
rotation can be modeled and fit to my light curve. In doing
s0, four parameters in addition to the state variables will be
determined from the analysis: the mean opposition magni-
tude, the phase coefficient or slope parameter, and two of the
principal moments of inertia normalized to the third. In sub-
sec. ¢, a general method of determining the initial condition
of a light curve is presented. In subsec. d, I will present re-
sults of fits to the MHO light curve based on a fraction of
phase space searched.

a) Period Determination

The Hyperion light curve was analyzed with a phase-dis-
persion minimization (PDM) algorithm. This technique
yields an unbiased best period with no dependence on a fit-
ting function (Stellingwerf 1978). With PDM analysis a
range of periods are assumed, and the light curve is folded
back upon itself. For each period in the range, the data are
then sorted in a manner such that there are at least a few data
points in each bin. The dispersion about the mean value is
calculated for each bin and the total dispersion is calculated
for the periods tested. This allows the best period for any
given dataset to be determined by finding the minimum in
the plot of period versus dispersion. When the dispersion is
small, the brightness at any given phase is approximately the
same and the data are well described by that period. PDM
analysis does not use a fitting function, so there is no prior
assumption about the type of periodicity that is detected by
inspection of the PDM plot.

The PDM plots of the MHO light curve agree to within a
few percent for three methods of phase correction: (1) the H
and G phase correction (Bowell et al. 1987), (2) linear
phase correction with some or all of the observations, and
(3) no phase correction. With PDM analysis, the best period
found for the mean opposition magnitude light curve of the
nightly means is 6.6 days (see Paper I). The statistical sig-
nificance of this period can be measured by comparing the
uncertainties of the data with the variances of each bin. For
any given period, the mean over all bins of the square root of
the variance should be comparable to the uncertainties in the
data for an acceptable fit. This quantity for the 6.6 day peri-
od is 0.11 mag, a factor of 5-10 larger than a typical observa-
tional uncertainty of 0.01-0.02 mag. Another measure of the
significance of the fit is demonstrated by inspection of the
phase lot (Fig. 4 of Paper I) in which the data are folded
back using the 6.6 day period. There are large differences at
various phases, indicating the fit is not good. See Paper I for
complete details of this analysis.

The period for the best fit is similar to those periods found
from numerical simulations of a chaotically rotating Hyperi-
on-modeled ellipsoid using traditional least-squares analysis
(Peale 1986; Wisdom and Peale 1984). Indeed, Peale and
Wisdom (1984) found that it was easy to define intervals of
numerically generated light curves that yielded desired per-
iods. Although PDM analysis may be used to determine the
best period over a given time interval, this period may not
have physical meaning for the system under consideration.
The statistical comparison above and the rotational phase
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plot (Paper I) demonstrate that the best period chosen
through PDM analysis is not a good fit.

Similarly, a best period was calculated using the entire
dataset instead of the nightly means. Periods from 2 hr to 5
days sampled every hour were tested with the entire dataset.
The dispersion is again a factor of 10 larger than that expect-
ed from the observational uncertainty, indicating that none
of these fits are adequate to describe the light curve. Rota-
tional phase plots of the best periods from the PDM plot
confirm that none of the fitted periods are adequate. This
demonstrates that short periods are not fit by the data, con-
sistent with the observational result that no measurable
trends were seen in any of the nightly variations.

Various phase functions for both the nightly means and
the entire dataset were analyzed using the PDM technique.
All phase plots for absolute and local minima and corre-
sponding harmonics were plotted and found to be as scat-
tered as the rotational phase plot shown in Paper I. No well-
defined period was found for any of the minima. No period
from 1 hr to 30 days fits the dataset satisfactorily.

b) Application of the Dynamical Model

The results of PDM analysis show that there is no well-
defined periodic variation in the light curve obtained from
my observations taken at MHO. This is consistent with a
chaotic rotation state as predicted by Wisdom et al. (1984).
Since the uncertainties are small and the sampling is on the
order of one observation per dayj, it is not reasonable to con-
clude that Hyperion is in a regular, undetected, rotation
state. There will be further discussion of this in the next
section. Now I will attempt to fit the model based on the
dynamics as developed in Sec. II to the light curve presented
in Paper I (shown in Fig. 5). Some modifications need to be
made, however, to convert the rotation state as defined by
the equations of motion to the light curve as seen from Earth.

The data were first corrected for light travel time. What is
observed on Earth is the position 70 or more minutes prior to
the time of the observation at the distance of Hyperion. To
determine these light travel times for each observation, I
interpolated the values given in the 1987 Astronomical Al-
manac. Although Hyperion’s brightness does not change
significantly on such timescales, chaotic motion is extremely
sensitive to the initial condition. A difference of 70 min in the
time of observation at the beginning of the light curve can
propagate to a hundredth of a magnitude or more difference
at the end of my light curve. This is of the same order as a
typical uncertainty in my light curve.

In order to compare my light curve with the model, the
position of Hyperion in its orbit must be determined. I used
the general formulas from the Explanatory Supplement to
the Astronomical Ephemeris and the American Ephemeris
and Nautical Almanac to calculate the mean anomaly, the
eccentricity, and the other orbital elements. Solving Kepler’s
equation gives the eccentric anomaly which can, in turn, be
transformed to the true anomaly. The details of the proce-
dure are given in Appendix E. The true anomaly is the state
variable used as the time variable in the dynamical model.

The dynamical model, as it has been developed in Sec. II,
allows the rotation state to be calculated given an initial rota-
tion state. In the case of Hyperion, the rotation state consists
of the three angles necessary to specify its orientation in
space, the three angular velocities defined in Eq. (2), the
three principal moments of inertia, and a time variable such
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as the true anomaly. In general, the principal moment of
inertia for a homogeneous ellipsoid is given by the equation

A=[(b*+)/5]m,

where 4 is one of the principal moments of inertia, b and ¢
are the semiaxes, and m is the mass. The equation is cyclic
for B and C. Because there is no adequate mass determina-
tion of Hyperion, the moments cannot be computed. Follow-
ing the procedure outlined by Wisdom et al. (1984), I nor-
malized the principal moments by the largest, C. Thus,
whenever referring to the principal moments of inertia, it
will imply the ratios 4 /C, B/C, and the redundant C/C.
Note that the equations of motion are still completely gen-
eral and independent of the actual value of C because the
Euler equations are linear in the moments. Although the
absolute values of the mass and moments are not known, the
dynamics can be computed using this formalism.

Determination of the rotation state does not allow direct
comparison with the light curve. Integration of the initial
condition produces a set of dynamical state variables from
which the cross sectional area of the model ellipsoid and
relative magnitude can be calculated. The relative magni-
tude of a uniform ellipsoid depends upon the orientation of
the ellipsoid relative to Earth, independent of the velocity
state variables. The equation of an ellipsoid is

xll 2 z:z

where the primed coordinates represent the body frame and
a > b> c are the principal semiaxes. A set of three rotations
can be applied to the body axes to find the equation of the
Hyperion ellipsoid in the Saturnocentric coordinate system.
These are the Euler (Wisdom) rotations defined in Sec. II.
The matrix that converts the body coordinates to the Satur-
nocentric coordinates, A, is calculated in Appendix A.
x = Ax' is used to calculate the equation of the ellipsoid in
the unprimed, Saturnocentric, coordinate system. The pro-
jected area of the ellipse is found by substituting the equa-
tions for the body axes into the equation of the ellipsoid and
differentiating with respect to x to give the projection on the
y-z plane. The equations of the ellipsoid’s projected area ex-
pressed in the dynamical state variables are derived in Ap-
pendix F.

The projected area of the Hyperion ellipsoid can now be
calculated in the Saturnocentric coordinate system. Because
the observations were made from Earth, however, a trans-
formation of the Saturnocentric coordinate system to a geo-
centric coordinate system must be made. The e coordinate
system is an Earth-based system defined as follows: the e,
axis is parallel to the Earth-to-Saturn (or Hyperion) vector,
the e, axis is perpendicular to the plane of the ecliptic, and
the e, axis completes a right-hand coordinate system. The
transformation to the geocentric axes involves two rotations.
The first rotation, as shown in Fig. 6(a), is by an angle, £,
about the z axis. This rotation aligns the x axis with the e,
axis. The angle £ is the projection of %-&, onto the ecliptic. &
changed by less than 0.7° during this time, so there is negligi-
ble error introduced in the projected area by assuming & is
constant.

The second rotation necessary to transform the Saturno-
centric coordinate system to a geocentric one is an angle B
about the new y axis to orient Hyperion’s orbital plane to the
plane of the ecliptic, as shown in Fig. 6(b). I used the values
of B as tabulated in the Astronomical Almanac, interpolated -
to the appropriate time. The orbital inclination of Hyperion
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(a) i (b)

y

From North Pole of Ecliptic Along Ecliptic

F1G. 6. Two rotations necessary to bring the Saturnocentric frame in line
with the geocentric frame. These are necessary to find the projected area
of Hyperion as seen from Earth. The first rotation is about the Saturno-
centric z axis by an angle £. This is a projection of the angle between the
Earth—Saturn line and the line of Hyperion’s periapse, analogous to a
right ascension of Hyperion as seen from Earth. The second rotation is
about the new y axis by an angle B, analogous to the declination of
Hyperion as seen from Earth.

to the plane of the rings, which is the reference plane for the
tabulation of B, is 0.4°. Thus, the effect of Hyperion’s inclina-
tion to the calculation of the projected area is negligible and
has been ignored.

The rotations £ and B are analogous to a right ascension
and declination of Hyperion as viewed from Earth. They
differ slightly from right ascension and declination in that £
has a different zero point than right ascension and B corrects
for the inclination of Saturn to the ecliptic. These two rota-
tions, in addition to the above transformation from body
axes to Saturnocentric axes, are adequate to transform the
rotation state to a projected area as seen from Earth. Appen-
dix F gives the full details of the procedure used to calculate
the projected area of Hyperion as seen from Earth from the
dynamical state variables.

In order to relate the rotation state of Hyperion to my
light curve, the projected area must be converted to a magni-
tude. Assuming albedo remains constant for any aspect of
the satellite, the relative magnitude is m = — 2.5log 4,
where 4 is the projected area normalized to the maximum
projected area. There is a constant offset between this magni-
tude and the magnitudes obtained from my light curve. This
number is related to the mean opposition and will be one of
the parameters used in the fitting process.

The Duxbury values of the principal semiaxes, as reported
by Wisdom et al. (1984) were used to compute the projected
area of the Hyperion modeled ellipsoid. The best-fit ellipsoid
found has principal semiaxes of 190X 145X 114 4 15 km.
This is consistent with the value by Thomas and Veverka
(1985). The differences in the two determinations of size are
less than 3% in each dimension, much less than the formal
uncertainties. An inspection of Fig. 1, one of the highest-
resolution Voyager images, shows that Hyperion can have a
projection well fit by an ellipse, consistent with Hyperion’s
shape being closely approximated by an ellipsoid. Other im-
ages, though, do not indicate such a regular ellipsoid (see
next section and Fig. 13). The effect of uncertainties in Hy-
perion’s shape and albedo will be discussed in the next sec-
tion.

Integration of the equations of motion for the ellipsoid
model, as given in the previous section and Appendix D,
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were performed using the Bulirsch-Stoer method of numeri-
cal integration (see Press et al. 1986). During the course of
an integration, it was necessary to switch coordinate systems
to avoid singularities. The mathematical details of the coor-
dinate conversions are derived in Appendix G.

¢) Numerical Simulations

The model presented is of an ellipsoid in the Hyperion—
Saturn system. An initial condition integrated over time
gives the rotation state, and therefore relative magnitude of
the system, at any other time within the precision of the
computer. The difficulty is finding the initial condition cor-
responding to my light curve. Numerical simulations indi-
cate that phase space becomes more complex as longer inter-
vals of observations are examined. Figure 7 illustrates this
increase in complexity. This plot was obtained by numerical-
ly calculating a light curve with the same sampling intervals
as my MHO light curve using a random initial condition
chosen to mimic the features seen in that data. I then calcu-
lated the sum of the squared residuals y* normalized to the
number of observations for a range of values along the prin-
cipal axes for both the entire light curve and a subset of well-
sampled points, keeping the other dynamical variables con-
stant at their chosen values. The two curves shown in Fig. 7
are calculated for the velocity variable along one of the prin-
cipal axes. Note that the solid-line curve associated with the
entire light curve displays more peaks and valleys than the
dashed line corresponding to the light-curve subset. The line
for the entire light curve is also much narrower near the
value of the known initial condition than the subset, al-
though both exhibit approximately the same value at zero
displacement. Thus, a fitting routine would have difficulty
finding the absolute minima for the entire light curve be-
cause of the presence of so many local minima. The same

The Increasing Complexity of Phase Space
0.05 Velocity Variable

' —— Entire Lightcurve
---- Section
0.03

Normalized X2
o
o
N

-1 -0.8 -06 -04 -02 0 0.2 04 06 08 1
Displacement from Correct Value

F1G. 7. Illustration of how the complexity of phase space increases
with the number of observations. All dynamical variables were set
equal to their known values except for one component of the velocity
which varied between plus and minus one rotation per revolution
from its correct value. This is plotted along the abscissa. Plotted
along the ordinate is the ¥ per number of points for two datasets.
The solid line corresponds to a numerically generated light curve at
the same sampling rate as the MHO light curve (Fig. 5), the dashed
line to a well-sampled subset of that light curve, 12 observations in a
13 day interval.
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fitting routine would not encounter this difficulty for the
curve corresponding to the subset.

These results are very general. The same features seen in
Fig. 7 appear for other initial conditions. Similar curves are
calculated for the other velocity components, although the
effect is less extreme for the other state variables (see be-
low). The subset chosen corresponds to 12 points out of a 13
day sampling interval from the MHO data. The behavior is
similar for other well-sampled subsets. A Gaussian error dis-
tribution of 0.03 mag per observation was added to this nu-
merically generated light curve to better simulate a realistic
y? distribution. All but one dynamical state variable was
kept constant as that one was varied. This is essentially a
one-dimensional version of the problem. However, this be-
havior was seen for the other velocity variables and for dif-
ferent initial conditions. Therefore, a generalized fitting rou-
tine would have more success fitting fewer well-sampled
observations than fitting the entire light curve, although this
is perhaps somewhat counterintuitive.

A general procedure for determining initial conditions for
a Hyperion light curve can be outlined. The strategy is to
choose a well-sampled portion of the light curve as the data-
set and search all of phase space using the ellipsoid model
developed above (remembering that phase space is defined-
as the number of dimensions or parameters). The sampling
rate, or grid spacing, is discussed below. Once an approxi-
mate rotation state is found that matches the dataset, the rest
of the observations are added singly and fitted to converge on
the initial condition. Numerical simulations (Klavetter
1985, unpublished) demonstrate that when using this tech-
nique, there is an exponential decrease in the uncertainty of
the initial condition as the number of observations increase.
This can be seen in Fig. 8, in which the log of the residuals of
the moment variables are plotted versus observation number
for a light curve with known moment ratios. For this plot,
data with 0.03 mag simulated observational error was fit
using the above algorithm and the residuals at each step were
plotted. There is a dramatic decrease in the residuals, almost
down to machine precision in the 60 day interval. Wisdom
(1987) and Chakrabarty (1988, unpublished ) found a simi-
lar exponential decrease in the uncertainty of the initial con-
ditions with increasing number of observations for a simple
chaotic system.

Phase space for the Hyperion system consists of ten di-

Decrease of Uncertainty with increasing Observations
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F1G. 8. There is a dramatic decrease in the uncertainty of initial
conditions as exemplified by the decrease in the residuals of the
moment variables for this Hyperion test system.
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mensions: the three spatial angles, the three angular veloc-
ities, the two principal moments of inertia ratios, the phase
slope parameter, G, and the mean opposition magnitude, H.
How finely the phase space needs to be searched to find a
“close” initial condition is a difficult problem because of the
inherent complexity of the phase space. To estimate the nec-
essary sampling, an initial condition is chosen and one di-
mension of phase space is varied while the other dimensions
are held constant at their known values, as in Fig. 7. The
resulting light curves can then be examined to determine the
sampling interval.

In Fig. 7, for example, if all of the other state variables
were known exactly, the necessary sampling would be once
every 0.7 (dimensionless) rotations per orbit, the approxi-
mate turnover point of the subset (dashed) curve. Any mini-
mization technique sampled at a rate greater than this would
not necessarily be able to converge to the true answer. This
should be contrasted with sampling of less than 0.1 if the
entire light curve were used. Since there are eight state vari-
ables to vary, this corresponds to a savings of a factor of
approximately 7° =~ 10° integrations. Since this is a simplified
one-dimensional analog of the multidimensional task, a sam-
pling interval less than 0.7 will be used for the fitting (see
next subsection).

The above procedure was performed using one of the an-
gular state variables instead of a velocity variable to estimate
the sampling interval necessary for the angular state vari-
ables. In this case, the turnover point was at a displacement
of approximately 1.0 (dimensionless) radians. This is shown
in Fig. 9, a plot similar to Fig. 7, but using an angular state
variable to be varied instead of one of the velocity variables.

Figure 10 is the corresponding plot for one of the moment
ratio variables. The curve is very shallow but is well behaved
and indicates that when searching phase space using a subset
of the light curve, the best initial conditions found are not
sensitively dependent on the value of the moment ratios.
This was indeed found to be the case (see next subsection).

In addition to the dynamical variables and moment ratios,

Determination of Grid Spacing
Angle Variable

0.06 T T

—— Entire Lightcurve
---- Section

0.04

0.03

0.02

Normalized X2

0.01

-1 -0.8 -06 -04 -02 0

02 04 06 08 1
Displacement from Correct Value

FIG. 9. Plot similar to Fig. 7, but one of the angular variables were varied
while the other state variables are held constant. The ordinate is the same as
in Fig. 7 and the abscissa is in radians. The subset just starts to turn up ata
littleless than — 1 radian. Thisis an indication of the grid spacing necessary
to sample phase space.
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Determination of Grid Spacing
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F1G. 10. Plot similar to Fig. 7, but one of the moment ratio variables were
varied while the other state variables are held constant. Note that the value
of the moment ratio is insensitive to the variations using the light curve
subset but becomes very important for the entire light curve.

there are two observational parameters, H and G, which
need to be considered when fitting an observed light curve.
This is because precise values for H and G are not available
from the data due to the unknown varying aspect of Hyperi-
on, as discussed in Paper I.

The total number of initial conditions necessary to search
all of phase space effectively is calculated by dividing the
range of each variable by the grid spacing necessary for that
variable. For example, to search the entire range of the angu-
lar state variables of O to 7 at a sampling interval of 0.5
radians would require six integrations. Since there are three
angular state variables, there will be a total of 6= 100 inte-
grations for just the angle variables. Similar considerations
apply to the velocity, moment, and H and G variables.

An exhaustive search in which every grid point is integrat-
ed over the entire light curve, or even a subset of the light
curve, may not be necessary. If using a subset of the light
curve in which the first point is a maximum or minimum,
after correction for phase effects, one or two of the angle
variables are constrained to be specific values, thus reducing
the number of grid points necessary to search. To be valid,
this technique requires the observation to be a global extre-
mum in which the projected area of the satellite measured is
a minimum or a maximum. The minimum or maximum of
the light curve is not guaranteed to correspond to the maxi-
mum or minimum projected area of Hyperion, however, un-
less the time interval of the observations is large enough to
have sampled the satellite from all aspect angles.

In general, the initial condition can be constrained with-
out integrating the equations of motion by comparing the
calculated mean opposition magnitude with that measured.
If the first magnitude calculated from the projected area is
not consistent with the mean opposition magnitude, calcu-
lated to be H = 13.81 + 0.05 (see Paper I), that initial con-
dition is rejected. Most initial conditions can be discarded
without any integration of the equations of motion using this
comparison. This technique for filtering the grid of initial
conditions to be searched is dependent on the first observa-
tion and mean opposition magnitude being accurate. To

1864

compensate for possible error, one can (1) assign a large
uncertainty to the datum, and/or (2) perform the search
using a number of different subsets.

Even if the first observation is fit by the initial condition, it
is possible to prematurely end the integration if it becomes
obvious the initial condition is not going to fit the light curve.
This is done by integrating the initial condition to the time of
the second observation in the light-curve subset and compar-
ing the model and observed magnitudes. If they agree to
within the uncertainty of the observation and of the mean
opposition magnitude, the integration is continued, other-
wise the integration is terminated and the next initial condi-
tion is checked. To allow for error, this technique requires a
large uncertainty be assigned to each point, and/or search-
ing a number of different subsets of the light curve.

With this sort of filtering, a uVAX can check an average
of 320 initial conditions per minute. Thus, searches of thou-
sands of initial conditions can be done in minutes whereas
searches of tens of millions of initial conditions can take
weeks of computer time. Fortunately, I had weeks of com-
puter time available to search phase space and fit the model
to my MHO data.

d) Model Fitting to the MHO Data

I performed a search of the above type using six £ VAXes
over a time interval of 3-5 weeks. I used four different sub-
sets, two of them using slightly different offsets in their
searches. In this amount of time, I was able to complete
thorough, but not exhaustive, searches of the appropriate
areas of phase space. This subsection describes those search-
es and shows the results.

I searched four subsets of the MHO light curve with grid
spacings of 0.5 radians for the angular state variables, 0.4 for
the velocity state variables, and 0.3 for the moment ratios.
Except for the moment variables, these values are approxi-
mately half the value found from inspection of Figs. 7, 9, and
10. There is a trade off between the grid spacing and the
amount of computer time, and these values were small
enough to adequately search phase space but not so small as
to be prohibitively costly in terms of computer time. I
searched the entire range of the angular variables from 0 to
7. The range searched for the velocity variables was from

— 3to 3, discarding all initial conditions in which the sum of
the velocity components was greater than the absolute value
of three. Velocities outside this range were not considered
because they produced light curves in which the variation
over a typical night was larger than seen in the data (see
Paper I). The range of the moment ratios searched was 0.6
centered on the Duxbury-derived values of 4 /C = 0.60 and
B /C = 0.86 (asreported by Wisdom et al. 1984). The range
of G searched was O to 0.20 at a sampling of 0.05, based on
the range of plausible G parameter values. The H parameter
was calculated from the projected area of the first model
point and only those variables which produced a reasonable
H were continued. Thus, H was used as a filter as described
above. This corresponds to approximately 10 million inte-
grations which can be finished in weeks on a g VAX comput-
er. L assigned a 30 range on the uncertainty of all observation
magnitudes and the mean opposition magnitude, H, to allow
for error in the observations, shape, and albedo. The pro-
grams ran for a total of 2-5 weeks on each #VAX and wrote
the initial conditions which fit greater than eight points to a
file. The results of these searches produced initial conditions
that typically clumped around a few values.
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The initial condition was determined more accurately us-
ing the downhill simplex method (see Press et al. 1986).
This algorithm provides a robust method of finding a mini-
mum in a complex phase space. The simplex method does
not use derivatives to find a gradient in phase space, but
computes a starting simplex of N + 1 dimensions, where Vis
the number of dimensions searched. The vertices of this sim-
plex are the function to be minimized evaluated at the values
supplied as a starting guess. Various geometrical transfor-
mations are applied to the vertices of this simplex, such as
expanding, contracting, and reflecting, to find the minimum
in phase space. The simplex performs these transformations
until all the vertices have converged.

The clumps of initial conditions found from the phase-
space search were input for the simplex. These clumps typi-
cally had the most variation in the moment ratios indicating
that I did indeed oversample these state variables. The ambi-
guity was resolved in the fitting, however, since the light
curve becomes increasingly sensitive to the moment ratios as
the number of observations increase, as can be seen in Fig.
10. In all cases, the minimum found with the simplex fitting
technique proved to have a significantly smaller y* than the
second best clump of initial conditions found from the
search, usually by a factor of 2 or greater. This was shown by
choosing the factor that governs the magnitude of the sim-
plex’s geometrical transformation to be small and refitting
without the initial condition first found. After the initial sim-
plex fit, another observation point was added to the subset of
my light curve under investigation and the fitting was done
on this new subset with the simplex algorithm. This proce-
dure was continued until the entire light curve was fit, as
described in the previous subsection.

Two observations were not included in this fit. One was
the observation on day 160 at extremely small solar phase
angle @ = 0.03°. The phase function used may not fit the
opposition surge well, as described in Paper I. The other
observation omitted from the fit was the one on day 164. It
has a formal uncertainty of almost 0.1 mag, too large to be
meaningful for the fits.

Except for the observation point on day 164 above, the
formal uncertainties were typically of the order 0.01 mag. I
assigned a minimum observational uncertainty of 0.01 mag
to those observations that had a formal uncertainty smaller
than this. At various times in the fitting process, I used the
statistical 1/07 weighting function and refit. The differences
between these and the unweighted fits were negligible for
most of the trials. There was virtually no difference between
weighted and unweighted fits as the number of observations
approached the maximum number, indicating that statisti-
cal weighting is unimportant.

Four different subsets, two of them searched twice with
different regions of phase spaces, were originally used as
datasets to be searched. Two of them differed only in one
observation point and these were merged immediately after
the initial search. Two others were terminated during the
simplex fitting stage since the first became very poor in com-
parison with the other trials as judged from visual inspection
of the intermediate light curves and comparison of the y>.
The other three were continued until all points had been
added and fit in the manner described above. Of these, two of
them had a y? about 50% larger than the best fit. Visual
inspection of the resulting light-curve fit confirms that these
were much worse than the best one found.

Figure 11 is a plot of the light curve, uncorrected for phase
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Best Model Fit to MHO Lightcurve
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FI1G. 11. Best model fit to MHO light curve. The points are the measured R
magnitudes corrected to mean opposition distance but uncorrected for
phase. The solid line is the best model fit obtained with the method de-
scribed in the text.

effects, with the best-fit model superposed. Table III lists the
initial condition used to produce this light curve. The uncer-
tainties in the initial condition were calculated from the co-
variance matrix of a nonlinear least-squares fit to the entire
light curve (see next section). Note that the values of the
state variables are in Wisdom coordinates. The numerical
value of the first six state variables are, therefore, somewhat
arbitrary because these variables would have different values
if expressed in Euler coordinates, yet the light curve would
be the same. The significance of this fit will be discussed in .
the next section.

Figure 12 is the second best fit plotted as in Fig. 11. Table
III lists the initial conditions for this model fit. As can be
seen by inspection of Figs. 11 and 12 or a comparison of y*
from Table III, this fit is significantly worse than the best fit.
The second best fit is very far away in phase space as can be
seen from Table III. The initial conditions were far enough
from each other and phase space is complex enough that
these fits did not converge.

TABLE III. Initial condition of best fits (epoch of 152.444 days after
01/00/87).

Second Best

Variable Best Uncertainty
0 2.881 .13 2.437
® 0.679 .08 2.991
v 1.211 27 0.426
6 -1.710 .04 1.104
¢ 0.009 26 -2.374
v 1.111 13 -0.000
A/C 0.533 .05 0.529
B/C 0.782 .09 0.745
G 0.074 .03 0.101
H 13.851 .13 13.853
x2 0.144 0.206
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Second-Best Model Fit to MHO Lightcurve
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FIG. 12. Second-best model fit to MHO light curve.

e) Summary

In this section I first demonstrated that there was no sim-
ple period that could be adequately fit to the MHO light
curve. For this, I used PDM analysis over a range of 2 hr to
30days. Since Hyperion does not appear to be rotating in any
periodic state, I proceeded to fit the dynamical model intro-
duced in Sec. II to the light curve. I demonstrated the proce-
dure necessary to convert the dynamical state variables to
magnitudes which can be compared to the observed light
curve. This involved transforming the state variables to an
Earth-based frame and determining the projected area of an
ellipsoid with those transformed variables. I then showed the
proper procedure for fitting to the Hyperion light curve us-
ing numerical simulations. Counterintuitively, this involves
first using only a subset of the light curve and then adding
observations during the final fitting process. Finally, I fit the
model to my light curve and presented the results. The next
section will discuss these procedures and results.

IV. DISCUSSION

Voyager data of Hyperion’s shape led Wisdom et al.
(1984) to predict that Hyperion would be in a rotation state
of chaotic tumbling. They first showed that Hyperion’s
phase space exhibits large scale chaos because of resonance
overlap. A surface of section for Hyperion (Fig. 4) was cal-
culated by integrating the equations of motion when the sat-
ellite was constrained to having its spin axis perpendicular to
the orbital plane. This surface of section clearly shows the
large chaotic zone surrounding the synchronous, 1:2, and
2:1 states. These states are attitude unstable and therefore
inaccessible as Hyperion tidally evolves through phase
space. Numerical simulations indicate that the probability of
capture into any of the other resonance states is very small.
The full equations of motion of the Hyperion spin-orbit cou-
pling system were integrated by Wisdom et al. (1984) and
they found all Lyapunov exponents to be nonzero, indicating
that the system is chaotic.

Hyperion’s rotation state has been investigated from
ground-based and spacecraft observations. All previous ob-
servations of Hyperion were undersampled or had problems
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with background gradient fitting and subtraction, thus mak-
ing them inadequate for determining Hyperion’s rotation
state. Peale (1986), Wisdom et al. (1984), Wisdom and
Peale (1984), and Peale and Wisdom (1984) warn of the
possible ambiguities of traditional methods of folding back
the light curve and performing least-squares analysis on data
sampled less than about once every 1.5 days for a chaotically
rotating Hyperion. Goguen et al. (1983) and Thomas and
Veverka (1985) find best-fit periods using this technique.
Both fits, however, produce results internally inconsistent
with their datasets (see Paper I). Although there have been
observations consistent with chaotic rotation, none of the
previous observations have been able to definitively con-
strain the rotation state of Hyperion.

As described in Paper I, I observed Hyperion using the
MHO 1.3 and 2.4 m telescopes with the MASCOT/MIS
detector at the required sampling rate. My light curve con-
tains 38 nightly means, an average of nine independent Hy-
perion observations per night, over an interval of 64 days. I
found that Hyperion is essentially a constant brightness over
a period of one night (6 hr) and that its color is
¥V — R = 0.41 + 0.02. The light-curve amplitude, after cor-
rection to mean opposition magnitude, is =~0.6 mag. This is
consistent with the Voyager-derived shape.

Using PDM analysis, I demonstrated that no period from
I hr to 30 days fits the light curve. Although a large part of
the discussion in Paper I and Sec. III concentrated on fitting
the H, G phase function to my light curve, the essential point
is that the analysis is insensitive to the form of the phase
correction. This was demonstrated by comparing the PDM
plots with and without phase correction, which showed that
the two plots are very similar (Paper I). Even the best period
found from PDM analysis, however, does not fit the data
well. This was shown statistically, as well as through inspec-
tion of the rotational phase plot in Paper I.

CCD photometry of Hyperion over an interval of 64 days
shows no evidence of periodic modulation in the light curve.
There are three possible explanations: (1) The motion is
simply periodic but I have large, undetected errors in my
light curve; (2) the motion is periodic in a complicated man-
ner; or (3) the motion is chaotic.

The light curve is sound. The stability of Titan, the stan-
dard stars, and field stars in the same background gradient as
Hyperion provides evidence that all aspects of the data ac-
quisition and reduction are done consistently and correctly.
Although it is possible that undetected error can inadver-
tently be introduced into any dataset, I have made certain
that any error in my light curve is not large enough to invali-
date the period-determination analysis, as detailed in
Paper 1.

There are no known dynamical perturbations that would
stabilize the rotation state of Hyperion. The object which
could have the largest effect on Hyperion, other than Saturn,
is Titan. Even at closest approach, however, Titan’s gravita-
tional effect is only 3% that of Saturn. Tidal effects of Titan
are another order of magnitude smaller than Saturn’s. Inte-
grated over the entire orbit, Titan’s interaction would cer-
tainly be unable to affect Hyperion’s rotation state enough to
significantly alter the light curve.

No periodicities were found that adequately described my
light curve. Is this conclusion equivalent to Hyperion being
chaotic? Chaos has a very specific definition: chaotic motion
is deterministic but unpredictable motion due to exponential
divergence of nearby initial conditions. The equations of mo-
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tion are known for the Hyperion spin-orbit coupling prob-
lem. Thus, the motion is deterministic: if a well-defined ini-
tial condition is given, the rotation state at any other time
can, in principle, be calculated. Even infinitesimal uncer-
tainties, however, limit this predictive ability. It is the expo-
nential divergence of nearby initial conditions which gives
chaotic systems their apparent random nature. While this
work does not, and cannot, prove Hyperion is in a chaotic
rotation state, it is very strong circumstantial evidence that
Hyperion is tumbling chaotically. This is the only dataset
from which this can be stated with conviction because of the
problems with previous observations/analyses and because
this is a high-quality, well-sampled light curve. Voyager 2, in
addition to determining the size and shape of Hyperion,
found the orientation of this satellite to be with its spin axis
nearly parallel to the orbital plane (Thomas and Veverka
1985). This orientaticn would be difficult to reconcile with
any regular rotation state.

Various modifications to the dynamical model presented
in Sec. II were introduced in the last section to account for
the observational details of the light curve. The time of the
observations were corrected for light travel time. This al-
lowed the true position of Hyperion in its orbit at any partic-
ular time to be calculated from its orbital elements. I then
demonstrated the procedure necessary to calculate the rela-
tive magnitude of an observation based on its rotation state
by transforming the spatial coordinates to a geocentric sys-
tem and converting the projected area of the ellipsoid to a
magnitude.

Numerical simulations allowed me to determine the best
method of fitting the model to a light curve. Finding the
initial conditions is a two step process. First, a well-sampled
subset of the light curve is used to find the general area of
phase space corresponding to the true initial conditions. The
model then should be fit to the subset and the rest of the
observations should be added singly, fitting each time for the
light curve.

Phase space becomes increasingly complex as the number
of observations increases. This suggests that a search of
phase space by a well-sampled subset of the light curve
should be used to determine an approximation of the initial
condition. For most applications it is usually best to gather
as much data as possible and then do whatever fitting is
necessary. For a chaotic system this may not be the best
strategy. Consider, for example, fitting the model to one ob-
servation: there are a number of initial conditions scattered
throughout phase space that would fit the data, but there will
be a greater number of nearby initial conditions which will
quickly diverge from the dataset. As more observations are
added, it is obvious that the number of initial conditions that
approximate the data will decrease, but their immediate sur-
roundings in phase space will get increasingly complex. This
would not be the case for a dynamically regular system.

After the approximate initial condition is found, the light-
curve subset can then be fit with some minimization routine
to better define the initial condition. The next point in the
light curve should then be added and the initial conditions
for this new subset fit. This procedure continues until the
model has been fit to the entire light curve. Such a technique
has been used successfully for a simulated Hyperion dataset
(Klavetter 1985, unpublished) and a simple chaotic system
(Wisdom 1987; Chakrabarty 1988, unpublished). In con-

trast with the usual 1/{/N decrease in the uncertainty of the
initial condition expected from elementary statistics, these
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studies found that when fitting to chaotic trajectories an ex-
ponential decrease in the uncertainties was found. Noting
the definition of chaos, it makes sense that this should be so.
As the number of observations increases, two rotation states
that were initially close together and fit the first part of the
light curve would begin to diverge and only one would fit the
rest of the light curve well. My numerical simulations indi-
cate that when a dataset spans an interval of time on the same
order as the light curve, the initial conditions can be deter-
mined with high precision.

The best-fit light curve using this technique is shown in
Fig. 11. One measure of the significance of the fit is to com-
pare the internal uncertainties with the measured y? the
sum of the observed minus the calculated magnitudes. For a
good fit, the square root of y* normalized by the number of
observations would be approximately equal to the measured
uncertainties. For the best-fit light curve shown in Fig. 11,
VvV ( XZ/N ) = 0.06, where N = 36 is the number of observa-
tions. The measured uncertainties include a combination of
the observational uncertainty, typically o, ~0.02, the uncer-
tainty in Hyperion’s shape, o, =0.04, and the uncertainty in
Hyperion’s albedo variation, o, =~0.01 (the shape and albe-
do uncertainties will be discussed below). Thus, the total
uncertainty is o =0.05, comparable to the model uncer-
tainty of 0.06, such that the ratio of the two values is 1.2.
Inspection of Fig. 11 confirms that the fit is not unreason-
able. Given the uncertainties inherent in the present preci-
sion of Hyperion’s shape and albedo, this may be the best fit
possible.

My search of phase space and subsequent fitting deter-
mined the rotation state of Hyperion, including the two prin-
cipal moment of inertia ratios. Due to the chaotic nature of
the system, however, all dynamical information contained in
the state variables is lost in approximately two Hyperion
orbit periods (Wisdom et al. 1984). Thus, the rotation state
would not be known now even if I had obtained a precise fit
to the light curve with no errors in shape and albedo. This
demonstrates the futility of attempting to combine all
Hyperion measurements made over time intervals greater
than approximately 40 days. The moment ratios, however,
can provide information on Hyperion’s internal structure.

Using the best-fit ellipsoid to Voyager data, Duxbury (as
reported in Wisdom et al. 1984) found the following values
for the principal semiaxes:

a =190 km,
b =145 km,
¢ =114 km,

with an uncertainty of 15 km. The moment ratios and their
formal uncertainties are

A/C=0.60 + 0.122,
B/C=0.86 + 0.159.

These values are consistent with the best-model-fit values of
A/C=0.54 4+ 0.05and B /C = 0.79 + 0.09. The uncertain-
ties of the moment ratios are large for both the Voyager-
derived values and the fitted values. However, the fitted val-
ues are consistent with those derived from the Voyager
images, indicating that Hyperion is not grossly inhomogen-
eous if the fit is valid.

Although errors are listed in Table III, the simplex rou-
tine does not propagate any formal errors. After I had found
the initial condition using the techniques described in the
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last section, I numerically calculated the derivatives neces-
sary to refit the entire light curve using nonlinear least-
squares techniques. This was feasible since I had already
found the best fit with the simplex algorithm. The least-
squares result did not give me any more information about
the rotation state. However, inversion of the covariance ma-
trix yielded formal uncertainties based on the data, listed in
Table III.

There are other effects to consider when using a fitting
algorithm. Inspection of the solar phase plot (Fig. 3, Paper
I) shows that data at solar phase angles >>0.3° are described
adequately by the H, G phase function, within the uncertain-
ties due to the aspect of Hyperion. The opposition surge,
however, is not necessarily fit well with this phase function.
This is why I did not include the observation nearest opposi-
tion in my model fitting. It is possible to separate the phase
effect from the rotational effect by simultaneously fitting the
dynamical model and the chosen phase function to the light
curve. For the best model fit, the slope parameter
G = 0.074 + 0.03 is consistent with the observationally fit-
ted value of G = 0.056 + 0.14. Thus, the slope parameter is
less than the expected value for C-type asteroids, approxi-
mately 0.15 (Bowell ez al. 1987).

Thomas and Veverka (1985) report that any albedo varia-
tions are “mostly averaged out over the disk.” This is con-
firmed by an inspection of Fig. 1, one of the highest resolu-
tion images obtained by Voyager 2. To quantify the variation
in Hyperion’s albedo, I measured the mean signal in a
10X 10 box placed at five separated places on the disk of the
Hyperion image shown in Fig. 1. The results are listed in
Table IV. The mean varies by less than the standard devi-
ation of about 3 ADUs. From this image, it appears as if
albedo variations are indeed small when averaged over the
disk. There is about a 1% mean variation, o, ~0.01.

The largest uncertainty in the model is Hyperion’s shape.
Figure 13 [Plate 60] is a Voyager image of Hyperion which
presents a view not well approximated by an ellipsoid, and
Thomas and Veverka (1985) note that Hyperion “cannot be
described well by an ellipsoid.” Thomas et al. (1986) plot
the deviations of Hyperion’s limb from a best-fit ellipse over
160° of arc. They find variations of up to + 10% for specific
places along the limb with a mean deviation of approximate-
ly 3%-5%. Without a greater coverage of Hyperion’s topo-
graphy from spacecraft observations, it is impossible to ri-
gorously assess the problems this will cause any
model-fitting algorithm.

Numerical simulations indicate that model fitting can still
be successful for reasonable errors in the ellipsoid’s shape.
Figure 14 is a plot of the error in the ellipsoid shape versus
the residuals to the light curve. For this figure, a light curve
was generated with a known initial condition and a Gaussian
error of the specified amount was added to each observation.
The model was then fit to the light curve using the known
initial condition as a starting guess for the simplex algo-

TABLE IV. Hyperion albedo variations.

Relative Location Mean of 100 pixels Standard Deviation

75, 57 40.02 4.00
58,75 43.89 299
70, 63 40.12 3.05
64, 80 39.98 4.44
81, 64 40.88 3.61

1868

Effect of Shape Error on Initial Condition
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FIG. 14. Light curves were generated for one initial condition with varying
amounts of Gaussian error added to each observation to simulate shape
errors. The difference between the fitted initial condition and the true initial
condition, calculated as the root of the sum of the normalized y?, is plotted
on the ordinate versus the amount of error. The dotted line connects the
individual points.

rithm. The residuals were calculated by taking the square
root of the sum of the square of the individual differences
between the fitted initial conditions and the known initial
conditions used to generate the light curve. There is a rough-
ly linear relationship between the amount of error and the
residuals. The fitted initial conditions remain relatively near
the true value. Thus, if the approximate initial condition can
be found, even shape errors as large as 8%-10% will still
allow an accurate determination of the initial conditions to
be made, but the results will be less precise.

Neglecting the small higher-order terms in the expansion
of the potential, the motion of Hyperion is independent of
the details of its shape. The equations of motion in this very
good approximation depend on the principal moments of
inertia, and not explicitly on the shape. The same motion
would be observed for a homogeneous ellipsoid or a sphere
whose mass distribution was such that both objects had the
same values for the principal moments of inertia. The con-
nection between shape and moments of inertia is that the
moments are estimated from the shape for a body of homo-
geneous composition. The only parameter in the model that
is explicitly dependent on the shape is the projected area of
the ellipsoid, and thus the relative magnitude. Errors propa-
gated to the relative magnitudes, however, will be less pro-
nounced.

Deviations of the amount shown by Thomas et al. (1986)
would typically affect the projected area, and therefore the
relative magnitude, of Hyperion by <3%-4%. From Fig.
14, it is seen that this error in the initial condition is approxi-
mately 5%. This is the maximum precision possible with this
model given perfect data and precise fitting.

Does my fitted light curve represent the best possible fit to
the data? Only a rigorous search of phase space at better
sampling can answer this question. However, the best model
fit light curve is a fair fit to the data, as can be seen by inspec-
tion of Fig. 11 and the comparison of uncertainties noted
above. For the second-best fit, the light curve uncertainty is
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0.08, almost a factor of 2 greater than the expected uncer-
tainty. Due to the nature of fitting to chaotic motion, once
the fit starts off in some slightly wrong direction in phase
space, it can remain so far away as to never get back to the
“correct” answer. This was seen in various numerical simu-
lations I performed. In addition, inspection of the light curve
and residuals show that it is not a good fit.

It is impossible, therefore, to state definitely that I have fit
for the “true” initial condition. However, based on my nu-
merical simulations I have marginally sampled phase space
at the required sampling rate to find the correct initial condi-
tion. It is still possible that even with double the amount of
sampling, the true initial condition would remain undetect-
ed. Furthermore, given the uncertainties in Hyperion’s
shape, it may be an impossibility to fit the model to the MHO
light curve any better than I have done.

Based on my numerical simulations, however, it appears
possible to do the fit. This fit has been performed and the
results produced by following my procedure yield reasona-
ble values for the moment ratios, consistent with Hyperion
having a uniform density.

V. CONCLUSIONS

Observational (from Paper I):

(1) Hyperion is not in any regular/periodic rotation state.

(2) Hyperion exhibits a strong brightness variation with
phase, including an opposition surge of approximate-
1y 0.3 mag at solar phase angles of less than about 0.3°.
The numbers are imprecise because of the rotational
effects.

(3) Hyperion varies less than 0.01 mag over timescales of
less than 6 hr.

(4) The color of Hyperion is ¥ — R = 0.41 + 0.02.

Dynamical:

(1) To find the approximate initial condition, it is better
to search phase space with a well-sampled subset of
the light curve than the entire light curve. I do not
know if this is a general result that could be related to
all chaotic systems.

(2) If the approximate initial condition could be found via
the exhaustive search of phase space or some other
method, a subset of the light curve should be fit, add
the next observation, fit again, and repeat the process

J
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for the entire light curve. There will be an exponential
decrease in the uncertainty of the rotation state and
the principal moments of inertia up to some limit due
to the uncertainty of Hyperion’s shape. This exponen-
tial decrease in the uncertainties of the initial condi-
tions could be a general feature of chaotic systems.

(3) Best-fit values of the Hyperion moment ratios are con-
sistent with Hyperion being a body with a uniform
mass distribution.
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APPENDIX A: DERIVATION OF THE TRANSFORMATION
MATRIX

The transformation matrix A defined by x = Ax’, where
the primed coordinates are the body axes and the unprimed
coordinates are the Saturnocentric axes, is a combination of
the three simple rotations described in Sec. II. These rota-
tions are actually transforming from the Saturnocentric axes
to the body axes through the three Euler angles such that
A~!'=BCD where the three rotations defining the Euler
angles are

cosfd sinf O
D=| —sinf@ cos@ 0},
L O 0 1
1 0 0
C=]0 cosp sing |,
|0 —sing cosg
cosy sinyg O
B=| —sin¢y cosy Of,
0 0 1

as described in Sec. II. It should be noted that the Saturnocentric coordinate system is inertial and is defined by Hyperion’s
orbit at periapse. Performing the above rotations in this order produces

cos @ cos ¥ — sin G cos @ sin ¢ sin@cos ¢+ cosfcospsiny singsiny
A™'=| —cos@siny —sinBcospcosy —sin@sin Y+ cosfcos@cosy sin g cos ¥
sin @' sin ¢ — cos @sin @ cos ¢
such that A~ is the inverse of A defined above. Since A~ is a product of simple rotational matrices, A~' = A7 (Goldstein
1981). A is the transpose of the matrix above:
cos @cos iy —sin fcos @siny  — cos &sin ¥ — sin € cos @ cos ¥ sin @sin @
A=|sinfcosyy+cosfcos@siny —sinfsiny+cosfcosgpcosyy —cosfsing|.
sin @ sin ¢ sin @ cos ¢ cos @
The Wisdom coordinates are similar to the Euler coordinates except the third rotation is
cosy 0 —siny
BY=] 0 1 o |,
siny 0 cos ¢
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where the superscript denotes that this is a rotation matrix for the Wisdom coordinates. For this set of rotations, the

transformation matrix is

cos @ cos 3 — sin @ cos @ sin ¢

sin 8 cos ¢ + cos @ sin @ sin ¢
— cos @ sin ¢

AY = cos 6 cos ¢

sin @

where the angles are now in Wisdom coordinates.

If the orientation of the satellite with respect to the planet
is required, the above needs to be modified. 8 — f is angle
between the ellipsoid’s long axis and the satellite to planet
line. This is not necessary for any of the transformations
discussed in this work.

These transformation matrices will be used in the calcula-
tions of the direction cosines, the calculation of projected
area, and in converting coordinate systems which will be
described in following appendices.

APPENDIX B: DERIVATION OF ANGULAR VELOCITY IN
EULER COORDINATES

In Sec. 11, the angles of the Euler coordinate system were
defined. When 6, @, and  change with time, the angular
velocities associated with these angles will be about the axes
shown in Fig. 3 (Sec. II) such that © = 62 + @x’ + y¢. This
is easily seen by setting any two of the angular velocities to
zero and noting about which axis the third is rotating. The
derivation of the equations of motion in Sec. IT and Appen-
dix D requires ® = 0,@ + @,b + o ¢. The transformation
between the dynamical state variables and the components
of o will be derived in this appendix.

The first intermediate axes are

5c’=?1cos¢'—l3sin¢,
jz’:&sin¢+l§cosa/1,

and
2=¢cos@ + J sin @.
Substituting for j’

Zz=asin psin 4 + b sin @ cos ¢ + & cos @.
Now everything can be described in terms of the body
axes. Final substitution produces

w, = Osin @ sin ¢ + ¢ cos ¥,
w, = 0sin @ cos ¥ — @ sin ¢,
w,=0cosp + 9

as in Sec. II. The derivation in Wisdom coordinates proceeds
along similar lines and the angular velocities in this case are

oY = —Ocos@sin gy + @ cos Y
of =0sing +¢

= @ cos ¢ cos P + ¢ sin .

APPENDIX C: CALCULATION OF DIRECTION COSINES

The direction cosines are needed to specify the equations
of motion, as described in Sec. IT and Appendix D. Direction
cosines are defined as (see Fig. 2)

I
®
>

]

= W R
o m

o =
o S

—sinfcosg cos @ sin ¢ + sin @ sin ¢ cos P
sin @sin ¥ — cos @sin @ cos ¢ |,

oS @ oS ¥

—
where % is the planet to satellite unit vector, as defined in Sec.
II1, and q, b, and ¢ are the body axes. As in Sec. I1I, let the
body axes be noted by a primed coordinate system such that

I
}o
>(>

a
B
Y

As noted in Sec. III, x = Ax’ so the direction cosines are

merely the matrix elements

]
)<>
‘v>

’

I
>1>
N>

a=Alh
ﬁ=A12»
y=4

Referring to the transformation matrix in Appendix A, the
direction cosines are

a = cos 6 cos 3 — sin 6 cos @ sin ¥,

= — cos @sin ¥ — sin & cos @ cos 1,

¥ = sin 0 'sin @.

Similarly for the direction cosines in Wisdom coordinates
a=A1,

B=A%,

y=A41m,

where the superscript signifies the transformation matrix is
in the Wisdom coordinates. Again, referring to Appendix A,
the direction cosines in these coordinates are

WV = cos 8 cos ¥ — sin @ sin @ sin ¥,
BY =
¥V = cos @sin ¥ + sin @ sin @ cos ¥,

where the rotation angles are now understood to be the Wis-
dom coordinates, as defined in Sec. IT and Appendix A.

— sin 6 cos @,

APPENDIX D: EQUATIONS OF MOTION

In Sec. II, I outlined the derivation of the equations of
motion in Euler coordinates. In this appendix, the details of
this derivation will be given as well as the full equations of
motion.

As shown in Sec. II, the Euler equations for the spin-orbit
coupling system of the Hyperion model considered are

d
A—;-)t"——co,,wc(B— C) = -—%,37/(19— o),
do, 3 va(C—4), (D)
'.3
do, = —%aB(A _B).

The direction cosines defined in Appendix C are
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a = cos 8 cos 1 — sin 6 cos @ sin 9,

B = —cos @sin 3 — sin G cos @ cos 9, (D2)
y=sinfsin @

and the angular velocities about the body axes in Euler co-

ordinates as derived in Appendix B are

w, = 0'sin @ sin ¥ + ¢ cos ¢,
w, = @sin @ cos P — @ sin 1,
. =écos¢) +¢

as given in Sec. II.
Differentiating Eq. (D3) with respect to time yields

@, = O'sin @ sin ¥ + O cos @ sin ¢ + Oy sin @ cos ¥
+ ¢ cos ¥ — @i sin ¢,

@, = Osin @ cos ¥ + 9¢cos¢)cos1,//—91}sin¢vsin1//
—¢sin¢—¢;‘o{/zcos ¥,

@, =08cosp—Opsing + ¢

Then substituting the above into Eq. (D1):
Osin @ sin ¢ + p cos ¥ =k,
O sin @ cos ¢ — ¢ sin ¥ = k,,

(D3)

Ocos @ + ) = ki,
where

k,E(a)ba)c —%ﬂ‘y) B; c_ ¢ cos @ sin ¢
—9¢sin¢cosz//+¢¢sin ¥,

k25<wcma —%ya) c—4 — 8¢ cos @ cos P
+ ¢ sin @ sin ¥ + @ cos ¥,

3 A—B . .
ky= —-= [ .
3 (wawb > aﬁ) c tOpsing

These are the equations of motion for the spin-orbit coupling
model defined in Sec. II. If a rotation state is known, only the
three angular accelerations are unknown and these equa-
tions can be solved to give

é:k,sinzﬁ-ykzcos://,

sin @
@ =k, cos ¢y — k, sin ¢,
i&=k3—écoscp.

In this form, the singularity of these equations mentioned
in Sec. I is obvious. Whenever sin ¢ = 0, these solutions are
not defined. Of course a solution still exists, it is just impossi-
ble to express it in these coordinates. This is why an alternate
set, the Wisdom coordinates, were also defined in Sec. II.
The equations of motion in Wisdom coordinates are derived
in exactly the same manner and the solutions are analogous
to those above. The transformation from the Euler coordi-
nate system to the Wisdom coordinate system is derived in
Appendix F.

APPENDIX E: DETERMINATION OF HYPERION’S POSITION
IN ITS ORBIT

As explained in Sec. III, it is necessary to know the posi-
tion of Hyperion in its orbit. One of the state variables defin-
ing the initial condition is the true anomaly, related to the
time of the observation. Utilizing the knowledge of Hyperi-
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on’s orbit from the Explanatory Supplement to the Astro-
nomical Ephemeris and the American Ephemeris and Nauti-
cal Almanac, it is possible to calculate accurately the
position of Hyperion in its orbit based on the time of the
observation.

The mean anomaly / is found from the following relation

1 =176°293 + n(JD — 2415020.0)
+ 9°092 sin o 4 02211 sin(x + o)

+ 02092 sin(x — o) — 0°077 sin x,
where JD is the Julian Date, n is the tropical mean daily
motion, n = 1679199896, and the two periodic terms are de-
fined as

0 =93°13 + 02562039 (JD — 2415020.0),
x = 148272 — 19°1844,

where ¢ is the time measured in tropical years from 1900.0.
The long-period variable x is called @ in the Explanatory
Supplement but I chose to use x to avoid confusion between
this variable and the longitude of perihelion, 3=w + . The
longitude of perihelion (called I1 in the Explanatory Supple-
ment) is given by
@ = 70205 — 1826562¢ — 13°67 sin x
+ 0293 sin 2x — 0°47 sin o.

From the definitions of mean longitude, the mean anoma-
ly is M = | — . The mean anomaly specifies the position of
Hyperion in its orbit, but the variable used in the analysis
(see Sec. III) is the true anomaly. The true anomaly f can
be found if the eccentric anomaly E is known. The eccentric
anomaly can be found from solving Kepler’s equation. For
this, the eccentricity must also be known and is calculated
using

e=0°10419 + 0°02414 cos x

— 0200401 cos o — 0200183 cos 2x.

Solving Kepler’s equation is an iterative process. I used
the form

M— M,
1—ecosE,
M,=E, —esinkE,
with an initial choice of the eccentric anomaly as

Ek+1 =E, +

esin M
1 —sin(M+e)+sinM’
Finally, to convert the eccentric anomaly to the true anoma-
ly,

Ey=M+

taniz l—_'_——gtanﬁ.

2 l1—e 2
This identity has the advantage that f/2 and E /2 are always
in the same quadrant.

If desired, Hyperion’s other orbital elements can be calcu-
lated in a similar manner. The goal of this appendix, how-
ever, is to show how the light-corrected time of an observa-
tion can be converted to a true anomaly corresponding to
Hyperion’s position in its orbit. As a check to this procedure,
I compared the calculated values of the orbital elements to
the tabulated values in the 1987 Astronomical Almanac. The
calculated values were in general agreement with linear in-
terpolated values from the tables. I used the calculated val-
ues because they are more accurate.
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APPENDIX F: PROJECTED AREA OF AN ELLIPSOID

It is necessary to know the projected area of an ellipsoid to
compare the model with my light curve. The equations of
motion for an ellipsoid in the Hyperion—-Saturn system were
introduced in Sec. II and developed in Appendix D. These
equations determine the dynamics of the system at all times
for a given set of initial conditions or rotation state. The
dynamics must then be converted to the observable magni-
tude for comparison to my data. If the area is known, the
relative magnitude is m = — 2.5 log 4 as shown in Sec. III.
Thus, if the projected area of an ellipsoid can be derived from
the state variables, the relative magnitude can be calculated
and compared with the light curve.

The method of finding the projected area will be to con-
vert the equation of an ellipsoid in the body axes

@  b?

to the appropriate equation in the Saturnocentric axes and

1872

then to compute the area of the resulting projection. Using
the transformation matrix derived in Appendix A, this equa-
tion can be expressed in terms of the Saturnocentric axes.
Using x' = A”x, in which the transformation matrix is de-
fined in Appendix A, the body axes can be expressed as

x' = (cos @ cos 1 — sin & cos @ sin Y)x + (sin & cos ¥
+ cos & cos @ sin ¥)y + (sin @ sin ¥)z,
y'=(—cos Bsinrﬁ— sin @ cos @ cos ¥)x — (sin @ sin ¢
+ cos 0 cos @ cos ¥)y + (sin @ cos ¥)z,

z' = (sin @sin ¢)x — (cos @sin @)y + (cos )z.
Squaring these equations and substituting it into the equa-
tion of the ellipsoid produces an equation of the form

1 = Ax? + 2Bxy + 2Cxz

+ Dy’ + EZ* + 2Fyz,
where

cos? 6 cos® ¥ + sin” @ cos® @ sin® ¥ — 2 cos O sin 6 cos @ cos ¥ sin Y

A=
aZ
+ cos? @sin® ¢ + sin” @ cos® @ cos® 1 + 2 cos O sin O cos @ cos ¥ sin ¥ n sin? @ sin® ¢
b? c? ’
= Cos Osin 6 cos® 3 — sin” @ cos @ cos ¥ sin ¥ — cos” 6 cos @ cos ¥ sin Y — cos @ sin 6 cos® @ sin® Y
cos 0 sin 0 sin® ¥ + sin” 6 cos @ cos ¥ sin ¥ — cos & sin O cos’ @ cos? — cos 8 sin @sin® @
4
+ b2 + 2 s
c=C08 @ sin @ cos ¥ sin 3 — sin 6 cos @ sin @ sin®> Y
= =
— cos @ sin @ cos ¥ sin ¥ — sin 6 cos @ sin @ cos> ¥ | sin O cos @ sin @
+ b2 + 2 s
D= sin® @ cos? ¥ + cos® @ cos® @ sin” i + 2 cos @ sin @ cos @ cos ¥ sin P
02
+ sin® @sin” ¢ + cos® 6 cos® @ cos” ¥ — 2 cos @ sin 6 cos @ cos ¥ sin ¥ 4 cos” O sin’ @
b? & ’
E= sin®g@sin’ ¢y | sin@cos’y | cos’@
- a + b? + e
F=5in 0sin @ cos ¥ sin ¥ + cos & cos g sin @ sin? ¢

a2

+ b2

Differentiating this equation with respect to x will give an
equation for the projection on the y-z plane, which is the
plane perpendicular to the planet satellite radius vector. Dif-
ferentiating with respect to x yields

0=12A4x+ 2By + 2Cz
=>x= — (By+ Cz)/A.

This can be substituted back into the original equation to
obtain the relation

1 =Gy?* + 2yz + HZ,
where

— sin @ sin @ cos ¥ sin 1p+cos0cos<psingsin2¢+ — cos 6 cos g sin @

c2

r
G=D — (B*/4),
H=E — (C%*/4),

which is the equation for the projected curve of the ellipsoid
as viewed from Saturn. This is also an alternate form for the
equation of an ellipse if 4(J? — GH) <0 (Thomas and Fin-
ney 1980). This condition was checked in the programs I
wrote to calculate the projected area, and found to be true.
Thus, the projected area of an ellipsoid is an ellipse.

The angle of rotation of this ellipse is
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) =itan‘1 (L) R
2 G—H
which can be derived by expressing the equation of the el-
lipse in polar coordinates and finding the angle correspond-
ing to maximum distance from the center. For polar coordi-
nates

tan § = z/y,
’,2 — y2 + 22’
the above equation for an ellipse becomes
_ 1 +tan®$
- G+ Htan?5+2Jtand

Differentiating this with respect to § and setting it equal to
zero to maximize r yields the solution above.

The area of an ellipse is 4 = mab where a and b are the
semimajor and semiminor axes. In this case,

A=mr()r[6+ (7/2)],

where r is defined above. Since r is a function of the original
state variables, the projected area can now be calculated with
a knowledge of the dynamics.

As outlined in Sec. III, two additional rotations must be
invoked to calculate the projected area as seen from Earth.
The above derivation finds the relationship between the dy-
namical state variables and the projected area as seen from
Saturn. The correction to a geocentric system is minor. In-
stead of using the transformation matrix defined in Appen-
dix A, the two additional rotations must be included as

AT = BCDEF = A'EF,

where
cosé sing O]
E=| —siné cos& Of,
| o o 1]
[cosB 0 —sinB]
F=] 0 1 0
(sinB 0 cos B

As defined in Sec. III, the angle £ is the true anomaly plus the
projection of the angle between the vector pointing to Earth
and the vector pointing to periapse on the ecliptic. The angle
B is the declination of the Earth as seen from Saturn or Hy-
perion.

The derivation of the projected area as seen from Earth
then proceeds in exactly the same manner to produce equa-
tions of the same form as above, differing only in how G, H,
and J are defined. Thus, in deriving the equation of the pro-
jected area of Hyperion as seen from Saturn, I also derived
the projected area of Hyperion as seen from Earth.

1873

APPENDIX G: CONVERSION OF COORDINATE SYSTEMS

The equations of motion have a singularity when
sin ¢ =0, in Euler coordinates (see Appendix D). Since
these equations must be solved for a tumbling ellipsoid, it is
inevitable that this condition will be approached and another
set of coordinates must be used. The other set of coordinates,
introduced by Wisdom et al. (1984), are defined in Sec. 111
and Appendix A. This appendix will detail the procedures
used to convert from one set of coordinates to the other.

Since both the Euler angles and Wisdom angles are de-
scribing the same position of the ellipsoid in space, it follows
that A = AY. These matrices are given in Appendix A. Asan
example, if the Euler angles are known, equating the first
and last elements in the bottom rows of the matrices pro-
duces the two relations

— cos @ ¥ sin ¥V = sin @ sin ¢/,
cos @ ¥ cos ¥V = cos g,
so that
tan ¥ = sincpsin;&_
cos @

There is no ambiguity as to what quadrant the tangent be-
longs since the sign of the numerator and the denominator
are both known. For this appendix, the Wisdom coordinates
have a superscript “W” and the Euler coordinates do not. In
a similar manner,

tano W = sin @ cos ¥
(cos @ /cos ¥%)
tan @ % — cos @ sin ¢ + sin 6 cos @ cos P

— sin @'sin ¥ + cos @ cos @ cos ¥
for the other two angles.

The conversion of the velocity components is done in a
similar manner. Since the velocity vector is independent of
the coordinate system representation, ® = " . The compo-
nents of these vectors are given in Appendix B. Again, as-
sume the Euler coordinates are known. Then, solving for the
Wisdom coordinates gives

oY — ¢3Ccos ¢ — ¢, sin ¢

cos @

@V =c;sin ¢ + ¢, cos ¢,

PW=c,—0%sing",
where

¢, = Osin @ sin ¢ + ¢ cos ¥,

¢, =0 sin @ cos ¥ — @ sin ¢,

c;=0cos @ + .

The procedure to convert Wisdom coordinates to Euler co-
ordinates is analogous and gives similar results.

REFERENCES

Andersson, L. E. (1974). “A Photometric Study of Pluto and Satellites of
the Outer Planets,” Ph.D. thesis, Indiana University, Bloomington.
Binzel, R., Green, J., and Opal, C. (1986). Nature 320, 511.

Bowell, E., Harris, A., and Lumme, K. (1987). Icarus (submitted).
Chakrabarty, D. (1988). Determination of Initial Conditions for Chaotic
Systems: Numerical Studies of the Standard Mapping (unpublished).
Chapman, C. R., and McKinnon, W. B. (1986). In Satellites, edited by J. A.

Burns and M. S. Matthews (University of Arizona, Tucson), pp. 492—
580.

Chirikov, B. V. (1979). Phys. Rep. 52, 263.

Clark, R. N., Brown, R. H., Owensby, P. D., and Steele, A. (1984). Icarus
58, 265.

Conner, S. (1984). “Photometry of Hyperion,” M.S. thesis, Massachusetts
Institute of Technology, Cambridge.

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1989AJ.....98.1855K

FTOBIAT. S I 2. 98:

1874 JAMES JAY KLAVETTER: HYPERION

Cruikshank, D. P. (1979). Rev. Geophys. Space Phys. 17, 165.

Cruikshank, D. P., Bell, J. F., Gaffey, M. J., Brown, R. H., Howell, R.,
Beerman, C., and Rognstad, M. (1983). Icarus 53, 90.

Cruikshank, D. P., and Brown, R. H. (1982). Icarus 50, 82.

Degewij, J., Andersson, L. E., and Zellner, B. (1980). Icarus 44, 520.

Farinella, P., Milani, A., Nobili, A., Paolicchi, P., and Zappala, V. (1983).
Icarus 54, 353.

Franklin, F. A., and Cook, A. F. (1974). Icarus 23, 355.

Goguen, J., Cruikshank, D. P., Hammel, H., and Hartmann, W. K. (1983).
Bull. Am. Astron. Soc. 15, 854.

Goldreich, P., and Peale, S. (1966). Astron. J. 71, 425.

Goldstein, H. (1981). Classical Mechanics (Addison-Wesley, Reading).

Harris, D. L. (1961). In Planets and Satellites, edited by G. Kuiper and B.
Middlehurst (University of Chicago, Chicago), pp. 272-342.

Hénon, M., and Heiles, C. (1964). Astron. J. 69, 73.

Klavetter, J. J. (1985). “Observational Evidence of Hyperion’s Chaotic
Tumbling: Determination of Initial Conditions” (unpublished).

Klavetter, J. J. (1989). Astron. J. 97, 570 (Paper I).

Peale, S. (1986). In Satellites, edited by J. A. Burns and M. S. Matthews
(University of Arizona, Tucson), pp. 159-223.

Peale, S., and Wisdom, J. (1984). Bull. Am. Astron. Soc. 16, 686.

Press, W. H. Flannery, B. P., Teukolsky, S. A., and Vetterling, W. T.
(1986). Numerical Recipes (Cambridge University, Cambridge).

1874

Smith, B. A., Soderblom, L., Batson, R., Bridges, P., Inge, J., Masursky, H.,
Shoemaker, E., Beebe, R., Boyce, J., Briggs, G., Bunker, A., Collins,
S. A., Hansen, C. J,, Johnson, T. V., Mitchell, J. L., Terrile, R. J., Cook,
A.F., Cuzzi, J., Pollack, J. P., Danielson, G. E., Ingersoll, A. P., Strom,
M. E., Suomi, V. E. (1982). Science 215, 504.

Stellingwerf, R. (1978). Astrophys. J. 224, 953.

Tholen, D. J., and Zellner, B. (1983). Icarus 53, 341.

Thomas G. B., and Finney, R. L. (1980). Calculus and Analytic Geometry
(Addison-Wesley, Reading).

Thomas, P., and Veverka, J. (1985). Icarus 64, 414.

Thomas, P., Veverka, J., and Dermott, S. (1986). In Satellites, edited by
J. A. Burns and M. S. Matthews (University of Arizona, Tucson), PP.
802-835.

Thomas P., Veverka, J., Morrison, D., Davies, M., and Johnson, T. V.
(1983). J. Geophys. Res. 88, 8743.

Thomas, P., Veverka, J., Wenkert, D., Danielson, G., and Davies, M.
(1984). Nature 307, 716.

Wisdom, J. (1983). Icarus 56, 51.

Wisdom, J. (1987). Icarus 72, 241.

Wisdom, J., and Peale, S. (1984). Bull. Am. Astron. Soc. 16, 707.

Wisdom, J., Peale, S., and Mignard, F. (1984). Icarus 58, 137.

Woltjer, J. (1928). Ann. Sterrewacht Leiden 16, 64.

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1989AJ.....98.1855K

FT9BOAT.C 2. 98 I

PLATE 59

FIG. 1. One of the highest-resolution Voyager images of Hyperion. The terminator is to the right in this picture. Note that the outline is closely approximated
by an ellipse. Even though this is a high-resolution image of Hyperion, surface features are difficult to distinguish. The albedo is approximately constant
between different sections of the surface.

James Jay Klavetter (see page 1855)
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PLATE 60

F1G. 13. Another high-resolution Vopager image (see Fig. 1). This one, however, does not appear to approximate an ellipse in cross section.

James Jay Klavetter (see page 1868)
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