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Abstract Hyperion is a satellite of Saturn that was pre-
dicted to remain in a chaotic rotational state. This was con-
firmed to some extent by Voyager 2 and Cassini series of
images and some ground-based photometric observations.
The aim of this article is to explore conditions for potential
observations to meet in order to estimate a maximal Lya-
punov Exponent (mLE), which being positive is an indi-
cator of chaos and allows to characterise it quantitatively.
Lightcurves existing in literature as well as numerical simu-
lations are examined using standard tools of theory of chaos.
It is found that existing datasets are too short and undersam-
pled to detect a positive mLE, although its presence is not
rejected. Analysis of simulated lightcurves leads to an as-
sertion that observations from one site should be performed
over a year-long period to detect a positive mLE, if present,
in a reliable way. Another approach would be to use 2–3
telescopes spread over the world to have observations dis-
tributed more uniformly. This may be achieved without dis-
rupting other observational projects being conducted. The
necessity of time-series to be stationary is highly stressed.

Keywords Chaos · Planets and satellites: individual:
Hyperion

1 Introduction

Saturn’s seventh moon, Hyperion, was discovered in the
XIX century by Bond (1848) and Lassel (1848), but it took
more than a century to obtain its images due to Voyager 2
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(Smith et al. 1982) and Cassini (Thomas 2010) missions.
Its shape is highly elongated (360×266×205 km), making
it the biggest known highly aspherical celestial body in the
Solar System. Wisdom et al. (1984) predicted Hyperion to
remain in a chaotic rotational state due to its high oblateness
and relatively high eccentricity, e = 0.1. In dynamical sys-
tem theory, a chaotic behaviour is recognised through a pos-
itive maximal Lyapunov Exponent (mLE), which describes
the rate of divergence (or convergence in the negative case)
of initially nearby phase-space trajectories. The Lyapunov
spectrum is relatively easy to calculate in the case when
the differential equations are known (Benettin et al. 1980;
Wolf et al. 1985; Sandri 1996; Baker and Gollub 1998;
Ott 2002). On the other hand, there exist algorithms allow-
ing to obtain an mLE from an experimental or observational
time-series (Wolf et al. 1985; Kantz 1994), although they are
to be used with carefulness, using at least a few hundred data
points (Rosenstein et al. 1993; Katsev and L’Hereux 2003)
for nonlinear analysis. It is a hard task in astronomy to ob-
tain long-term, well-sampled lightcurves. Although, despite
this difficulty, it has been efficiently shown that pulsar spin-
down rates exhibit chaotic dynamics (Seymour and Lorimer
2013): by re-sampling the original measurements, artificial
time-series were produced, equivalent to the original ones,
containing such a number of data points that the calculation
of the correlation dimension and the mLE of the attractor, re-
constructed via Takens time delay embedding method, was
possible.

Hyperion’s long-term observations were carried out
twice in the post Voyager 2 era. In 1987, Klavetter (1989)
(hereinafter, K89) performed photometric R band observa-
tions over a timespan of more than 50 days, resulting in 38
high-quality data points. In 1999 and 2000, Devyatkin et al.
(2002) (hereinafter, D02) conducted C (integral), B , V and
R band observations. To the author’s knowledge (Mel’nikov,
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priv. comm.) there were no other long-term observations that
resulted in a lightcurve allowing to determine the rotational
state of Hyperion. Although, shortly after the Cassini 2005
passage a ground-based BV R photometry was conducted
(Hicks et al. 2008), resulting in 6 nights of BV R measure-
ments (and additional 3 nights of R photometry alone) over
a month-long period. Unfortunately, this data was greatly
undersampled and period fitting procedures yielded several
plausible solutions.

The period determination in K89 was performed using
the Phase Dispersion Minimization (Stellingwerf 1978) and
in D02 the Deeming method (Deeming 1975) was used.
Both authors noted that the periods found (6.6 d and 13.8 d
in K89, and 10.8 d in D02) were statistically insignificant,
leading to the conclusion that Hyperion’s rotation is chaotic.

This work is focused on estimating the mLE based on
existing observations and comparison of the results with the
interpretation of their authors. Moreover, conditions that fu-
ture observations should meet in order to reliably estimate
the mLE are discussed. The paper is organized in the fol-
lowing manner. Section 2 describes the existing lightcurves
used. Section 3 briefly explains the numerical methods used
to calculate the mLE and presents their results, while in
Sect. 4 numerical experiments on simulated lightcurves are
performed. Section 5 is devoted to discussion and conclud-
ing remarks.

2 Datasets

Klavetter (1989) obtained 38 data points forming the light-
curve in the R band over more than 50 days. The last point
in the series was obtained after an 11 day break, therefore
is excluded from this work. The brightness was reported to
be constant over a time period of 6 hours at 0.01 mag level.
Each night resulted in multiple, independent observations,

such that some uncertainties were smaller than 0.01 mag.
The data was corrected to mean opposition distances and
to zero solar phase angle (for further details, see K89). For
the purpose of this work it is useful to resample the un-
equally spaced data to form an artificial, uniformly spaced
lightcurve. In order to do that a cubic spline was formed,
which was next sampled with a step equal to the mean of
the original dataset to retrieve a set consisting of the same
number of points as the original. The statistical properties
are gathered in Table 1 and the result of this procedure is
displayed in Fig. 1a. This was to verify whether the cubic
spline introduces or cancels some structures in the origi-
nal lightcurve. The inspection of the Lomb-Scargle peri-
odogram (Scargle 1982) in Fig. 1b shows that the peri-
odogram of a cubic spline, sampled with a step equal to the
mean separation between datapoints, follows well the peri-
odogram of the original lightcurve. However, sampling the
cubic spline in order to get 5000 datapoints seems to amplify
the frequencies already present in the lightcurve, leaving
roughly the same modes. Hence no filtering is applied. For

Table 1 Statistical properties of the lightcurves

Dataset No. of obs. Mean [d]a Std. [d]a Median [d]a

K89 37b 1.47 1.00 1.00

C1 24 7.86 9.50 5.08

C2 15 3.21 2.81 1.99

R1 10 8.22 6.52 8.03

R2 11 4.40 3.73 3.53

B2 12 3.99 2.79 3.08

V 2 13 3.66 2.95 3.05

aThe 3rd, 4th and 5th columns refer to the spacings between consecu-
tive observations
bIn K89, 38 datapoints are listed, but one of them is separated from the
others by an 11-day gap and is therefore excluded from the analysis
herein

Fig. 1 (a) The original K89 data (filled triangles) and the equally
spaced re-sampled ones (open circles). The interpolation was per-
formed using a natural cubic spline, which was next sampled to form a
5000-points equally spaced dataset. (b) Lomb-Scargle periodogram of
the K89 lightcurve: solid black—original data, dashed blue—sampled

with a time step equal to the mean step of the original data, dotted
red—sampled with a time step short enough to form a 5000-points
time-series. The vertical axis is in normalized auxiliary units. A 6.8 d
period is visible in the original dataset
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such short lightcurves, producing ∼1500 times more data-
points by interpolation must introduce some artificial fea-
tures, and the aim is to verify whether a nonlinear (possibly,
chaotic) dynamical content present in the data might be de-
tected in this way. Next, the cubic spline was sampled with
a step chosen so to form a 5000-points dataset. Figure 1b
presents also the periodogram for this final time-series, that
will be used in the estimation of the mLE.

Devyatkin et al. (2002) performed observations broken
into two parts by a long interval: from September 1999 to
March 2000 and from September to October 2000. Each of
the CBV R bands in the respective period will be therefore
referred to as C1, C2, and so on. The intrinsic accuracy was
obtained by means of the standard deviation of the aver-
age brightness relative to each of the comparison stars in
the frame. These values have an average of 0.12 mag in the
C band, 0.06 mag for the B band and 0.10 mag for both V

and R bands (for further details, see D02). The B1 and V 1
datasets contain only 5 points, and therefore are excluded
from the analysis in this work; the R1 and R2 ones con-
tain 11 points each, though the first observation in R1 oc-
curred more than a month before the next one, therefore is
excluded from the calculations. The number of datapoints
in the lightcurves under consideration are gathered in Ta-
ble 1 and range from 10 to 24. The second period is better
sampled, with mean spacings from 3.21 to 4.39 days, and
standard deviations about 80 % of the mean. The C1 sam-
ple from the first period is spread over a longer interval, but
with a mean spacing equal to 7.86 days (which is roughly
25 % of the minimal Lyapunov time (Shevchenko 2002))
with a standard deviation of 9.50 days. Each sample was
used to form a cubic spline to be spaced with a step equal to
the mean of the original dataset. The power spectrum, con-
structed as in Fig. 1b, shows this procedure not to be as valid
as in the K89 case, although with an undersampled time-
series it is difficult to formulate unambiguous conclusions.
On the other hand, it is visible in Fig. 1a that the cubic spline
and sampling reproduce the original observations well and
do not introduce any auxiliary peaks that would not follow
the trend of the inspected time-series, what is also the case
in D02 data, therefore we proceed with the analysis. Next,
each cubic spline was sampled with a step chosen so to ob-
tain artificial datasets consisting of 5000 points. These, as
well as the one obtained from K89, are the subject of the
current work.

3 Calculation of the mLE

3.1 Takens reconstruction

Before evaluating the mLE, it is insightful to reconstruct the
phase-space trajectories via Takens time delay embedding

method (Takens 1981). Having a series of scalar measure-
ments x(t) uniformly distributed at times t one can form an
m-dimensional location vector using only the values of x(t)

at different times given by the classical formula

S(t) = [
x(t), x(t + τ), x(t + 2τ), . . . , x

(
t + (m − 1)τ

)]
,

(1)

where m is the embedding dimension, and τ is the time
delay chosen so that the components of S(t) are indepen-
dent or uncorrelated. These parameters are estimated via
the False Nearest Neighbor (FNN) algorithm (i.e., embed-
ding dimension m) and as the first minimum of the Mu-
tual Information (MI) method (i.e., time delay τ ), using
the programs described in Kodba et al. (2005) and Perc
(2005a, 2005b, 2006). These .exe programs (fnn, mu-
tual and others) are available from the website.1 The
TISEAN software package (Hegger et al. 1999) is also
widely used throughout this article.2 The MI is an alterna-
tive for the commonly used autocorrelation function, where
the time delay τ used to be estimated as the delay at which
autocorrelation drops to 1/e (to ensure e-folding, or, rarely,
to 0, in order to form uncorrelated location vectors). This
approach will be also explored in the subsequent sections.3

The MI gives the amount of information one can obtain
about xt+τ given xt . In short, the absolute difference be-
tween xmax and xmin is binned into j bins, j being large
enough, and for each bin the MI, denoted by I (τ ), is con-
structed from the probabilities that the variable lies in the h-
th and k-th bins (Ph and Pk respectively and h, k = 1, . . . , j )
and the joint probability Ph,k that xt and xt+τ are in bins h-
th and k-th, respectively:

I (τ ) = −
j∑

h=1

j∑

k=1

Ph,k(τ ) ln
Ph,k(τ )

PhPk

. (2)

The FNN fraction is calculated under the assumption that
the trajectory folds and unforlds smoothly. Roughly speak-
ing, when two initially nearby points diverge under forward
iteration (typically not longer than for a time τ ), they do so
not faster than Rtrε, where ε is the initial separation (not
greater than the standard deviation of the data) and Rtr is a
certain threshold. When this behaviour is changed with the
rise of m, the points are marked as false nearest neighbors;
the fraction of FNNs decreases with m and reaches a value
significantly close to zero (in practical implementations to

1http://www.matjazperc.com/ejp/time.html.
2http://www.mpipks-dresden.mpg.de/~tisean/.
3The .exe programs were used as they contain an implementation of
the Wolf et al. (1985) algorithm (see next subsections) absent in the
TISEAN package, the stationarity test and the program mutual gives
the time delay τ estimated both via the MI and the autocorrelation
function in one run.

http://www.matjazperc.com/ejp/time.html
http://www.mpipks-dresden.mpg.de/~tisean/
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Fig. 2 Phase-space trajectories reconstructed using the Takens delay
time method and normalized to a unit box. All embeddings appear to
posses the same topology, indicating each trajectory stems from the
same underlying dynamics. The corresponding datasets are: (a) K89 in
3D, (b) K89 in 2D, (c) C1 in 3D, (d) C1 in 2D, (e) C2, (f) R1, (g) R2,

(h) B2, (i) V 2. The delay τ is different for each embedding and es-
timated using the MI approach. Note that despite all reconstructions
posses the same topology, (e)–(i) look like being of a purely regular
time-series. This may be due to the undersampling of their correspond-
ing lightcurves

the threshold Rtr) for the embedding dimension considered
to be a correct estimate of the proper one. This is achieved
by calculating the FNN fraction

Ri = |xi+mτ − xt+mτ |
‖S(i) − S(t)‖ (3)

for nearby points S(i), S(t) such that ‖S(i) − S(t)‖ < ε.
For a detailed description of these algorithms, see Kodba

et al. (2005), Perc (2005a, 2005b, 2006) and Hegger et al.
(1999) for another common implementation. The parame-
ters m and τ are both required for the mLE calculation.

Figure 2 presents the phase-space reconstruction for the
considered time-series, using the MI. The FNN fraction in-
dicated that for most of the embeddings m = 2 is sufficient,
being m = 3 only for K89 and C1 datasets (note these are
the best sampled long-term observations obtained). Yet, for

consistency with the rest of the plots and due to a low di-
mension of the reconstructed phase-space trajectories (see
next subsection) all trajectories shown are embedded in an
m = 2 space so that the figures displayed are more perspicu-
ous. The embeddings using time delays from the autocorre-
lation function were also performed and are displayed in the
Appendix. The phase-space reconstructions seem to posses
the same topological structure, which corroborates that the
sampling of a cubic spline, as described in the previous sec-
tion, allows to reveal dynamics that they stem from.

3.2 Correlation dimension

The correlation dimension dC is a measure of how much
space is covered by a set. For usual 1D, 2D or 3D cases
the dC is equal to 1, 2 and 3, respectively. However, there
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Fig. 3 Estimates of the correlation dimension of the reconstructed
phase-space trajectories. (a) The lnC(r) vs. ln r plot of the K89
dataset. The lines correspond to m = 2 (left) up to m = 10 (right).
The horizontal lines mark the cutoff values of the C(r): the lower one
is at the level of C(r) = 10/N , N being the total length of the time
series, and the higher one is for C(r) = 0.1. (b) The line with a slope

of 45 degrees shows the correlation dimension for a purely random
time series at given m. The flat line shows the correlation dimension
for the actual time series (K89). (c) The same as (b), but for C1 data.
Other results for D02 are not shown because they are visually indistin-
guishable from a plot for C1

are sets called fractals, which posses a fractional correla-
tion dimension. For dissipative dynamical systems, e.g. the
Lorenz system (Lorenz 1963), chaotic motion manifests it-
self through a limiting trajectory called the strange attractor,
due to its fractal properties. Herein we examine the fractal
dimension of the reconstructed phase-space trajectories in
order to further constrain the proper embedding dimension.
For Hamiltonian systems, i.e. volume preserving, this is not
an indicator of chaoticity (Greiner 2010).

The correlation dimension is defined as

dC = lim
r→0

lnC(r)

ln r
, (4)

with the estimate for the correlation function C(r) as

C(r) = lim
N→∞

[
2

N(N − 1)

N∑

i=1

N∑

j=i+1

H(r − ‖xi − xj‖)
]

,

(5)

where the Heaviside step function H adds to C(r) only
points xi in a distance smaller than r from xj and vice versa.
The limit in Eq. (4) is attained by using multiple values of
r and fitting a straight line to the linear part of the obtained
dependencies. The correlation dimension is estimated as the
slope of the linear regression. The calculations were per-
formed with a MATLAB code with the Theiler window equal
to zero (Seymour, priv. comm.) and the error calculations are
described in Seymour and Lorimer (2013). The results in a
graphical form are shown in Fig. 3; the numerical values are
gathered in Table 2.

Following the reasoning of Grassberger (1986) and Sey-
mour and Lorimer (2013) one could infer, due to the frac-
tal dimensions not being much greater than unity, that there
would be a total of two dynamical variables governing Hy-
perion’s rotation at the time of observations. However, it is
well known that chaos can not occur in a two dimensional

Table 2 Correlation dimensions of the reconstructed phase-space tra-
jectories

Dataset Mean correlation
dimension

Standard deviation

K89 1.31 0.13

C1 1.18 0.03

C2 1.20 0.06

R1 1.25 0.03

R2 1.26 0.04

B2 1.128 0.005

V 2 1.05 0.02

continuous dynamical system (see Poincaré–Bendixson the-
orem, e.g. Alligood et al. 2000); therefore, there must be at
least three variables to consider the rotation being chaotic.
This requirement is met for example in the simplified model
(with 1.5 dof) in which the axis of rotation is fixed and per-
pendicular to the orbit plane (Wisdom et al. 1984; Celletti
and Chierchia 2000). This leads to the suspicion that the un-
derlying dynamics are not governed by the chaotic zone, i.e.
Hyperion remained in a regular (quasi-periodic) state, possi-
bly influenced by noise. On the other hand, the datasets with
m = 2 are undersampled and the chaotic behaviour may not
be visible. Datasets with m = 3 consist of slightly more ob-
servations, therefore the FNN algorithm may have caught
the occurrence of nonlinear phenomena. Still, the lengths of
the time series are much smaller than required for an un-
ambiguous analysis (Grassberger 1986), and the very low
correlation dimensions attained are a sign of this. The sam-
pling might also ruled out some nonlinear (chaotic) features,
however, as the original data is unevenly sampled, this is
hardly to be avoided. Finally, it was shown (Ruelle 1990)
that dimension estimates that are not below 2 logN are not
reliable. Herein, values near unity are obtained, which fall
below this limit, but due to shortness of the datasets one
cannot really infer any reasonable estimate for the correla-
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Table 3 Wolf et al. mLEs for embedding dimensions from 2 to 10. Values corresponding to m obtained from the FNN algorithm are written in
bold. Units are in d−1

Dataset K89 C1 C2 R1 R2 B2 V 2

m = 2 .915057 .0334368 .163843 .691042 −.477822 −.395662 .307586

m = 3 .0527462 −.0141602 .563768 .062527 −.537677 .301896 1.0543

m = 4 −.0877841 −.00857353 −.155273 .051306 −.169326 −.7375 −.715765

m = 5 −.223674 −.0113392 .119432 −.0149389 −.247616 .161246 −.0898974

m = 6 −.152557 −.012639 .0407382 −.0675292 −.265254 .0537108 −.00898974

m = 7 .0130682 −.0129986 .0656708 −.0609723 −.273675 −.0337969 .0475659

m = 8 .0730114 −.00265503 .0603281 −.0135194 −.298596 −.0815904 .0957009

m = 9 .0805871 −.00212955 .0564324 −.0207522 −.329889 −.108901 .124832

m = 10 .0469697 −.000608444 .055208 −.0385302 −.291996 −.130522 .203805

Fig. 4 The mean values of the mLEs λmax of Wolf et al. algorithm, calculated over m (a) from 2 to 10 and (b) from 3 to 10, using the MI to
estimate the time delay; the error bars mark the standard deviation of the mean

tion dimension, especially that Hyperion’s dynamics in fact
is located in a six-dimensional phase space (Wisdom et al.
1984; Klavetter 1989; Devyatkin et al. 2002; Shevchenko
2002; Shevchenko and Kouprianov 2002; Kouprianov and
Shevchenko 2003) due to being well described by a full set
of Euler equations. For possible rotational–lightcurve mod-
els see Hicks et al. (2008).

3.3 Maximal Lyapunov exponent

The mLE, denoted λ in general, was calculated using two
distinct algorithms: the Wolf et al. (1985) and Kantz (1994)
methods, incorporated in the programs lyapmax and
lyapmaxk (Kodba et al. 2005; Perc 2005a, 2005b, 2006),
and lyap_k from the TISEAN package. Herein the results
of those investigations are presented.

The time delay τ was calculated in Sect. 3.1. The embed-
ding dimension m was not set according to the FNN results,
but was varied from m = 2 to m = 10 and first the mLE was
computed using the approach of Wolf et al. The algorithm
finds a nearest neighbor to an initial point and evolves them
both until the separation becomes too big; next, the distance
is being rescaled in order to stay in the small-scale structure,
and this repeats to the end of the time-series. Then, the av-
erage of the logarithms of the displacement ratios is the es-
timate of the mLE. All of the numerical results are gathered

in Table 3, while Fig. 4 displays the mean values of each
dataset. Due to the concluding remark from the previous
subsection, λ̄max is computed including and excluding the
m = 2 values. The exclusion leads to lessening the standard
deviation of the λ̄max corresponding to C1 data and chang-
ing the sign of K89 and R1 datasets’ mLE to negative with
significant diminishing their standard deviation. Because, as
mentioned, chaos cannot be present in a two-dimensional
continuous phase-space, the results from Fig. 4b seem to be
more realistic. The FNN convergence to m = 2, as shown
in Table 3, corresponding to positive Lyapunov exponents,
must be an artifact due to either numerical limitations of the
algorithm, or to undersampling of the lightcurves. Analo-
gous results using the autocorrelation function are shown
in the Appendix. The main drawbacks of the Wolf et al.
method are that (i) it fails to take advantage of all available
data as it focuses on one fiducial trajectory (Rosenstein et al.
1993) and (ii) it does not test the presence of exponential di-
vergence (a behaviour underlying chaotic dynamics) but as-
sumes it explicitly ad hoc, what may lead to spurious results
(Kantz and Schreiber 2004).

The Kantz method differs from the previous in that it
takes several points in a neighborhood of some particular
point xi . Next, one computes the average distance of all ob-
tained trajectories to the reference, i-th one, as a dependence
of the relative time n (incorporated to the k-th subscript as
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Fig. 5 Calculation of the mLE using the Kantz algorithm for (a) K89,
(b) C1, (c) C2, (d) R1, (e) R2, (f) B2, (g) V 2 datasets. None of these
plots exhibit a linear part, contrary to an evident case of (h) Lorenz
system. Beams of curves starting at different levels at n = 0 refer to
different neighborhood sizes. Each curve in a beam is for a different
m from 2 to 10, starting at the lowest curve. For comparison, (h) dis-

plays a plot for the x-component of length tmax = 500 of the Lorenz
system; the vertical dashed lines mark the section of a linear trend and
(i) shows its magnification. The mLE, which is ten times the slope (due
to sampling with �t = 0.1), is equal to 0.90 ± 0.04 with R2 = 0.95,
while calculation using the system’s differential equations yield 0.90,
which is an excellent agreement

Fig. 6 Calculation of the mLE using the Kantz algorithm and the
autocorrelation function for (a) K89 data and (b) C1 data. Vertical
dashed lines mark the linear region of the thick, red lines. The slopes

are equal to 0.0145 ± 0.0003, R2 = 0.99993, and 0.00310 ± 0.00003,
R2 = 0.99995, respectively

follows: xk+(m−1)τ+n). The average S(n) of logarithms of
these distances is plotted as a function of n and the slope
of the linear part is the mLE (see Perc 2005a for further de-
tails). In the case of chaos, three regions should be distinct:
a steep increase for small n, a linear part and a plateau (Sey-
mour and Lorimer 2013).

The results shown in Fig. 5 clearly show no linear part in
the plots, therefore one could conclude that there is no posi-
tive mLE, indicating lack of chaotic rotation in the examined
lightcurves. Yet, according to previous research (ground-
based observations under investigation herein as well as
based on Voyager 2 and Cassini images), a chaotic rotational

state is undoubtful. On the other hand, Fig. 6 displays the
S(n) relation obtained for K89 and C1 data using the au-
tocorrelation to estimate the time delay. Surprisingly, only
one of almost 30 dependencies displayed for each shows a
linear part. Moreover, that is clearly a spurious detection, as
the thick red lines in Fig. 6 are related to embedding dimen-
sion m = 2, in which chaos can not be present. However, the
methods described require the data to fulfil the stationarity
assumption, i.e. that the statistical properties of a time-series
(e.g., mean and standard deviation) are constant in time. We
therefore perform a test in a following way (Perc 2006).



160 Page 8 of 12 Astrophys Space Sci (2015) 357:160

Fig. 7 Stationarity tests for (a) K89, (b) C1, (c) C2, (d) R1, (e) R2, (f) B2, (g) V 2. All sampled lightcurves are non-stationary, the most uniform
being C1 data, yet having high prediction error fluctuations

3.4 Stationarity test

Let us consider a point p(t) as an event and find all similar
events, i.e. those points p(i) that lie not further than ε from
p(t). We average all values of xi and call this a prediction of
a future observation based on the value of xt . The key now
is to use cross-prediction, i.e. to partition the whole dataset
into non-overlapping segments and use the j -th segment to
make a prediction of a k-th segment. We quantify the cor-
rectness by calculating the error δjk via square root of mean
square deviations from the mean in segment k and repeat
this for all j and k:

δjk =
√√
√√ 1

N

N∑

k=1

(x̃k − xk)2, (6)

where x̃ is the prediction and x is the true value in a k-th
segment. If δjk is significantly larger than the average, then
either the dynamics are not conserved from one segment to
another, or the data is undersampled. Both cases yield a con-
clusion that the data is non-stationary.

The program stationarity was applied to sampled
lightcurves under consideration and the results are gathered
in Fig. 7.

The immediate denouement is that the lightcurves from
K89 and D02 are too short, undersampled, or both. There-
fore, it is justified to ask a question: how long and how dense
should photometric observations be in order to reveal a pos-
itive mLE in a lightcurve?

4 Numerical experiments

To answer the last question, we examine simulated light-
curves of Hyperion for chaotic and regular solutions of the

Table 4 Initial conditions for computing time evolution of dynamical
variables used for obtaining the simulated lightcurves

Chaotic Regular

A 0.5662447 0.5752270

B 0.6989932 0.7008151

C 1.0000000 1.0000000

θ 2.0471549 0.2206428

ϕ 0.4684503 0.0000000

ψ 3.0482151 3.0801234

dθ 1.1232298 2.2203451

dϕ 0.0622591 −0.7384962

dψ 0.1536737 1.8101437

H 12.7944259 12.7944259

G −0.9489654 −0.9489654

JD 2451794.5 2451481.3

Euler system of equations. These lightcurves, as well as the
LEs spectra, were obtained from (Mel’nikov, priv. comm.)
and were computed using a procedure described in D02.
The algorithm gives Hyperion’s stellar magnitude m in time
(JD), corrected to zero solar phase angle and mean oppo-
sition magnitude, as well as the time evolution of the Eu-
ler angles (θ,ϕ,ψ) and the corresponding angular veloci-
ties (ω1,ω2,ω3). Table 4 gathers parameters and initial con-
ditions necessary to run simulations of lightcurves as de-
scribed in D02 and obtained from (Mel’nikov, priv. comm.).
Full spectra of LEs were calculated using the HQRB method
(von Bremen et al. 1997) realized as a software complex
in Shevchenko and Kouprianov (2002) and Kouprianov and
Shevchenko (2003). The described data are shown graphi-
cally in Fig. 8 together with the output of the stationarity
test. The system is Hamiltonian, therefore the six LEs are
paired so that λi +λj = 0 and the plots show only three pos-
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Fig. 8 (a) The simulated chaotic lightcurve (black) and the sampled one (green); (b) the convergence of the LEs and (c) the stationarity test of the
sampled (green) lightcurve. (d)–(f) the same as (a)–(c), but for the regular solution, which is clearly non-stationary

itive LEs. The Lyapunov time TL for the chaotic solution is
equal to 44 d.

Since the lightcurves have a constant time step �t =
0.1 d (hence consist of ∼ 104 data points), in order to pro-
duce time-series more astronomically realistic only three
first points during each day were left and averaged (see
Fig. 8). Then a cubic spline and sampling were performed to
produce datasets consisting of 5000 points. From these sam-
pled lightcurves, intervals of lengths: 2 months, 6 months
and 1 year were chosen randomly; each had ten realisations
both for the chaotic and regular solution. The whole 3 year
lightcurves were taken as single realisations. Next, the rou-
tines false_nearest and autocor from the TISEAN
package were applied for obtaining the time delay τ and
lyap_k for embedding dimension from 2–10 to extract
the mLE. In the same way time dependencies of dynami-
cal variables (θ,ϕ,ψ,ω1,ω2,ω3) were investigated. It may
be surprising that there are clearly linear parts in the stretch-
ing factor S(n) plots in the regular case, however, a closer
look at the stationarity tests show that the variables show-
ing false chaotic behaviour are non-stationary, what may in-
fluence the divergence exhibited by the S(n) dependence.
Therefore, we do not need to be worried by this confusing
result, yet it is worth noting that in the case of real astronom-
ical observations, if the stationarity test is omitted, one can
easily find chaotic phenomena where they are in fact absent.
To illustrate this statement, Fig. 9 displays time evolutions
of variables having a linear part in the S(n) plot and the cor-
responding stationarity tests. For a chaotic solution, we con-
clude that all time-series are stationary enough to proceed
with the investigation.

For all subsets the time delay was determined using the
autocorrelation function, the S(n) plots were computed and

inspected for presence of linear regions, indicator of chaotic
rotation, potentially visible via photometric observations.
For comparison, corresponding subsets from the original
simulated lightcurves (i.e., having a time step of 0.1 d) were
examined to check what information about the mLE is lost
due to sampling effects. For two-month intervals no lin-
ear part is visible in the stretching factor. In half-year sub-
sets some traces of linearity are noticeable, but they are
not unequivocal enough to claim a detection. On the other
hand, in the original datasets more unambiguous chaotic be-
haviour is present. In one-year segments the chaoticity oc-
curs more frequently and is supported by its presence in
the original lightcurve’s S(n) plots. The whole, three-year
long, lightcurve yields a confirmation of chaotic rotation. In
Fig. 10 some representatives for each subset length are dis-
played. The lightcurve simulated for regular rotation gives
no linear regions in any of the S(n) plots, as expected, but
due to non-stationarity of the sampled data, in some of the
stretching factors a linear rise is more evident than for the
simulated chaotic case. This proves that stationarity is a nec-
essary condition for a dependable detection of chaotic phe-
nomena.

5 Discussion and conclusions

The aim of this paper was to verify whether it is possible
to infer the value of the mLE from photometric observa-
tions of Hyperion. Firstly, existing datasets (K89 and D02)
were investigated using Takens phase-space reconstruction
and its correlation dimension, stationarity tests and finally
the mLE was estimated using two algorithms: Wolf et al.
(1985) and using stretching factors (Kantz 1994). Wolf et al.
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Fig. 9 (a) The stretching factor for the ψ component for regular rota-
tion; vertical dashed lines mark the linear region; (b) the correspond-
ing stationarity test. (c) Time evolution of the ω3 component; the trend

is clearly visible; (d) the corresponding stationarity test which clearly
displays the overall periodicity of the time-series. The stretching factor
plot for this variable also unveils a linear part

Fig. 10 Stretching factors for subsets of length (a) 2 months, (b) 6 months, (c) 1 year and (d) 3 years. Starting from (c) a linear region is visible
for higher embedding dimension (lower curves)

method yielded a positive detection for K89 observations,
nevertheless the S(n) plots showed no linear region, imply-
ing lack of chaoticity. As elaborated, the Wolf et al. method
is likely to yield spurious detections, especially for short
datasets. We therefore conclude that existing datasets are too
short and undersampled to detect chaotic rotation using the
mLE.

In order to list conditions allowing to obtain the mLE
from potential ground-based observations, simulated light-
curves spanning 3 years were examined. As suggested from
previous considerations, two-month long subsamples ap-
peared to be too short to yield a sign of chaos. Half-
year data retained a clearly visible linear rise in some of
the S(n) plots. On the other hand, to make these sam-
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Fig. 11 Phase-space trajectories reconstructed using the Takens de-
lay time method and normalized to a unit box. All embeddings appear
to posses roughly the same topology, indicating each trajectory stems
from the same underlying dynamics. The corresponding datasets are:

(a) K89 in 3D, (b) K89 in 2D, (c) C1 in 3D, (d) C1 in 2D, (e) C2,
(f) R1, (g) R2, (h) B2, (i) V 2. The delay τ is different for each em-
bedding and estimated using the autocorrelation function

Fig. 12 The mean values of the λmax of Wolf et al. (1985) algorithm,
calculated over m (a) from 2 to 10 and (b) from 3 to 10, using the au-
tocorrelation function to estimate the time delay; the error bars mark

the standard deviation of the mean. All values obtained for K89 data
are negative, while almost all the positive cases are unambiguous due
to oscillating behaviour of the mLE

ples more astronomically realistic, only magnitudes span-

ning ≈ 7.5 h each day (more precisely, night observations)

were left and averaged. This led to a conclusion that only

one year subsets are long enough to reveal the presence of

chaos in the stretching factor, but only in favourable condi-

tions.

Additionally, a false detection of chaos was observed in

the case of lightcurves based on regular solutions of the Eu-
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ler equations. To explain this extraordinary behaviour a care-
ful inspection of the stationarity test outputs was conducted.
It was found that the time-series underlying the simulated
lightcurve are non-stationary (as well as the lightcurve itself)
which violates the assumptions underlying the mLE calcu-
lation algorithm. Therefore, obtaining a positive mLE is by
itself not sufficient to claim detection. A necessary station-
arity condition must be also fulfilled.

Based on computations described herein we assert that
to reliably estimate presence of chaos in ground-based pho-
tometric observations of Hyperion via mLE, these observa-
tions should be performed over a time period of at least one
year. A way to shorten this period is to obtain well-sampled
photometry, e.g. by observing with 2–3 telescopes spread
over the world. As was noted, in case of data points dis-
tributed uniformly with a time step equal to 0.1 d, timespan
may be shortened to half year. We remind that the resulting
time-series should be stationary. However, even with long-
term observations, it might happen that Hyperion will tem-
porarily remain in a dynamical state that will not allow to
make any conclusive claims about its rotation.
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Appendix

Embedding delays τ for phase-space reconstruction via Tak-
ens method were calculated as the delay at which the au-
tocorrelation function drops to 1/e, leading to values being
an order of magnitude greater than those from the MI al-
gorithm. The reconstructions are displayed in Fig. 11, while
correlation dimensions of these embeddings are uninsightful
and therefore not presented herein. Note that all trajectories
are characterised by correlation dimension not much greater
than unity; furthermore, the 3D embeddings in both cases
show no intersections, which is a premise that m = 3 is suf-
ficient. Figures 2 and 11 reveal intersections in 2D plots,
what is naturally a projection effect.

Average values of mLEs computed with the Wolf et al.
method are presented in Fig. 12 and in many instances give
results contrary to those from Fig. 4 obtained using the MI
for estimating time delays. Moreover, the mLE convergence
plots frequently shows behaviour oscillating around zero,

preventing to see a tendency for a certain sign. As argued in
the main text, even when the Wolf et al. method shows con-
vergence to a positive mLE, this is an ambiguous detection,
which may be spurious due to an assumption of exponential
divergence of initially nearby trajectories, not necessarily to
be met in actual time-series.
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