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Abstract

We demonstrate that the chaotic orbits of Prometheus and Pandora are due to interactions associated with the 121: 118 mean motion
resonance. Differential precession splits this resonance into a quartet of components equally spaced in frequency. Libration wi
individual components exceed the splitting, resulting in resonance overlap which causes the chaos. Mean motions of Prometheus a
wander chaotically in zones of width 1.8 and 3.1 deg yr−1, respectively. A model with 1.5 degrees of freedom captures the essential fe
of the chaotic dynamics. We use it to show that the Lyapunov exponent of 0.3 yr−1 arises because the critical argument of the domin
member of the resonant quartet makes approximately two separatrix crossings every 6.2 year precessional cycle.
 2003 Elsevier Inc. All rights reserved.
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1. Introduction

Goldreich and Rappaport (2003) (hereafter abbrevi
as GR03) showed that the motions of Prometheus and
dora are chaotic. The chaos arises from their mutual gra
tional interactions, which explains why their longitude d
crepancies have comparable magnitudes and opposite
(French et al., 2003). Numerical integrations that acco
for the full mutual interactions and Saturn’s gravitatio
oblateness yield a Lyapunov exponent of order 0.3 y−1.
GR03 assumed satellite masses scaled to Saturn’s ma
5.80×10−10 and 3.43×10−10 for Prometheus and Pando
respectively. These are based on ellipsoidal shapes fit t
satellites by Thomas (1989) and the density of 0.63 g cm−3

determined for Saturn’s co-orbital satellite Epimetheus
Nicholson et al. (1992).1 A factor of two is a plausible es
timate for the uncertainties in the masses Prometheus
Pandora. We have verified that the Lyapunov exponent i
sensitive to the assumed masses within this range, but n
below its lower limit.

* Corresponding author.
E-mail address: nicole.j.rappaport@jpl.nasa.gov (N. Rappaport).

1 We adopt Epimetheus’s density because the densities of Prome
and Pandora are unconstrained by observations.
0019-1035/$ – see front matter 2003 Elsevier Inc. All rights reserved.
doi:10.1016/j.icarus.2003.09.002
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GR03’s integrations also reproduce qualitative feature
the discrepancies between the longitudes of the satellite
rived from analysis of recent HST data and predictions ba
on orbits fit to Voyager images (French et al., 2003). Sud
changes in the mean motions of Prometheus and Pan
are a striking feature of the numerical integrations. Th
occur at intervals of 6.2 yr when the satellites’ apses
anti-aligned. It is notable that the only clearly documen
changes in the mean motions occurred around the tim
the most recent apse anti-alignment (cf. GR03).

Both in our previous paper (GR03) and in the curr
one, we neglect interactions of Prometheus and Pan
with other satellites of Saturn. The most significant of th
are due to Titan and Mimas. Titan contributes secular
turbations to the orbits of both Prometheus and Pand
However, these have negligible magnitudes compared to
ular perturbations that result from Saturn’s oblateness;
are substantially smaller than the uncertainties in these
turbations. Mimas is involved in a near 3: 2 mean motion
resonance with Pandora. In the past we speculated abo
possible relevance to estimates of the age of Saturn’s
(Borderies et al., 1984). We intend to revisit this issue
a future publication. However, based on the strength of
resonant terms and the separation from exact resonanc
doubt that interactions with Mimas would affect any of t
results of the current investigation.

http://www.elsevier.com/locate/icarus
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The plan of this paper is as follows. In Section 2 t
121: 118 mean motion resonance is identified as the pro
ble cause of the chaos. Differential apsidal precession s
this resonance into a quartet of closely spaced compone2

We describe two new models in which interactions betw
the satellites are limited to those due to this quartet.
simpler of these reduces the resonant dynamics to a
tem with one and a half degrees of freedom. Results f
these models are compared in Section 3 with those obta
from integrations that account for the full gravitational int
actions. Section 4 is devoted to a discussion of the widt
the chaotic zone.

2. Origin of chaos

2.1. Resonant quartet

A systematic search forj : j −k mean motion resonance
with k � 5 turned upj = 121,k = 3. This is obvious from
the data plotted in Fig. 1.

Following Murray and Dermott (2001), we write the di
turbing function for the action of Pandora on Prometheu

(1)R = Gm′

a′ (RD + αRE),

and that for the action of Prometheus on Pandora as

(2)R′ = Gm

a′
(
RD + α−2RI

)
.

Herem anda denote mass and semi-major axis,3 α ≡ a/a′,
andG is the gravitational constant. Also, the direct and in
rect, exterior and interior, contributions to the dimensionl

Fig. 1. Rates of change of critical arguments for approxim
Prometheus–Pandora mean motion resonances. The plotted points
spond to the best resonances withj � 250 andk � 5. Each resonance o
orderk is split into a multiplet withk + 1 members that are equally spac
in frequency. The quartet ofj = 121, k = 3 resonances stands out as t
one whose critical argument changes most slowly.

2 Splitting of mean motion resonances into multiplets is a general fea
of the elliptic three-body problem.

3 Unprimed and primed symbols refer to Prometheus and Pandor
spectively.
-

-

disturbing function are given byRD , RE , andRI ;

RD = a′

|r′ − r| , RE = −
(
a′

r ′

)3 r · r′

aa′ ,

(3)RI = −
(
a

r

)3 r · r′

aa′ .

To lowest order in the eccentricities, the terms in the
eral expansion of the disturbing function associated wi
k = 3 resonance take the form4

RD = e3f82cos[121λ′ − 118λ− 3� ]
+ e2e′f83cos[121λ′ − 118λ− 2� −� ′]
+ ee′2f84cos[121λ′ − 118λ−� − 2� ′]

(4)+ e′3f85cos[121λ′ − 118λ− 3� ′],
wheree, λ, and� stand for eccentricity, mean longitud
and longitude of periapsis. We utilize the expressions
f82 to f85 that are tabulated in Appendix B of Murray an
Dermott (2001). These are written in terms of Laplace co
ficients evaluated atα. In the following,j should be viewed
as a shorthand for 121:

f82 = 1

48

{(−26j + 30j2 − 8j3)b(j)1/2(α)

+ (−9+ 27j − 12j2)αdb
(j)

1/2(α)

dα

(5)+ (6− 6j)α2
d2b

(j)
1/2(α)

dα2
− α3

d3b
(j)
1/2(α)

dα3

}
,

f83 = 1

16

{(−9+ 31j − 30j2 + 8j3)b(j−1)
1/2 (α)

+ (
9− 25j + 12j2)αdb

(j−1)
1/2 (α)

dα

+ (−5+ 6j)α2
d2b

(j−1)
1/2 (α)

dα2

(6)+ α3
d3b

(j−1)
1/2 (α)

dα3

}
,

f84 = 1

16

{(
8− 32j + 30j2 − 8j3)b(j−2)

1/2 (α)

+ (−8+ 23j − 12j2)αdb
(j−2)
1/2 (α)

dα

+ (4− 6j)α2
d2b

(j−2)
1/2 (α)

dα2

(7)− α3
d3b

(j−2)
1/2 (α)

dα3

}
,

4 To lowest order, only the direct term contributes toj = 121 reso-
nances.
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Table 1
Masses, initial mean longitudes, and mean motions

Satellite m/M Mean longitude (◦) Mean motion (◦ s−1)

Prometheus 5.80× 10−10 188.53815 6.797331× 10−3

Pandora 3.43× 10−10 82.14727 6.629506× 10−3

Table 2
Eccentricities, initial apsidal angles, and precession rates

Satellite Eccentricity Apsidal angle (◦) Precession rate (◦ s−1)

Prometheus 2.29× 10−3 212.85385 3.1911× 10−5

Pandora 4.37× 10−3 68.22910 3.0082× 10−5

Table 3
Resonance arguments, rates of change, periods, and coefficients

Argument Rate (◦ s−1) Period (yr) Coefficient

121λ′ − 118λ− 3� −1.058× 10−5 1.078 e3f82 = −1.08× 10−3

121λ′ − 118λ− 2� −� ′ −0.875× 10−5 1.303 e2e′f83 = 6.26× 10−3

121λ′ − 118λ−� − 2� ′ −0.692× 10−5 1.648 ee′2f84 = −1.21× 10−2

121λ′ − 118λ− 3� ′ −0.509× 10−5 2.239 e′3f85 = 7.82× 10−3
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f85 = 1

48

{(−6+ 29j − 30j2 + 8j3)b(j−3)
1/2 (α)

+ (
6− 21j + 12j2)αdb

(j−3)
1/2 (α)

dα

+ (−3+ 6j)α2
d2b

(j−3)
1/2 (α)

dα2

(8)+ α3
d3b

(j−3)
1/2 (α)

dα3

}
.

Tables 1 and 2 list values for the parameters used in
paper. Satellite masses are given as fractions of Sat
mass based on data described in Section 1. Initial va
for mean longitudes, apsidal angles, mean motions, an
centricities are based on orbits fit to Voyager images
Jacobson (personal communication) at epoch 1981 Au
23 04:02:12 UTC. Precession rates were calculated from
gravitational field of the Saturnian System (Campbell
Anderson, 1989).

Rates of change of the arguments, corresponding per
and coefficients for the four terms in Eq. (4) are given
Table 3.

2.2. Numerical integrations

To demonstrate that the quartet of 121: 118 resonance
is the cause of chaos in the Prometheus–Pandora sy
we develop two new programs to integrate the satelli
equations of motion. Interactions between the satellites
restricted to the four resonant interaction terms in the Fou
expansion of the disturbing functionRD . Each program
propagates the satellites’ orbital elements rather than
cartesian coordinates and velocities as is done by the
program” FSHEP used in GR03.

We adopt epicyclic elliptic elements instead of the m
standard osculating elliptic elements since, unlike the la
they do not require short period terms to describe elli
orbits around oblate planets (cf. Borderies-Rappaport
Longaretti, 1994; henceforth, referred to as BRL). BRL
rive a modified version of Gauss’ equations for the elem
-

t

,

,

ae, ee,�e = ωe+Ωe, andλe =�e+Me.5 From these, it is a
straightforward exercise to derive a restricted version of
grange’s equations that is valid in the planar case. We w
with a simplified set appropriate for low eccentricity orb
about a modestly oblate planet. They read:6

(9)
dλ

dt
=Ω,

(10)
da

dt
= 2

Ωa

∂R
∂λ

,

(11)
d�

dt
=Ω − κ,

(12)
de

dt
= − 1

Ωa2e

∂R
∂�

,

where

Ω2 = GM

a3

[
1+ 3

2

(
Rp

a

)2

J2 − 15

8

(
Rp

a

)4

J4

(13)+ 35

16

(
Rp

a

)6

J6 − · · ·
]
,

κ2 = GM

a3

[
1− 3

2

(
Rp

a

)2

J2 + 45

8

(
Rp

a

)4

J4

(14)− 175

16

(
Rp

a

)6

J6 + · · ·
]
.

From Campbell and Anderson (1989),J2 = 1.6298 ×
10−2 ± 1 × 10−5, J4 = −9.15 × 10−4 ± 4 × 10−5, and
J6 = 1.03× 10−4 ± 5× 10−5.

2.3. New models

In the planar approximation, the Prometheus–Pan
system has four degrees of freedom and preserves tw
tegrals, the total energy and total angular momentum. T

5 Hereafter we drop the subscripte.
6 To the order that we are working, it is consistent to apply the exp

sions forR given in Section 2.1 with the osculating elements used th
taken here to be epicyclic elements.
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each phase space trajectory lies on a six dimensional hy
surface embedded in the eight dimensional phase space

FSHEPRES integrates the four, first-order equations
(12) for each satellite. Thus it differs from FSHEP main
because it limits the interactions between the satellites to
onant terms.7 Other minor differences arise because FSH
RES integrates a simplified set of Lagrange’s equations
particular, the conservation laws are only approximately
isfied.

FSHEPSIM integrates only the first two Eqs. (9) and (
for each satellite. This drastic simplification is reasona
because, as a consequence of the rapid differential pre
sion caused by Saturn’s oblateness, interactions betwee
satellites produce negligible effects on their apsidal an
and orbital eccentricities (GR03). A further simplificatio
arises because perturbations ofa anda′ due to terms of the
resonant quartet are related by

(15)
m

a2

da

dt
≈ − m′

a′2
da′

dt
.

It proves convenient to define the variable

(16)ψ = 121λ′ − 118λ,

so thatRD is expressed as

(17)RD =
4∑

q=1

Cq cos(ψ − δq),

with δ1 = 3� , δ2 = 2� + � ′, δ3 = � + 2� ′, δ4 = 3� ′,
and eacḣδq =constant. The evolution ofψ is governed by

d2ψ

dt2
= 3

[
(121Ω ′)2

m

M
+ α(118Ω)2

m′

M

]

(18)×
4∑

q=1

Cq sin(ψ − δq)

= 3(121Ω ′)2 m
M

[
1+ α(m′/m)

]

(19)×
4∑

q=1

Cq sin(ψ − δq),

where in writing the second form of Eq. (19), we have
plied the mean motion resonance relationΩ ′/Ω ≈ 118/121
and emphasized the contribution from the lighter body,m′.
Individual mean longitudes follow from the relations

λ(t) = (−α(m′/m)ψ(t)+ 118
[
λ(0)+ λ̇(0)t

]
+ 121α(m′/m)

[
λ′(0)+ λ̇′(0)t

])
(20)× (

121
[
1+ α(m′/m)

])−1
,

λ′(t) = (
ψ(t) + 121α(m′/m)

[
λ′(0)+ λ̇′(0)t

]
(21)+ 118

[
λ(0)+ λ̇(0)t

])(
121

[
1+ α(m′/m)

])−1
.

7 We view as an unimportant difference the use of orbital element
FSHEPRES and cartesian positions and velocities by FSHEP.
-

-
e

The system of two satellites orbiting an axisymme
planet has six degrees of freedom and two scalar integ
energy and angular momentum. Thus each trajectory is
fined to a hypersurface in phase space with ten dimens
By restricting the satellite orbits to the equator plane of
axisymmetric planet, we effected a reduction to four
grees of freedom while maintaining both integrals. In t
case each trajectory is restricted to a six dimensional hy
surface in phase space. The approximations just desc
reduce the number of degrees of freedom to one and
full phase space to two dimensions. However, the exten
phase space, which includes a time axis, has three dim
sions because no integrals remain.8 In modern notation, suc
a system is said to have 1.5 degrees of freedom.

3. Comparison of results

In this section we compare results obtained using FSH
RES and FSHEPSIM with those obtained with FSHEP.
in GR03, all our simulations are initialized with orbital e
ements for Prometheus and Pandora taken from Jacob
ephemerides. Comparisons among similar calculations d
with each of the three programs are presented in Figs.
As a consequence of chaos, qualitative similarities are
best that can be expected. These are apparent in each
figures. Moreover, we have run each of the three progr
several times making slight changes in initial conditions
verify that the results presented in this paper are typica
the output from each program.

The similarity between the 20 year runs of longitude va
ations displayed in Figs. 2 and 3, while consistent wit
Lyapunov exponent slightly smaller than 0.3 yr−1 as shown
in Fig. 4, probably also reflects the fact that at the Voya
epoch the mean motions of Prometheus and Pandora
close to their respective maximum and minimum. This
counts for the negative values of the rates of each reso
argument quoted in Table 3.

Figure 5 shows that over 3000 years the net variatio
Φ3 ≡ 121λ′ − 118λ − � − 2� ′ is much smaller than tha
of the other critical arguments. Together with the constr
imposed by the conservation of energy on the relative v
ations ofn andn′, this implies that the time-averaged val
of n over this interval of 3000 years is smaller than its i
tial value by about 0.67 deg yr−1 and that ofn′ is larger by
about 1.14 deg yr−1. The relatively small variation ofΦ3 has
a plausible dynamical explanation in terms of the rela
amplitudes of the individual terms in the resonant quartet
Table 3). The term with critical argumentΦ3 has the larges
amplitude. Amplitudes of the terms with critical argume
Φ2 andΦ4 are about half as large and their signs are op
site to that of theΦ3 term. The amplitude of the term wit

8 The dynamics remains Hamiltonian, but the Hamiltonian is an exp
function of time through the linear dependence of theδq on t .
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Fig. 2. Prometheus longitude in degrees from numerical integration
function of time over 20 years. A drift based on the initial mean motion
been subtracted from the longitudes. Dashed lines indicate the times
riapsis antialignment. Results shown in the top, middle, and bottom p
were obtained with the programs FSHEP, FSHEPRES, and FSHEPSI

critical argumentΦ1 is by far the smallest. A test of our e
planation comes from interchanging the values ofe ande′.
This results in the phaseΦ2 ≡ λ′ −118λ−2� −� ′ assum-
ing the special status of being the one with the smalles
variation.

Figures 6 and 7 display longitude variations over 30
years relative to the longitude based on the average m
motion over this interval. These are seen to be bounde
±180 degrees. To a good approximation the longitudes
dergo one dimensional random walks so the maximum
cursions should scale as the square root of time.

4. Discussion

A closer examination of the one-degree of freedom mo
developed for FSHEP provides additional insight regard
chaos in the Prometheus–Pandora system.
-

n

Fig. 3. Pandora longitude in degrees from numerical integration as a
tion of time over 20 years. A drift based on the initial mean motion has b
subtracted from the longitudes. Dashed lines indicate the times of per
antialignment. Results shown in the top, middle, and bottom panels
obtained with the programs FSHEP, FSHEPRES, and FSHEPSIM.

Overlapping resonances are known to produce ch
Frequencies of individual members of the resonant qu
are spaced bẏ� − �̇ ′ ≈ 1.0 rad yr−1. This is smaller than
the half widths of the individual resonance componen9

Half widths computed from Eq. (19) and the data in
bles 1–3 are, in order of increasing resonance freque
1.5,3.7,5.1,4.1 rad yr−1.

Figure 8 shows surfaces of section based on data
3000 year integrations using FSHEPSIM. A single po
with coordinatesΦ3 =ψ −� − 2� ′, Φ̇3 = ψ̇ − �̇ − 2�̇ ′
is plotted each time the apses align (every 6.2 yr w
� − � ′ = 0 modulo 2π ).10 Nominal values for the sate
lites’ masses were used for the upper panel. The scatteri

9 The half width is the maximum angular velocity achieved during m
tion on the separatrix.

10 We chose apse alignment to minimize the effects of the interac
energy.
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Fig. 4. Lyapunov exponent in yr−1 for the Prometheus–Pandora syste
over a period of 3000 years. The results shown in the top, middle,
bottom panels were obtained with the programs FSHEP, FSHEPRES
FSHEPSIM.

points over an area in the phase plane is a signature of c
The balance in the number of points above and below
horizontal axis and the overall vertical width of their dist
bution are a consequence of the dominance of the reson
component with critical argumentΦ3. Satellite masses wer
reduced by a factor 10 below their nominal values to ob
the regular phase space trajectory whose surface of se
is shown in the lower panel.

Variations ofn andn′ are related to those oḟψ by

(22)
dn

dt
= 1

121[1+ α(m′/m)]
dψ

dt
,

(23)
dn′

dt
= −α(m′/m)

118[1+ α(m′/m)]
dψ

dt
.

Thus the total width iṅψ corresponds to full width variation
&n≈ 1.8 deg yr−1 and&n′ ≈ 3.1 deg yr−1.

Separatrix crossing is at the heart of chaos. Since the
punov exponent for the Prometheus–Pandora system
order 0.3 yr−1, we expect to find a separatrix that is cross
.

e

f

Fig. 5. Critical arguments of the individual components of the reson
quartet in radians along the solution; solid, dashed, dashed–dotted, an
ted lines correspond to components withq = 1,2,3,4, respectively. Result
shown in the top, middle, and bottom panels were obtained with the
grams FSHEP, FSHEPRES, and FSHEPSIM.

at this rate. Two clues help us identify it:Φ3 undergoes
relatively small variations compared to the other critical
guments; mean motion changes occur at intervals of 6.
when the satellites’ apses are anti-aligned. The former
gests that the separatrix is to be found in the dynamic
Φ3, and the latter that it is crossed twice almost every p
cessional cycle.11

It is straightforward to show that

(24)
d2Φ3

dt2
= −A2(t)sin

[
Φ3 +&(t)

]
,

where bothA(t) and&(t) vary periodically over the perces
sional cycle. Moreover, the data in Table 3 imply that

(25)A2(t) ≈ 2 sin2[(� −� ′)/2
]
,

11 A precessional cycle has period 2π/(�̇ − �̇ ′).



326 P. Goldreich, N. Rappaport / Icarus 166 (2003) 320–327

as a
av-
esult
pro-

func-
aged
hown
ams
Fig. 6. Prometheus longitude in degrees from numerical integration
function of time over 3000 years. A drift based on the mean motion
eraged over 3000 years has been subtracted from the longitude. R
shown in the top, middle, and bottom panels were obtained with the
grams FSHEP, FSHEPRES, and FSHEPSIM.
s

Fig. 7. Pandora longitude in degrees from numerical integration as a
tion of time over 3000 years. A drift based on the mean motion aver
over 3000 years has been subtracted from the longitude. Results s
in the top, middle, and bottom panels were obtained with the progr
FSHEP, FSHEPRES, and FSHEPSIM.
s and
t

Fig. 8. Surfaces of section obtained by plotting (ψ − � − 2� ′ , ψ̇ − �̇ − 2�̇ ′) at each time of periapsis alignment over 3000 years. Units are radian
radians per year. Computations were made with FSHEPSIM, for the left panel with the nominal value of 0.63 g cm−3 for the satellite density. For the righ
panel, the density was reduced by a factor of 10 in order to obtain an integrable example to contrast with the chaotic one shown above.
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Fig. 9. The solid and dashed lines in the top panel show the kinetic
potential energies associated with the critical argument of the dom
(q = 3) member of the resonant quartet. The lower panel offers a c
parison between the total energy, plotted as a solid line, and the ener
the separatrix, plotted as a dashed line. The unit of energy in these fi
is (degrees year−1)2.

and that&(t) � 1. If |A(t)| were much larger thaṅ� − �̇ ′,
the evolution ofΦ3 would be governed by a pendulum equ
tion with a slowly varying restoring force.12 To pursue this

12 In reality, the maximum value ofA(t) is about 3.8(�̇ − �̇ ′).
picture, we compute the pendulum’s kinetic and potential
ergies

(26)KE = 1

2

(
dΦ3

dt

)2

,

(27)PE ≡ −A2(t)cos
[
Φ3 +&(t)

]
.

Computations of these quantities over five precessiona
cles are displayed in the upper panel of Fig. 9. Correspo
ing plots of the total energy and the energy on the s
aratrix are shown in the lower panel. These confirm t
two separatrix crossings occur during most precessiona
cles.
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