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Abstract

We revisit the dynamics of Prometheus and Pandora, two small moons flanking Saturn’s F ring. Departures of their orbits from freely precess
ellipses result from mutual interactions via their 121:118 mean motion resonance. Motions are chaotic because the resonance is split into
overlapping components. Orbital longitudes were observed to drift away from predictions bagdgen ephemerides. A sudden jump in mean
motions took place close to the time at which the orbits’ apses were antialigned in 2000. Numerical integrations reproduce both the longitt
drifts and the jumps. The latter have been attributed to the greater strength of interactions near apse antialignment (every 6.2 yr), and it has |
assumed that this drift-jump behavior will continue indefinitely. We re-examine the dynamics of the Prometheus—Pandora system by analogy v
that of a nearly adiabatic, parametric pendulum. In terms of this analogy, the current value of the action of the satellite system is close to
maximum in the chaotic zone. Consequently, at present, the two separatrix crossings per precessional cycle occur close to apse antialignt
In this state libration only occurs when the potential’s amplitude is nearly maximal, and the “jumps” in mean motion arise during the sho
intervals of libration that separate long stretches of circulation. Because chaotic systems explore the entire region of phase space availab
them, we expect that at other times the Prometheus—Pandora system would be found in states of medium or low action. In a low action sta
would spend most of the time in libration, and separatrix crossings would occur neaaligoseent. We predict that transitions between these
different states can happen in as little as a decade. Therefore, it is incorrect to assume that sudden changes in the orbits only happen nea
antialignment.

0 2005 Elsevier Inc. All rights reserved.
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1. Introduction due to the satellites’ mutual gravitational interactions as the
cause of these discrepancies. The system was found to have a
Discovered by thé/oyager spacecraft in 1980 and 1981, Lyapunov exponent0.3 yr1. Jumps in the mean motion were
Prometheus and Pandora are two small moons of Saturn. Progttributed to the stronger interactions that occur when the or-
erties of their orbits are summarized Tlable 1 A series of  bits’ apses are antialigned. Orbital integrations in GR03a repro-
observations starting in 1995 found that the orbital longitudeduce the observed gradual drifts away from Yogager-based
of each satellite deviated by about°2om its value as pre- predictions. Kinks in the mean longitudes are apparent every
dicted by theVoyager ephemeris Bosh and Rivkin, 1996; 6.2 yr, attimes of apse antialignme@oldreich and Rappaport
Nicholson et al., 1996; McGhee et al., 200Further, each (2003b)(GR03b) captures the essential dynamics of the system
satellite’s mean motion underwent an abrupt change in 2008y including only interactions due to the 121:118 mean motion
(French et al., 2002seen as “kinks” in their mean longitudes. resonance. More complete numerical simulations of the system,
Goldreich and Rappaport (2003g3R03a) pinpointed chaos which include the influences of other saturnian satellites, have
been performed b ooper and Murray (2004yacobson and
mponding author. MS-51, Center for Astrophysics, 60 Garden St.Frenc_:h (2004) and R_enn,er et al. (Z_OOS)T,h,ese confirm ,that
Cambridge, MA 02138, USA. the simplified dynamics in GRO3b is sufficient to describe the
E-mail address: afarmer@cfa.harvard.eq@.J. Farmer). chaotic motions of Prometheus and Pandora.

0019-1035/$ — see front matté&t 2005 Elsevier Inc. All rights reserved.
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Table 1 Table 2

Properties of Prometheus and Pandora and of their orbits (from GRO3b) Properties of the four components of the 121:118 mean motion resonance (from
Quantity Prometheus Pandora GRO3b)

Symbols Unprimed Primed Resonancegy Period (yr)= —2m /vy Coefficient,C,

m/M 5.80 x 10~10 3.43x 10710 1 1.078 —1.08x 103

2 (°) 188.53815 82.14727 2 1303 626x 1073
n(esh 6.797331x 10~3 6.629506x 1073 3 1.648 —1.21x 1072

e 2.29x 1073 437x 1073 4 2.239 782x 10738

@ (°) 212.85385 68.22910

@ sl 3.1911x 107> 3.0082x 10~

where . and A’ are, respectively, the mean longitudes of

. _ L Prometheus and Pandora, and
Physical explanations for the mean motion jumps have not

advanced beyond those proposed by Goldreich and Rappaposi; = 3w, 8 =2w + o/,

qll pf the above papers cite enhan_ced _interactions at apse afl— o 4 2/, 84=3w’. (2)
tialignment as the reason for the kinks in the mean longitudes _ _

observed in 2000. They do nothing to dispel the expectation th&#R03b note that because of the rapid precession caused by
the mean longitudes will continue to display the same drift-kinkSaturn’s oblateness, interactions between the satellites produce
behavior indefinitely into the future. A practical consequence oftedligible effects on their apsidal angles and orbital eccentric-

this belief is that orbits fitted to Cassini data avoid times aroundi€s- Therefore it is adequate to only treat changes in mean

apse antialignment and assume freely precessing ellipses HBOUONS, or equivalently in the angle.
tween these time$prco et al., 2006 The equation of motion foyr reads (GR0O3b)

We show that a proper understanding of the dynamics of 2y m am’
the Prometheus—Pandora system is more subtle than previousdg/? = 3(12]1/)2— [1+ ;
recognized. In doing so we exploit an analogy with the dynam- d M am
ics of a parametric pendulum to reinterpret numerical integra- 9
tions presented in GRO3b. We confirm that separatrix crossinq\/gr:ere Mft_ r6mx ianzE %'S rthe i\r:]isisrﬂ?fblsatulm,nznzd where the
are the cause of chaos and that their rate determines the magn?i ues ot terms q )q € give ables 1a

) . Equation(3) can be written as
tude of the Lyapunov exponent. Our focus is on the precessional
phase at which separatrix crossings occur. Currently the tw@?2y 2 _
that take place during each 6.2 yr precessional cycle occur negfz — —wpA() sin[y — ¢ (1)] (4)
apse antialignment and the kinks arise during intervals of libra- _ . N 1 - _
tion separated by long stretches of circulation. More generallft time £, wherewo ~ 3.8 yr and|A| < 1. _D.efmm_g v =
: k . — ¢ and thus transforming to the frame drifting with the po-

separatrix crossings can occur at any precessional phase, Wl:{h . : :
. ) . ntial at¢, we obtain
large changes in these phases predicted on timescales of one to
two decades. When crossings take place near apse alignmengw
the system remains chaotic but displays qualitatively differentg;z —
features than at present.

This paper is arranged as follows. In Sectbwe demon-
strate the similarity between the dynamics of the Prometheusg2y ) )
Pandora interaction and that of a parametric pendulum. Wegz = ~©@0A() sin¥, (6)
study the behavior of an adiabatic parametric pendulum in Sec-__ . . . .
. ) - precisely the equation of motion of a parametric pendulum. The
tion 3. In Sectiord we apply these findings to the Prometheus— S . o

. o . potential in which moves is given by

Pandora system, and discuss both the implications and the Iwﬁ—
itations of our analogy. We conclude in Sectian VW, t) = —a)gA(t) cosV. (7)

4
} Y Cysin(y —5,), (3)
g=1

—wEA(t) SINW + . (5)

Provided$ < wZA, we can drop the last term, leaving

Plots of|V|, ¢, ¢ and¢ are displayed ifFig. 1.1
2. Similarity of equations The timescale for variation ofV (¢)| is 2 /|r — &'| &~
6.2 yr, and the fractional variation in its amplitude is of order

. . . . . - 12

GRO3b showed that the chaotic motions of Prometheus andnity. The typical oscillation period o’ is w ~ 27 /|V|™" ~
Pandora arise from their 121:118 mean motion resonance. DiR Y, SO the slowness parameter 1 x 2/6.2~ 0.3. Thus
ferential precession of the two eccentric orbits splits the resth® Prometheus—Pandora system is only marginally adiabatic.
onance into four discrete components whose arguments are

Vg =V — 8, With 1 Although ¢ + 0, we approximate to be constant at50.7 yr—1 when we
calculate the action for the Prometheus—Pandora system. The pendulum anal-
, ogy takes us a long way toward understanding the behavior of the system. We
Y =121 - 118, (1) assess its validity in Sectigh2
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Fig. 1. Properties of the potential in which the Prometheus—Pandora system moves: (a) solid line—the amplitude of the potential as a functidasbktme,
line—¢; (b) drift phasep as a function of time; (c) rate of change of the drift phase. This is the drift rate of the hills in the potential. In most of this study we ignore
the variation ofp, since it is localized to a small fraction of the period.
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Fig. 2. The potentiaV () in which the simplified parametric pendulum moves,dot 0.2. Shaded area shows range over which potential varies with time.

Rather than examine it directly, it proves instructive to conside8. Behavior of the simplified parametric pendulum
a parametric pendulum for which adiabaticity is robust. For this
we choose

A(t) =1+ acogkt), (8)

wherea < 1 andk < wo, so that for small oscillations the sys-
tem is adiabatic with slowness parameter

A simple pendulum can exhibit motion of two kirfddi-
bration for E < |V| in which  is trapped in a valley, and
circulation for E > |V| in which ¢ passes over the hills. Be-
tween these two regimes lies the separatrix, a singular trajectory
of infinite period with energy

€ ~ak/wo K 1. 9)

Without loss of generality we can sep = 1. This potential is
illustrated inFig. 2

E =4?/2— Acosy = A. (10)

As A(r) varies, the motion of a parametric pendulum may
switch between these two regimes. Transitions from large am-
plitude librations to circulations may occur as the potential shal-
lows. Likewise, transitions in the opposite direction can take
All integrations in this paper are done hMathematica 5 us- plage as the potgnua{ sFeepgns. N.O ”.‘a“er how §Iowly the po-
. . o . . tential varies, adiabatic invariance is violated during separatrix
ing a Runge—Kutta routine with fixed step size. Care is taken :

L i : crossings.
to maintain numerical accuracy at a level such that differences
in initial conditions determine the rates at which neighboring

trajectories diverge.

2.1. Integration

2 For a simple penduluny is independent of time.
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Fig. 3. For the model parametric pendulum system witk 0.2, « = 0.01: (a) action as a function of time; thick line is separatrix action and thin line is system
action. (b) System period as a function of time, with vertical lines at locations of separatrix crossings, where the period becomes large.
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Fig. 4. For the same system asHig. 3 (a) zoom-in on system action, showing jumps in action at separatrix crossings (marked by vertical lines). (b) Evolution of
¥ (1), showing transitions from libration to circulation and vice versa at separatrix crossings.

For an adiabatic system the actidi{(t), remains nearly con- long-term predictions. To track the separation of two neigh-
stant asA(r) varies. We calculatg/ () by freezingA(r) and  boring trajectories, we Taylor expand the equation of motion
integrating over a period (Eq. (b)) to first order inAyr:

. 2
J= f pdg = f yrdy = 7§ VAE®D = vn]dy'. 1) ddf;” — —A(HRAY cosy. (13)

In a similar manner, we obtain the period frahr) = ¢ dg/q. The phase space separation,
On the separatrix,

1/
dAay \?
Tseglt) = BA®M) V2, (12) S“):[AWZ*( & ” | (1)

F_ig. 3illustrates some_aspects of the behavi_or of a parameﬁ-S calculated by the simultaneous integration of E¢@)
ric pendulum characterized lay= 0.01,0 = 0.2, i.e., slowness and (13) The Lyapunov exponent, is the limit ast — oo
parametee ~ 0.002. We see thal (r) maintains a nearly con- i

) ) .of (InS)/¢. FromFig. 5we find ¢ >~ 0.0022, which is close to
stant value as both the action on the separatrix and the periq, . ..o" ¢ separatrix crossings

undergo large variations. Jumps in action at separatrix cross- The Lyapunov exponent measures the average exponentia-
ings are displayed at higher resolutionfiig. 4 along with the tion rate of the divergence of neighboring trajectorieig. 5a
evolution ofy (¢). shows how this divergence proceeds through a few separatrix
crossings. At each crossing the separafidoetween trajecto-
ries undergoes a sudden jump, corresponding to the differential
phase delay introduced there between neighboring trajectories.
The rate at which neighboring trajectories in phase spacgetween crossings(¢) displays an oscillation superposed on
separate is of practical interest because it limits our ability toy |inear trend. The oscillation reflects the periodic motion of
make predictions about the future. For chaotic systems, smajhe pendulum, and the linear variation is due to the period dif-
errors in initial conditions amplify exponentially, invalidating ference between neighboring trajectories. Both the jumg in
at separatrix crossings and the linear variations between them
3 When the system is in libration, we integrate over only half a period of_prOduce an increase ¢fon average. ,Smce on averageand .
the motion, because otherwise the action changes by a factor of 2 across tH§ Slope change by a constant fractional amount at separatrix
separatrix at fixed energy. crossingsS(¢) grows exponentially.

3.1. Separation in phase space and Lyapunov exponent
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Fig. 5. For the same system adHig. 3 we illustrate the separation of neighboring trajectories in phase space. (a) A plot of the phase space separation as a functi
of time shows the jumps in both the separation and the rate of separation that occur at separatrix crossings. (b) A longer integration gives fepsgstem L
exponent as the asymptotic value of (separatiojytime at late time, which from the plot i~ 0.002.
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Fig. 6. Using a less adiabatic model parametric pendulum th&igin3 (« = 0.1, « = 0.2), we plot the value of the system action over about 5000 separatrix
crossings. The action diffuses more rapidly than tha&i@q 3, allowing us to more efficiently illustrate wandering across the entire chaotic zone.

3.2. Excursionsin the chaotic zone Fig. 6 displays the quasi-random wandering (“adiabatic
chaos,’Neishtadt, 199)Lof the action of a model system with
Only trajectories that come close to the separatrix arey = 0.2, ¥ = 0.1 during approximately 5000 separatrix cross-
chaotic. The range in action over which there is chaotic beings. “Sticking” near the top and bottom of the chaotic zone is a
havior is consequence of the smaller size of the action jumps in these re-
- 1/2 1/2 gions as predicted by E¢L6); A/A = 0 at the extrema ol (¢).
AJez = 8(Amax — Apin) = 8a. (15) Consider the distribution of jump sizes. When crossing a
A system that starts with action outside this zone never crossegparatrix, the system trajectory passes over a potential peak.
the separatrix and undergoes regular motion. A system th&®maller margins of clearance correspond to slower passages
starts within it eventually explores the entire range of chaotiggnd result in larger jumps in the action. The term(giyy2)
actions. Coverage of phase space is uniform in the chaotic rgs proportional to the difference between the system's energy

gion. and the separatrix energy when the system makes its last pas-
Adiabaticity is violated along trajectories that cross a sepasage through a potential trough prior to crossing a separatrix.
ratrix and the action jumps by We construct the probability distributioR(A J) of jump sizes
i v under the assumption that &ify/2) is uniformly distributed
= In|:2 cos(2 sin é>:| (16)  betweenz1. Over many separatrix crossings the action per-
forms a quasi-random walk in which the diffusion constant is

where ¥, is the phase of the pendulum at whi¢h= Esep proportional tof d(AJ)P(AJ)(AJ)?. From the plot of the in-
(Timofeev, 1978 The validity of Eq.(16) requires thatd be  tegrand inFig. 7, we see that jumps larger thar 84, which
constant while the trajectory crosses the separatrix. Howevecomprise about 4% by number, contribute about half of the dif-
A varies on the timescally = |A/A| = |tankt/«| which van-  fusivity.

ishes at the extrema of. Thus Eq.(16) does not apply within Integrating over jump size, we obtain a diffusion coefficient:
boundary layers of widthJ at the top and bottom of the chaotic

zone. We estimat&/ ~ Cax?, whereC is a (large) dimension- p ~ (. 82<4A> -, (17)
less number. A) m
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Fig. 7. The system action diffuses through the chaotic zone due to quasi-randopig. 9. Determination of the Lyapunov exponent for the Prometheus—Pandora
jumps in action at separatrix crossings. The jump size is given bylBj.and  system: this plot is analogous fig. 5 for the model parametric pendu-

assuming a uniform distribution of si#ry/2), we can construct a probability  jym, in which the Lyapunov exponent is given by the late-time value of
distribution P(AJ) for jump size. The contribution to the diffusivity from a  |n(separatiopytime.

given jump sizeAJ is proportional to(AJ)2P(AJ). This quantity is plotted

in the figure, normalizing jump size to=4A/A. Jumps of more than 2 times

this size contribute about half of the diffusivity while only contributing about 4- Prometheus and Pandora

4% by number.

Now we return to the Prometheus—Pandora system and detail

580 similarities between its behavior and that of a parametric pendu-
560 lum. Although our interpretation of the satellites’ motions rests
540 on the pendulum analogy, we integrate the full equation of mo-
tion (Eq. (5)) for ¥ (¢) and the linear equation for the tangent
S 520 vector Ay (¢) derived from it. Because the system is chaotic,
500 it explores the entire accessible region of phase space for arbi-
480 trary initial data. We find it most convenient to adopt the initial
4601 @ data used by GRO3b for easier comparison between their re-
sults and ours. A long integration yields a Lyapunov exponent
41000 41050 41100 41150 41200 41250 41300 ¢~ 0.3 yr1, in agreement with that found by GR and other
tme authors (se€ig. 9).
The variations of/ andvr for the satellite system (plotted
166 in Fig. 10 are reminiscent of those of the analogous variables
165 pertaining to the parametric pendulum as illustrate&im 4.
164 Similar patterns of switching between libration and circulation
> 163 are exhibited by each system. Fractional variations of the action
162 are larger in the satellite system because of its lower adiabatic-
161 ity.
160 (b)
4.1. Where separatrix crossings occur

15000 15050 15100 15150 15200 15250 15300

time GRO03ab and subsequent authors state that jumps in the mean
Fig. 8. Evolution of the pendulum iRig. 6, showing the behavior of when motions occur ne?‘r apse am'?‘“gnmem' Apse antialignment F:OI’-
the action is close to the (a) top and (b) bottom of the chaotic zone. responds to the time of maximum amplitude of the potential.

We see inFig. 10that separatrix crossings currently occur in

wherex /k is the mean time between separatrix crossings. Taknat region. A similar behavior is seenfiiig. 8a, in which the

ing values appropriate to the center of the chaotic zone, waction is close to its maximum value in the chaotic zone. Jumps
estimate the zone crossing time in mean motion correspond to intervals spent in libration amidst

stretches of circulation during whiclt increases monotoni-
cally. Changes in the slopé,, from one episode of circulation
o JZ ~ 15,000 (18) to the next reflect changes in the action at the intervening sepa-
‘D ’ ratrix crossings. The jumps are riite to chaos; rather they are
due to the separatrix crossings, whiliso give rise to chaos.
in reasonable agreement with that observelig 6. Changes in the circulation rate can be predicted, but only with
The pendulum mostly librates or mostly circulates, accord-an error that increases at every separatrix crossing.
ing to whether its action is close to the minimum or maximum A chaotic system explores the entire chaotic zone in phase
value in the chaotic zone. This is illustratedfig. 8 As ex-  space. We expect the Prometheus—Pandora system to sample
pected, the system samples each type of behavior. states that are unlike its current state in which the separatrix
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Fig. 10. Action andy for the Prometheus—Pandora system for the first 12 yr of integration, showing changes in the regime of motion at separatrix crossings,
indicated by vertical lines. The dashed line denotes the separatrix action. The unit of action for the Prometheus—Pandora system tamauaighout.

crossings occur near apse antialignment as seEigirBa. Av-  Fig. 13 in which the action for each trajectory is plotted against
eraged over time, separatrix crossings should not be restrictdtle separatrix action. In only 15 yr from the start of our integra-
to a narrow range of precessional phase. In particular, statd®n, one of the trajectories has already transitioned from a state
in which the separatrix crossings take place near apse aligiof high to low action (due to experiencing a large jump). This
ment, such as shown ifig. 8, must also be sampled. Results illustrates that only a small uncertainty in positions can rapidly
from our integrations displayed Fig. 11confirm this expecta- amplify to give a qualitative change in system behavior.
tion; the system experiences both states in which it is mostly in
circulation and those in which it is mostly in libration. Separa-4.2. Limitations of the analogy
trix crossings, accompanied by sudden changes in the behavior
of ¥ (¢), happen at all precessional cycles. Switching between The Prometheus—Pandora system is not strongly adiabatic,
regimes of behavior does not require a “kick” as such; the resince only about 3 periods of oscillation take place during the
quirement is that the potential change so that the system actianodulation of the potential. Because the amplitude of the po-
moves to the other side of the separatrix action. This can happeantial varies substantially over the period of motion, we expect
as easily near apse alignment as near apse antialignment.  our frozen potential assumption to lead to uncertainties of order
A long integration confirms that the action wanders through-half a period of the motion in the positioning of the separatrix
out the chaotic zond~{g. 12, cf. alsoFig. 6). Egs.(17) and (18)  crossings. However, we have seen that the crossing positions
predict that it takes-170 yr for the action to diffuse all the way are adequately located by this method.
across the zone. Due to the weak adiabaticity in this case, a sin- A more serious problem is the fact that we do not fulfill the
gle large jump can span a large fraction of the total range o¢ondition¢ < |V (¢)| throughout all of the precessional cycle.
action. Flipping between moderately high and moderately lowThe dashed line plotted iRig. 1 shows the magnitude of the
action states can therefore occur in a much shorter time, as se¢rferm in comparison withV (t)| = [0V /9v|. For about one
in Fig. 12 third of the time (around apse alignment), we do not fulfill this
Within measurement errors, a variety of orbits fit the best orcondition, and the pendulum equation does not describe the sys-
bital data for Prometheus and Pand@tanner et al. (2005)nd ~ tem well at all. During these times, the system is essentially
that after two separatrix crossings (their 2004 point), there is agoverned by ~ —¢, so¥ appears to circulate. Perhaps then
uncertainty of 0.2 in the longitude of each satellifeStarting ~ We cannot define a separatrix crossing near apse alignment. We
from this level of positional uncertainty and holding all other do find some evidence (not detailed in this paper) that greater
orbital elements fixed, we integrate forward in time a set of JUMPps in the separation of trajectories occur near apse antialign-

trajectories spanning the error range. The results are shown fRent than near apse alignment. Undeniably however, changes
in the evolution ofy (t) occur throughout the precessional cy-

cle (Fig. 11), and this statement is independent of the pendulum
4 This is about the same as the size of a sittf error box at Saturn. analogy, since it is based on integrations of the full equation
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Fig. 11. Examples of high, medium, and low action states for the Prometheus—Pandora system. Vertical lines indicate times of apse antialigapaatyix
crossings, which themselves occur at different precessional phases in these three cases. Dashed lines are separatrix action.

of motion, Eq.(5). The behavior of the orbits between apsetem, the same regimes of behavior exist as found in a more
antialignments certainly cannot always be fitted using freelyadiabatic model system. Using this analogy, we have explained
precessing ellipses. the nature of the “kinks” in mean longitude seen in both obser-
vations and simulations as short episodes of libration between
long stretches of circulation. We caution that the system will
The equations of motion of the Prometheus—Pandora regot continue indefinitely to display periods of drift with inter-
onant system are well represented by those of a parametritening kinks: in as little as 15 yr, the evolution of the mean
pendulum. Despite the low degree of adiabaticity of the sysmotions could be drastically different. Sudden changes in be-

5. Summary and conclusions
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Fig. 12. Wandering of the action of the Prometheus—Pandora system: analogéysafor a model pendulum, this clearly delineates the chaotic zone.

35

References
30
25 Bosh, A.S., Rivkin, A.S., 1996. Observations of Saturn’s inner satellites during
the May 1995 ring-plane crossing. Science 272, 518-521.
g 20 Cooper, N.J., Murray, C.D., 2004. Dynamical influences on the orbits of
g Prometheus and Pandora. Astron. J. 127, 1204-1217.
s 15 French, R.G., McGhee, C.A., Dones, L., Lissauer, J.J., 2002. Saturn’s wayward
10 shepherds: The perigrinations of Prometheus and Pandora. Icarus 62, 144—
171.
5 Goldreich, P., Rappaport, N., 2003a. Chaotic motions of Prometheus and Pan-
0 dora. Icarus 162, 391-399. GR03a.
Goldreich, P., Rappaport, N., 2003b. Origin of chaos in the Prometheus—
0 5 10 15 20 25

Pandora system. Icarus 166, 320-327. GRO3b.
Jacobson, R.A., French, R.G., 2004. Orbits and masses of Saturn’s coorbital
and F-ring shepherding satellites. Icarus 172, 382—-387.
Ghee, C.A., Nicholson, P.D., French, R.G., Hall, K.J., 2001. HST observa-
tions of saturnian satellites during the 1995 ring plane crossings. Icarus 152,
282-315.
Rleishtadt, A.l,, 1991. Probability phenomena due to separatrix crossing.
Chaos 1, 42-48.

) . o . o Nicholson, P.D., Showalter, M.R., Dones, L., French, R.G., Larson, S.M., Lis-
havior (and increased uncertainties in predictions) can happen sauer, J.J., McGhee, C.A., Seitzer, P., Sicardy, B., Danielson, G.E., 1996.

time (years)

Fig. 13. We start with three sets of initial conditions of Prometheus and Pandor@1C
corresponding to 022uncertainty in the longitude of each satellite, and plot the
action (along with the separatrix action, thick line) for each of these trajectories.
In as little as 15 yr, one of these trajectories has transitioned from a high to
low action state.

far from times of apse antialignment. Observations of Saturn’s ring-plane crossings in August and November
1995. Science 272, 509-515.
Acknowledgments Porco, C.C., and 34 coauthors, 2005. Cassini imaging science: Initial results on

Saturn’s rings and small satellites. Science 307, 1226-1236.

. Renner, S., Sicardy, B., French, R.G., 2005. Prometheus and Pandora: Masses
This research was supported by NASA Grant PGG 344-30- ;3 orbital positions during the Cassini tour. Icarus 174, 230-240.

55-07 and NSF Grant AST 00-98301. A.J.F. thanks the Institutgimofeev, A.V., 1978. On the constancy of the adiabatic invariant when the
for Advanced Study for its hospitality. nature of the motion changes. JETP 48, 656-659.



	Understanding the behavior of Prometheus and Pandora
	Introduction
	Similarity of equations
	Integration

	Behavior of the simplified parametric pendulum
	Separation in phase space and Lyapunov exponent
	Excursions in the chaotic zone

	Prometheus and Pandora
	Where separatrix crossings occur
	Limitations of the analogy

	Summary and conclusions
	Acknowledgments
	References


