
s

recessing
lit into four
an
longitude
it has been
alogy with
lose to its
tialignment.
he short
available to
tion state it
se

en near apse
Icarus 180 (2006) 403–411
www.elsevier.com/locate/icaru

Understanding the behavior of Prometheus and Pandora

Alison J. Farmera,b,∗, Peter Goldreicha,b

a Theoretical Astrophysics, MC 130-33, Caltech, Pasadena, CA 91125, USA
b Institute for Advanced Study, Einstein Drive, Princeton, NJ 08540, USA

Received 20 July 2005; revised 5 October 2005

Available online 6 December 2005

Abstract

We revisit the dynamics of Prometheus and Pandora, two small moons flanking Saturn’s F ring. Departures of their orbits from freely p
ellipses result from mutual interactions via their 121:118 mean motion resonance. Motions are chaotic because the resonance is sp
overlapping components. Orbital longitudes were observed to drift away from predictions based onVoyager ephemerides. A sudden jump in me
motions took place close to the time at which the orbits’ apses were antialigned in 2000. Numerical integrations reproduce both the
drifts and the jumps. The latter have been attributed to the greater strength of interactions near apse antialignment (every 6.2 yr), and
assumed that this drift-jump behavior will continue indefinitely. We re-examine the dynamics of the Prometheus–Pandora system by an
that of a nearly adiabatic, parametric pendulum. In terms of this analogy, the current value of the action of the satellite system is c
maximum in the chaotic zone. Consequently, at present, the two separatrix crossings per precessional cycle occur close to apse an
In this state libration only occurs when the potential’s amplitude is nearly maximal, and the “jumps” in mean motion arise during t
intervals of libration that separate long stretches of circulation. Because chaotic systems explore the entire region of phase space
them, we expect that at other times the Prometheus–Pandora system would be found in states of medium or low action. In a low ac
would spend most of the time in libration, and separatrix crossings would occur near apsealignment. We predict that transitions between the
different states can happen in as little as a decade. Therefore, it is incorrect to assume that sudden changes in the orbits only happ
antialignment.
 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Discovered by theVoyager spacecraft in 1980 and 198
Prometheus and Pandora are two small moons of Saturn. P
erties of their orbits are summarized inTable 1. A series of
observations starting in 1995 found that the orbital longit
of each satellite deviated by about 20◦ from its value as pre
dicted by theVoyager ephemeris (Bosh and Rivkin, 1996
Nicholson et al., 1996; McGhee et al., 2001). Further, each
satellite’s mean motion underwent an abrupt change in 2
(French et al., 2002), seen as “kinks” in their mean longitude
Goldreich and Rappaport (2003a)(GR03a) pinpointed chao
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due to the satellites’ mutual gravitational interactions as
cause of these discrepancies. The system was found to h
Lyapunov exponent∼0.3 yr−1. Jumps in the mean motion we
attributed to the stronger interactions that occur when the
bits’ apses are antialigned. Orbital integrations in GR03a re
duce the observed gradual drifts away from theVoyager-based
predictions. Kinks in the mean longitudes are apparent e
6.2 yr, at times of apse antialignment.Goldreich and Rappapo
(2003b)(GR03b) captures the essential dynamics of the sys
by including only interactions due to the 121:118 mean mo
resonance. More complete numerical simulations of the sys
which include the influences of other saturnian satellites, h
been performed byCooper and Murray (2004); Jacobson and
French (2004); and Renner et al. (2005). These confirm tha
the simplified dynamics in GR03b is sufficient to describe
chaotic motions of Prometheus and Pandora.

http://www.elsevier.com/locate/icarus
mailto:afarmer@cfa.harvard.edu
http://dx.doi.org/10.1016/j.icarus.2005.10.005
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Table 1
Properties of Prometheus and Pandora and of their orbits (from GR03b)

Quantity Prometheus Pandora

Symbols Unprimed Primed
m/M 5.80× 10−10 3.43× 10−10

λ (◦) 188.53815 82.14727
n (◦ s−1) 6.797331× 10−3 6.629506× 10−3

e 2.29× 10−3 4.37× 10−3

� (◦) 212.85385 68.22910
�̇ (◦ s−1) 3.1911× 10−5 3.0082× 10−5

Physical explanations for the mean motion jumps have
advanced beyond those proposed by Goldreich and Rappa
all of the above papers cite enhanced interactions at aps
tialignment as the reason for the kinks in the mean longitu
observed in 2000. They do nothing to dispel the expectation
the mean longitudes will continue to display the same drift-k
behavior indefinitely into the future. A practical consequenc
this belief is that orbits fitted to Cassini data avoid times aro
apse antialignment and assume freely precessing ellipse
tween these times (Porco et al., 2005).

We show that a proper understanding of the dynamic
the Prometheus–Pandora system is more subtle than previ
recognized. In doing so we exploit an analogy with the dyn
ics of a parametric pendulum to reinterpret numerical inte
tions presented in GR03b. We confirm that separatrix cross
are the cause of chaos and that their rate determines the m
tude of the Lyapunov exponent. Our focus is on the precess
phase at which separatrix crossings occur. Currently the
that take place during each 6.2 yr precessional cycle occur
apse antialignment and the kinks arise during intervals of li
tion separated by long stretches of circulation. More gener
separatrix crossings can occur at any precessional phase
large changes in these phases predicted on timescales of o
two decades. When crossings take place near apse align
the system remains chaotic but displays qualitatively diffe
features than at present.

This paper is arranged as follows. In Section2 we demon-
strate the similarity between the dynamics of the Promethe
Pandora interaction and that of a parametric pendulum.
study the behavior of an adiabatic parametric pendulum in
tion 3. In Section4 we apply these findings to the Prometheu
Pandora system, and discuss both the implications and the
itations of our analogy. We conclude in Section5.

2. Similarity of equations

GR03b showed that the chaotic motions of Prometheus
Pandora arise from their 121:118 mean motion resonance.
ferential precession of the two eccentric orbits splits the
onance into four discrete components whose arguments
ψq = ψ − δq , with

(1)ψ ≡ 121λ − 118λ′,
t
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Table 2
Properties of the four components of the 121:118 mean motion resonance
GR03b)

Resonance,q Period (yr)= −2π/ψ̇q Coefficient,Cq

1 1.078 −1.08× 10−3

2 1.303 6.26× 10−3

3 1.648 −1.21× 10−2

4 2.239 7.82× 10−3

where λ and λ′ are, respectively, the mean longitudes
Prometheus and Pandora, and

δ1 ≡ 3�, δ2 ≡ 2� + � ′,
(2)δ3 ≡ � + 2� ′, δ4 ≡ 3� ′.

GR03b note that because of the rapid precession cause
Saturn’s oblateness, interactions between the satellites pro
negligible effects on their apsidal angles and orbital eccen
ities. Therefore it is adequate to only treat changes in m
motions, or equivalently in the angleψ .

The equation of motion forψ reads (GR03b)

(3)
d2ψ

dt2
= 3

(
121n′)2 m

M

[
1+ am′

a′m

] 4∑
q=1

Cq sin(ψ − δq),

whereM = 6 × 1029 g is the mass of Saturn, and where t
values of terms in Eq.(3) are given inTables 1 and 2.

Equation(3) can be written as

(4)
d2ψ

dt2
= −ω2

0A(t)sin
[
ψ − φ(t)

]
at time t , whereω0 � 3.8 yr−1 and |A| � 1. Defining Ψ =
ψ − φ and thus transforming to the frame drifting with the p
tential atφ̇, we obtain

(5)
d2Ψ

dt2
= −ω2

0A(t)sinΨ + φ̈.

Providedφ̈ � ω2
0A, we can drop the last term, leaving

(6)
d2Ψ

dt2
= −ω2

0A(t)sinΨ,

precisely the equation of motion of a parametric pendulum.
potential in whichΨ moves is given by

(7)V (Ψ, t) = −ω2
0A(t)cosΨ.

Plots of|V |, φ, φ̇ andφ̈ are displayed inFig. 1.1

The timescale for variation of|V (t)| is 2π/|�̇ − �̇ ′| ≈
6.2 yr, and the fractional variation in its amplitude is of ord

unity. The typical oscillation period ofΨ is ω ∼ 2π/ ¯|V |1/2 ∼
2 yr, so the slowness parameterε ∼ 1 × 2/6.2 � 0.3. Thus
the Prometheus–Pandora system is only marginally adiab

1 Although φ̈ 	= 0, we approximatėφ to be constant at−50.7 yr−1 when we
calculate the action for the Prometheus–Pandora system. The pendulum
ogy takes us a long way toward understanding the behavior of the system
assess its validity in Section4.2.
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Fig. 1. Properties of the potential in which the Prometheus–Pandora system moves: (a) solid line—the amplitude of the potential as a function of tidashed
line—φ̈; (b) drift phaseφ as a function of time; (c) rate of change of the drift phase. This is the drift rate of the hills in the potential. In most of this study we
the variation ofφ̇, since it is localized to a small fraction of the period.

Fig. 2. The potentialV (ψ) in which the simplified parametric pendulum moves, forα = 0.2. Shaded area shows range over which potential varies with tim
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Rather than examine it directly, it proves instructive to cons
a parametric pendulum for which adiabaticity is robust. For
we choose

(8)A(t) = 1+ α cos(κt),

whereα < 1 andκ � ω0, so that for small oscillations the sy
tem is adiabatic with slowness parameter

(9)ε ∼ ακ/ω0 � 1.

Without loss of generality we can setω0 = 1. This potential is
illustrated inFig. 2.

2.1. Integration

All integrations in this paper are done inMathematica 5 us-
ing a Runge–Kutta routine with fixed step size. Care is ta
to maintain numerical accuracy at a level such that differen
in initial conditions determine the rates at which neighbor
trajectories diverge.
r

n
s

3. Behavior of the simplified parametric pendulum

A simple pendulum can exhibit motion of two kinds2: li-
bration for E < |V | in which ψ is trapped in a valley, an
circulation forE > |V | in which ψ passes over the hills. Be
tween these two regimes lies the separatrix, a singular traje
of infinite period with energy

(10)E = ψ̇2/2− Acosψ = A.

As A(t) varies, the motion of a parametric pendulum m
switch between these two regimes. Transitions from large
plitude librations to circulations may occur as the potential s
lows. Likewise, transitions in the opposite direction can t
place as the potential steepens. No matter how slowly the
tential varies, adiabatic invariance is violated during separa
crossings.

2 For a simple pendulum,A is independent of time.
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stem

ution of
Fig. 3. For the model parametric pendulum system withα = 0.2, κ = 0.01: (a) action as a function of time; thick line is separatrix action and thin line is sy
action. (b) System period as a function of time, with vertical lines at locations of separatrix crossings, where the period becomes large.

Fig. 4. For the same system as inFig. 3: (a) zoom-in on system action, showing jumps in action at separatrix crossings (marked by vertical lines). (b) Evol
ψ(t), showing transitions from libration to circulation and vice versa at separatrix crossings.
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For an adiabatic system the action,J (t), remains nearly con
stant asA(t) varies. We calculateJ (t) by freezingA(t) and
integrating over a period3:

(11)J (t) =
∮

p dq =
∮

ψ̇ dψ =
∮ √

2
[
E(t) − V (ψ ′)

]
dψ ′.

In a similar manner, we obtain the period fromP(t) = ∮
dq/q̇.

On the separatrix,

(12)Jsep(t) = 8A(t)1/2.

Fig. 3 illustrates some aspects of the behavior of a param
ric pendulum characterized byκ = 0.01,α = 0.2, i.e., slowness
parameterε ∼ 0.002. We see thatJ (t) maintains a nearly con
stant value as both the action on the separatrix and the p
undergo large variations. Jumps in action at separatrix cr
ings are displayed at higher resolution inFig. 4 along with the
evolution ofψ(t).

3.1. Separation in phase space and Lyapunov exponent

The rate at which neighboring trajectories in phase sp
separate is of practical interest because it limits our abilit
make predictions about the future. For chaotic systems, s
errors in initial conditions amplify exponentially, invalidatin

3 When the system is in libration, we integrate over only half a period
the motion, because otherwise the action changes by a factor of 2 acro
separatrix at fixed energy.
t-

od
s-

e
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the

long-term predictions. To track the separation of two nei
boring trajectories, we Taylor expand the equation of mo
(Eq.(6)) to first order in�ψ :

(13)
d2�ψ

dt2
= −A(t)ω2

0�ψ cosψ.

The phase space separation,

(14)S(t) =
[
�ψ2 +

(
d�ψ

dt

)2
]1/2

,

is calculated by the simultaneous integration of Eqs.(6)
and (13). The Lyapunov exponent,
, is the limit ast → ∞
of (lnS)/t . FromFig. 5 we find
 � 0.0022, which is close to
the rate of separatrix crossings.

The Lyapunov exponent measures the average expone
tion rate of the divergence of neighboring trajectories.Fig. 5a
shows how this divergence proceeds through a few separ
crossings. At each crossing the separationS between trajecto
ries undergoes a sudden jump, corresponding to the differe
phase delay introduced there between neighboring trajecto
Between crossingsS(t) displays an oscillation superposed
a linear trend. The oscillation reflects the periodic motion
the pendulum, and the linear variation is due to the period
ference between neighboring trajectories. Both the jumpsS
at separatrix crossings and the linear variations between
produce an increase ofS on average. Since on averageS and
its slope change by a constant fractional amount at separ
crossings,S(t) grows exponentially.
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a function
m L

atrix
Fig. 5. For the same system as inFig. 3, we illustrate the separation of neighboring trajectories in phase space. (a) A plot of the phase space separation as
of time shows the jumps in both the separation and the rate of separation that occur at separatrix crossings. (b) A longer integration gives the systeyapunov
exponent
 as the asymptotic value of ln(separation)/time at late time, which from the plot is
 ∼ 0.002.

Fig. 6. Using a less adiabatic model parametric pendulum than inFig. 3 (κ = 0.1, α = 0.2), we plot the value of the system action over about 5000 separ
crossings. The action diffuses more rapidly than that inFig. 3, allowing us to more efficiently illustrate wandering across the entire chaotic zone.
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3.2. Excursions in the chaotic zone

Only trajectories that come close to the separatrix
chaotic. The range in action over which there is chaotic
havior is

(15)�Jcz � 8
(
A

1/2
max− A

1/2
min

) � 8α.

A system that starts with action outside this zone never cro
the separatrix and undergoes regular motion. A system
starts within it eventually explores the entire range of cha
actions. Coverage of phase space is uniform in the chaoti
gion.

Adiabaticity is violated along trajectories that cross a se
ratrix and the action jumps by

(16)�J = −4
Ȧ

A
ln

[
2 cos

(
π

2
sin

ψs

2

)]
,

where ψs is the phase of the pendulum at whichE = Esep
(Timofeev, 1978). The validity of Eq.(16) requires thatȦ be
constant while the trajectory crosses the separatrix. Howe
Ȧ varies on the timescaleδt = |Ȧ/Ä| = | tanκt/κ| which van-
ishes at the extrema ofA. Thus Eq.(16) does not apply within
boundary layers of widthδJ at the top and bottom of the chaot
zone. We estimateδJ ≈ Cακ2, whereC is a (large) dimension
less number.
e
-

es
at

e-

-

r,

Fig. 6 displays the quasi-random wandering (“adiaba
chaos,”Neishtadt, 1991) of the action of a model system wit
α = 0.2, κ = 0.1 during approximately 5000 separatrix cro
ings. “Sticking” near the top and bottom of the chaotic zone
consequence of the smaller size of the action jumps in thes
gions as predicted by Eq.(16); Ȧ/A = 0 at the extrema ofA(t).

Consider the distribution of jump sizes. When crossin
separatrix, the system trajectory passes over a potential
Smaller margins of clearance correspond to slower pass
and result in larger jumps in the action. The term sin(ψs/2)

is proportional to the difference between the system’s en
and the separatrix energy when the system makes its last
sage through a potential trough prior to crossing a separa
We construct the probability distributionP(�J) of jump sizes
under the assumption that sin(ψs/2) is uniformly distributed
between±1. Over many separatrix crossings the action p
forms a quasi-random walk in which the diffusion constan
proportional to

∫
d(�J )P (�J)(�J)2. From the plot of the in-

tegrand inFig. 7, we see that jumps larger than 8Ȧ/A, which
comprise about 4% by number, contribute about half of the
fusivity.

Integrating over jump size, we obtain a diffusion coefficie

(17)D � 0.82

(
4Ȧ

A

)2
κ

π
,
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Fig. 7. The system action diffuses through the chaotic zone due to quasi-ra
jumps in action at separatrix crossings. The jump size is given by Eq.(16), and
assuming a uniform distribution of sin(ψs/2), we can construct a probabilit
distributionP(�J) for jump size. The contribution to the diffusivity from
given jump size�J is proportional to(�J)2P(�J). This quantity is plotted
in the figure, normalizing jump size toy = 4Ȧ/A. Jumps of more than 2 time
this size contribute about half of the diffusivity while only contributing ab
4% by number.

Fig. 8. Evolution of the pendulum inFig. 6, showing the behavior ofψ when
the action is close to the (a) top and (b) bottom of the chaotic zone.

whereπ/κ is the mean time between separatrix crossings. T
ing values appropriate to the center of the chaotic zone
estimate the zone crossing time

(18)tc ∼ J 2
cz

D
∼ 15,000,

in reasonable agreement with that observed inFig. 6.
The pendulum mostly librates or mostly circulates, acco

ing to whether its action is close to the minimum or maxim
value in the chaotic zone. This is illustrated inFig. 8. As ex-
pected, the system samples each type of behavior.
m

-
e

-

Fig. 9. Determination of the Lyapunov exponent for the Prometheus–Pan
system: this plot is analogous toFig. 5b for the model parametric pendu
lum, in which the Lyapunov exponent is given by the late-time value
ln(separation)/time.

4. Prometheus and Pandora

Now we return to the Prometheus–Pandora system and d
similarities between its behavior and that of a parametric pe
lum. Although our interpretation of the satellites’ motions re
on the pendulum analogy, we integrate the full equation of
tion (Eq. (5)) for ψ(t) and the linear equation for the tange
vector�ψ(t) derived from it. Because the system is chao
it explores the entire accessible region of phase space for
trary initial data. We find it most convenient to adopt the ini
data used by GR03b for easier comparison between the
sults and ours. A long integration yields a Lyapunov expon

 ∼ 0.3 yr−1, in agreement with that found by GR and oth
authors (seeFig. 9).

The variations ofJ andψ for the satellite system (plotte
in Fig. 10) are reminiscent of those of the analogous variab
pertaining to the parametric pendulum as illustrated inFig. 4.
Similar patterns of switching between libration and circulat
are exhibited by each system. Fractional variations of the ac
are larger in the satellite system because of its lower adiab
ity.

4.1. Where separatrix crossings occur

GR03ab and subsequent authors state that jumps in the
motions occur near apse antialignment. Apse antialignment
responds to the time of maximum amplitude of the poten
We see inFig. 10 that separatrix crossings currently occur
that region. A similar behavior is seen inFig. 8a, in which the
action is close to its maximum value in the chaotic zone. Ju
in mean motion correspond to intervals spent in libration am
stretches of circulation during whichψ increases monoton
cally. Changes in the slope,ψ̇ , from one episode of circulatio
to the next reflect changes in the action at the intervening s
ratrix crossings. The jumps are notdue to chaos; rather they ar
due to the separatrix crossings, whichalso give rise to chaos
Changes in the circulation rate can be predicted, but only
an error that increases at every separatrix crossing.

A chaotic system explores the entire chaotic zone in ph
space. We expect the Prometheus–Pandora system to s
states that are unlike its current state in which the separ
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ssings, as
Fig. 10. Action andψ for the Prometheus–Pandora system for the first 12 yr of integration, showing changes in the regime of motion at separatrix cro
indicated by vertical lines. The dashed line denotes the separatrix action. The unit of action for the Prometheus–Pandora system is rad2 yr−1 throughout.
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crossings occur near apse antialignment as seen inFig. 8a. Av-
eraged over time, separatrix crossings should not be restr
to a narrow range of precessional phase. In particular, s
in which the separatrix crossings take place near apse a
ment, such as shown inFig. 8b, must also be sampled. Resu
from our integrations displayed inFig. 11confirm this expecta
tion; the system experiences both states in which it is most
circulation and those in which it is mostly in libration. Sepa
trix crossings, accompanied by sudden changes in the beh
of ψ(t), happen at all precessional cycles. Switching betw
regimes of behavior does not require a “kick” as such; the
quirement is that the potential change so that the system a
moves to the other side of the separatrix action. This can ha
as easily near apse alignment as near apse antialignment.

A long integration confirms that the action wanders throu
out the chaotic zone (Fig. 12, cf. alsoFig. 6). Eqs.(17) and (18)
predict that it takes∼170 yr for the action to diffuse all the wa
across the zone. Due to the weak adiabaticity in this case, a
gle large jump can span a large fraction of the total rang
action. Flipping between moderately high and moderately
action states can therefore occur in a much shorter time, as
in Fig. 12.

Within measurement errors, a variety of orbits fit the best
bital data for Prometheus and Pandora.Renner et al. (2005)find
that after two separatrix crossings (their 2004 point), there i
uncertainty of 0.2◦ in the longitude of each satellite.4 Starting
from this level of positional uncertainty and holding all oth
orbital elements fixed, we integrate forward in time a set o
trajectories spanning the error range. The results are show

4 This is about the same as the size of a singleHST error box at Saturn.
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Fig. 13, in which the action for each trajectory is plotted agai
the separatrix action. In only 15 yr from the start of our integ
tion, one of the trajectories has already transitioned from a s
of high to low action (due to experiencing a large jump). T
illustrates that only a small uncertainty in positions can rap
amplify to give a qualitative change in system behavior.

4.2. Limitations of the analogy

The Prometheus–Pandora system is not strongly adiab
since only about 3 periods of oscillation take place during
modulation of the potential. Because the amplitude of the
tential varies substantially over the period of motion, we exp
our frozen potential assumption to lead to uncertainties of o
half a period of the motion in the positioning of the separa
crossings. However, we have seen that the crossing pos
are adequately located by this method.

A more serious problem is the fact that we do not fulfill t
conditionφ̈ � |V (t)| throughout all of the precessional cyc
The dashed line plotted inFig. 1 shows the magnitude of th
φ̈ term in comparison with|V (t)| = |∂V/∂ψ |. For about one
third of the time (around apse alignment), we do not fulfill t
condition, and the pendulum equation does not describe the
tem well at all. During these times, the system is essent
governed byΨ̈ � −φ̈, soΨ appears to circulate. Perhaps th
we cannot define a separatrix crossing near apse alignmen
do find some evidence (not detailed in this paper) that gre
jumps in the separation of trajectories occur near apse antia
ment than near apse alignment. Undeniably however, cha
in the evolution ofψ(t) occur throughout the precessional c
cle (Fig. 11), and this statement is independent of the pendu
analogy, since it is based on integrations of the full equa
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Fig. 11. Examples of high, medium, and low action states for the Prometheus–Pandora system. Vertical lines indicate times of apse antialignment,not separatrix
crossings, which themselves occur at different precessional phases in these three cases. Dashed lines are separatrix action.
se
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of motion, Eq.(5). The behavior of the orbits between ap
antialignments certainly cannot always be fitted using fre
precessing ellipses.

5. Summary and conclusions

The equations of motion of the Prometheus–Pandora
onant system are well represented by those of a param
pendulum. Despite the low degree of adiabaticity of the s
s-
ric
-

tem, the same regimes of behavior exist as found in a m
adiabatic model system. Using this analogy, we have expla
the nature of the “kinks” in mean longitude seen in both ob
vations and simulations as short episodes of libration betw
long stretches of circulation. We caution that the system
not continue indefinitely to display periods of drift with inte
vening kinks: in as little as 15 yr, the evolution of the me
motions could be drastically different. Sudden changes in
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Fig. 12. Wandering of the action of the Prometheus–Pandora system: analogous toFig. 6for a model pendulum, this clearly delineates the chaotic zone.
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Fig. 13. We start with three sets of initial conditions of Prometheus and Pan
corresponding to 0.2◦ uncertainty in the longitude of each satellite, and plot
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In as little as 15 yr, one of these trajectories has transitioned from a high
low action state.

havior (and increased uncertainties in predictions) can ha
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