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1. INTRODUCTION

Orbit - orbit resonance, the enhancement of mutual interactions of planetary bodies due to
repetitive configurations, is a ubiquitous feature of solar system dynamics. Resonances may
help explain the structure of the asteroid belt and Saturn's rings (Brouwer, 1963; Franklin
and Colombo, 1970), the transport of meteorites to terrestrial planets (Williams, 1973), and
perhaps even the original building of planet~sized bodies (Safronov, 1972). The prevalence of
resonances permits mass determination for planets and satellites (Duncombe <t al., 1973) and
places constraints on long-term orbital evolution (reviewed by Peale, 1976). Resonance pheno-

mena manifest themselves in a variety of forms with underlying similarities.

The object of this paper is to bring together descriptions of the various resonance mechanisms
in such a manner that the physical processes underlying traditional mathematical presentations
are apparent. The goal is an individual perspective rather than an exhaustive review of the
subject. My intention is to give the non-specialist a feeling for these physical processes
and a taste of the terminology and analytical techniques so that the literature of celestial
mechanics will not seem intimidating or opaque. Perhaps my viewpoint will also reinforce the

insight of some specialists.

In general, a resonance occurs when the periodic behavior of a dynamical system is matched by
some periodic driving force. If a system of planets or satellites has a configurational
periodicity, the mutual perturbations will have the same period, thus enhancing the perturba-
tions and yielding an orbit - orbit resonance. A periodicity occurs if "commensurabilities"
(small-integer ratios) exist among the orbital periods. The resonance is said to be stable
(or "locked") if the enhanced mutual perturbations maintain the commensurability égainst dis~

ruptive influences.
209
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2. TITAN - HYPERION

In order to see how such a mechanism can work, consider the following simple model based on

the resonance between Saturn's satellites Titan and Hyperion (Fig. 1). The inner satellite of
the pair, Titan, has a circular orbit coplanar with that of the outer one, Hyperion, whose
orbit has significant eccentricity (¢ = 0.1). The satellites' orbital periods are near a ratio
of 3/4. Between conjunctions of the satellites (defined as a configuration with both satel-
lites at the same planetocentric longitude), Titan makes four complete revolutions about Saturn,
while Hyperion makes three. This commensurability implies that the longitude of conjunction
varies very slowly. (Further details are given by Woltjer, 1928; Goldreich, 1965; and
Greenberg, 1973).

[ Longitude of
yd /’-J - conjunction

W,

¥
Reference
axis

Fig. 1. A simplified model of the orbits of Titan (1) and Hyperion (2).
The two satellites are shown in conjunction relative to Saturn
(3). The dashed lines depict the orbits and @, represents the
outer satellite's longitude of pericenter. The orbit of the
inner satellite is circular.

Hyperion's mass is negligible, so its effect on Titan can be ignored. The effect of Titan on
Hyperion needs only be considered near conjunction where the satellites are close to one an-
other and the attraction is relatively strong. Suppose conjunction occurs after Hyperion's
pericenter and before apocenter, as in Fig. 1. At conjunction Titan exerts a force on Hyperion
which is directed radially in toward Saturn, while Hyperion is moving outward as it moves

from pericenter to apocenter. Thus energy is removed from Hyperion's motion. Moreover,
because the two orbits are diverging at this conjunction, the satellites would actually be
closest to one another shortly before conjunction. Titan, having a greater angular velocity,
would be behind Hyperion at closest approach and would therefore remove energy from Hyperion's
orbit. The loss of energy shrinks Hyperion's orbit and its pericd. Although this effect is
small at each conjunction, it is enhanced by the repetition of this configuration. As
Hyperion's period decreases, the ratio of the orbital periods increases above 3/4 so that
subsequent conjunctions occur closer to Hyperion's apocenter. Similarly, if conjunction
occurs after apocenter, it is driven back towards apocenter. The gravitational interaction
tends to maintain conjunction at a certain longitude, i.e. it tends to maintain the commen-

surability.
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The occurrence of conjunction at the longitude of Hyperion's apocenter is a stable configura-
tion. The behavior is closely analogous to that of a pendulum, A pendulum can oscillate

about the stable equilibrium position, or, given enough kinetic energy at that position, it

can circulate through 360° . Likewise, in the orbital resonance model conjunction can oscillate
(or "librate") about Hyperion's apocenter, or, if at the stable configuration the ratio of
orbital periods is far enough from commensurability, conjunction can circulate through 360° .
The observed Titan - Hyperion case is, in fact, librating with an amplitude of 36° and period
of 1.75 yr. Thus, on the average the ratio of orbital periods relative to the longitude of

apocenter is maintained at 3/4.

Two characteristics of this example are of note because, as we shall see, they are features

of most orbit - orbit resonances. First, the stable configuration at conjunction is a “mirror.
configuration" (Roy and Ovenden, 1955). All velocity vectors are normal to a plane contain-
ing all the bodies. The reversibility of Newtonian mechanics implies that subsequent behavior
is a mirror image of previous behavior. Second, the resonance tends to keep the satellites
apart as conjunction is kept away from the longitude at which the two orbits are closest to-

gether.

3. ANALYSIS OF THE RESONANCE

The qualitative description, though accurate, would not be acceptable without quantitative
confirmation. We need to find equations governing the behavior of conjunction of the two
satellites relative to Hyperion's apocenter under the influence of Titan's perturbations.

Clearly, an expression for the longitude of conjunction is crucial.

The longitude of conjunction of two satellites is a '"stroboscopic" function of time: it is
only meaningful at the instants of conjunction. But a continuous function connecting the
stroboscopic points can be defined. In the Titan - Hyperion case the following definition is

possible:
Longitude of conjunction = 4 x (longitude of Hyperion) -3 x (longitude of Titan)

When satellites' longitudes have the same value, this function also takes that value so this
continous function matches the stroboscopic points. For satellites in resonance, the longi-
tude of conjunction varies slowly compared to the mean motions. The coefficients 4 and -3
are selected so that the continuous function varies slowly near the 3/4 commensurability of

periods.

The Titan - Hyperion resonance is characterized by libration of the conjunction longitude about
Hyperion's apocenter. The mean longitude of Hyperion equals the true longitude at this point.
This is nearly true for Titan, also, since its orbit has a low eccentricity. Thus, the reson-

ance can be described by the statement that the "resonance variable™, 0, defined as
0= 4y - 3\ - By (1)

librates about the value 180°. Here X is the mean longitude and & is the longitude of peri-
center. (See Appendix). In any pair of satellites, subscripts 1 and 2 refer to the inner

and outer one respectively.

The analysis of any resonance reduces to a study of the behavior of its resonance variable
through application of Lagrange's equations for the variation of orbital elements (e.g. Danby,

1962). The expressions for the behavior contain R, the "disturbing function". 7 is the
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potential which describes the perturbing effect of one satellite on the Keplerian orbit of

another:

(2)

Here G is the gravitational constant, m is the mass of the perturbing satellite, A is the
distance between satellites, r is the position of a satellite with respect to the primary,
and primed quantities denote the perturbed satellite. The first term in brackets represents
the direct potential at the perturbed satellite due to the disturber. The second term repre-

sents indirect effects due to the force of the disturber exerted on the primary.

The disturbing function is customarily expanded into a Fourier series (e.g. Moulton, 1914;
Brouwer and Clemence, 196la; Kaula, 1966), the use of which facilitates analytic solution.

The expansion takes the form

B/m =] Cle, e’y ©, ©', a, a') cos [qgxr +q" 2" + o+ 7' & +po+p'al (3)

where summation is over the integers q, q', J, J', P, P'. C is also a function of these in-
tegers. Orbital elements are defined in the Appendix. The following important mathematical
properties of this expansion define it as a "d'Alembert series": ¢ is of the order

i lel e

eIJ the sum p + p' is even; and q + q' + j + j' +p + p’ =0. It follows

that |j] + ['] + Ipl + {p'l 2z g + q'

will become apparent as the intimate relation between the expansion and possible resonant

. The physical basis for these mathematical properties
modes is revealed.

To zeroth order in the disturbing mass, only the A 's vary with time. Hence the terms are
classified as "secular" if g = g' = 0, "long-period" if g n + g'n' is small compared to either

"short-period" otherwise. Short-period terms are assumed ineffective because

n or n', and
short periods do not allow large perturbations to build up, and, to at least first order in

the disturbance, the effects time-average to zero over each short period. In the analysis of

a resonance, 'critical terms” which contain the resonance variable (or its multiples) as their
argument, dominate the behavior. As should become apparent after we have considered an assort-
ment of types of resonances, the expansion is also useful from another point of view: inspec~—
tion of the various terms reveals the sorts of resonant interactions which could theoretically
exist. Such insight is useful in evaluating the significance of the resonances which do occur
in the solar system. Moreover, the intimate correspondence between the terms of the expansion
and various modes of physical behavior should be borne in mind in seeking to understand the
convergence properties of the series. It should be noted that the expansion discussed here

definitely does not converge for the case r = r’.

For Titan and Hyperion, any term containing © as argument is "critical' and must be retained.
Strictly speaking, any other term containing ¢/q’ = 3/4 would also have a long period. How~
ever, to simplify our discussion we may make the following approximations: e1, 7] and 7,

are zero and e, is sufficiently small for 0(322) terms in the disturbing function to be ne-
glected. For purposes of constructing an accurate ephemeris for Hyperion, these assumptions
would be unjustified. But for our object, explanation of the resonance mechanism, this ap-
proximation is useful. By the d'Alembert properties these assumptions allow elimination of
all terms except the secular ones and the O-term. The O-term takes the form <Gm1/a2)egF

cos 0, where F is a positive function of o = al/az, but F is nearly constant (*5) for our

purposes (Greenberg, 1973).
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Variation of the orbital elements is given by Lagrange's planetary equations, which for the

coplanar, small-eccentricity model take the form

hz = - 2 R, 12e2u1n22F sin © (4)
a, A,

o= —— By nFsino (5
n,a, e, 8&2

. Wy

B, = 1 R__ . F cos 0. (6)

2 de e
n,a,°e, 2 2

Here dots denote time derivatives and wo= mIAM where M is the mass of the primary. Variation
of €,, the mean longitude at epoch, is negligible. Note that Kepler's third law has been used

in these evaluations. The variation of 0 is given by

W 7y

0= 4n2 -3n1 - mz = 4n2 -3 - ; F cos 0. (7)

Equations (4), (5) and (7) define a set of trajectories in @,5 "y, © space. Two modes of
behavior are possible depending on the size of the eccentricity. For sufficiently small ec-
centricity,variation of n, is negligible, so behavior of O is dominated by éz, the last term
in eq. (7). For larger eccentricities variation of 7, dominates the behavior. For mass
values appropriate to the Titan -~ Hyperion case, the latter mode operates for e, > 0.04,

Thus even in the larger-e, mode, our small-eccentricity forms for the disturbing function and

the variation equations are meaningful.

One way to demonstrate the distinction between the two modes is to take the time derivative

of eq. (7):

2
M
. 1 ..
n22F sin 0 + — n22F2 cos 0 sin O + — n,F 0 sin 0. (8)

1 2
ez 22

8 = 48e2u

In the larger-e, mode the first term dominates. Thus eq. (8) takes the form of the equation

2
for a pendulum with stable equilibrium at © = 180° and unstable equilibrium at © = 0.

(Strictly speaking, the coefficients' dependence on ¢, and n, must be taken into account

(e.g. Greenberg, 1973a). Near the equilibrium values egs. (Z) and (5) show that e, and n,
vary slowly.) This behavior is in perfect agreement with the qualitative description of the
resonance mechanism of Section 2 and with the observed behavior of Titan and Hyperion. The
mechanism requires significant eccentricity and involves variation of n, with negligible ro-

tation of the orbital major axis.

4. SMALL ECCENTRICITY MECHANISM

For sufficiently small e, the second term in the expression for © would dominate. The se-

cond term is éz(aéz/aez) and thus represents acceleration of &2 due to changes in e The

5t
small-e, mechanism clearly differs from the larger-e, mechanism in several respects:
(1) Rotation of the line of apsides plays a significant role because 62 « 1/62. This
dependence on e, is physically reasonable, because a nearly-circular orbit has a

weakly defined line of apsides that can be reoriented by the slightest perturbing force
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(ii) Variation of mean motion is less significant because ﬁz « e,. The physical mechanism
described in Section 2 required a significant eccentricity to explain variation of
n,.
(iii) The O-dependence of the second term in eq. (8) indicates stable equilibria at © = 0°
and 180°,

Behavior in the small-g, case can be studied by considering variation of the quantities

h = e, cos 0 and k = e, sin O via the chain rule:

iz

-k[4n2 - 3nl] 9
k= +H 4n, = 3m 1 - NP . (10)

For sufficiently small ¢, the mean motions are nearly constant. Thus the solution to (9) and
(10) is

>
"

C cos{{ bn, - 3nl]t + 8} + A 11

x*
L[}

C cos{[b4n, - 3nlt + &} (12)

where C and § are arbitrary constants of integration and 4 = ulnzF/(lm2 - 3n;). This solu-
tion can be represented in (k,k) rectangular coordinates, equivalent to (e,0) polar coordin-
ates, as motion in a circle of radius C about the point 4 = 4, k = 0 at rate 4n, - 3nl (Fig.
2).

kz e, sinf

N
N\

h=ze,cos8

Fig. 2. Solutions to the variation equations for the small eccentricity
case. In case a, n2/n1 < 3/4 and C < |A|, so 0 librates about

180°. 1In case b, ”2/”1 > 3/4 and C < |A| so O librates about

° In case c, n,/m > 3/4 but C > |4} so O circulates.

o .
Note that the sign of A depends on the sign of (”2/”1) - (3/4). For C > |A|, ® circulates;
for ¢ < l4], © librates about 0° (if A > 0) or 180° (if 4 < 0). Note also that this small-
e, mechanism cannot operate with the ratio nz/n1 too near to the exact commensurability. In
such a case 4 would be large, so that e, could not remain small. ( is generally called the

"free" eccentricity because it is an arbitrary parameter of the motion, while {A| is the

irreducible eccentricity "forced" by m.

The small-e, mechanism can be described physically as well as mathematically. The effect of

m on m, can be approximated by a radial impulse applied at conjunction. (There are tangen-

2
tial forces as well, but with both orbits nearly circular these forces reverse at conjunction

so that their net effect is much less important.) The effect of such an impulse on the
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longitude of pericenter and on e, varies as cos n and -sin n, respectively, where n is the
true anomaly at which the impulse is exerted. Applied at apocenter, such an impulse causes
the major axis to regress; applied at pericenter, it causes the major axis to advance. The
maximum decrease in €, is produced by an impulse exerted 90° before apocenter; the maximum

increase is produced by an impulse 90° after apocenter.

Suppose conjunction occurs at apocenter with a libration amplitude of zero. Since the radial
impulse causes apocenter to regress, nz/hlmust be less than 3/4 to ensure that the conjunction
longitude regresses to keep pace with apocenter. Such a situation would be represented in our

analysis by the case 4 < 0, ¢ = 0 (a point on the negative % axis in Fig. 2).

If the conjunction longitude does not regress quite as fast as apocenter and if conjunction

initially occurs soon after m,’s apocenter passage, then the radial impulses will cause e, to
P passage, ’

2
increase and the regression of the major axis to decrease correspondingly. Conjunction can
then overtake apocenter. Similarly, wherever conjunction occurs, the nearest apse is acceler-
ated toward it. The longitude of conjunction can be stable at either apocenter or pericenter.
The mechanism involves acceleration of apsides toward the longitude of conjunction through
variation of eccentricity. In contrast, the higher-eccentricity mechanism involves accelera-

tion of the longitude of conjunction toward apocenter through variation of Ny

Like the higher-eccentricity mechanism, the low-eccentricity mechanism is stable in "mirror
configurations". The stable configurations do not, however, necessarily prevent conjunction
where the orbits are closest together. On the other hand, this latter property is not parti-

cularly significant for nearly circular orbits.

No example of this 3/4 small-eccentricity resonance is known in the present solar system,

One theory of the origin of the Titan - Hyperion resonance (Greenberg, 1973a) suggests that
capture from original circulation occurred when e, was small. Subsequent increase of the
ratio of nz/q (perhaps due to tidal evolution of Titan's orbit or drag effects in an early
environment) toward its present value just less than 3/4 would increase |4| until the present

high-eccentricity mode became dominant.

5. ENCELADUS-DIONE RESONANCE

The resonance between Enceladus and Dione is an example of a small~eccentricity type reson-
ance, but it differs in several important respects from the resonance described in the pre-
vious section (Woltjer, 1922a): (i) The ratio of orbital periods is nearly 1/2. (ii) Con-
junction (24, - A, ) 1is locked to pericenter of the inner satellite, rather than to an apse

of the outer onme. (iii) The masses and eccentricities of the two satellites are comparable
(See Table 1). Despite these differences, the concepts introduced in the previous sections
are applicable. For a 1/2 commensurability, conjunction occurs at a single, fixed longitude.
Thus a similar physical description holds for this case as for the previous one. It is neces-

sary to be somewhat more careful in constructing a realistic model because of property (iii).

In our model we may assume coplanar motion with small non-zero eccentricities. First consi-
der the effect of Dione, the outer one of the pair, on Enceladus. For very small eccentrici-
ties we know that, aside from small, short-period variations, the mean motions are virtually
constant. However, the radial force exerted outward at each conjunction affectszq and e]in a

manner analogous to the variation of eccentricity and longitude of pericenter in the previous
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example. As in that case, the nearest apse is accelerated towards the longitude of conjunc-
tion. In this manner the stable configuration with conjunction occuring at Enceladus' peri-
center is maintained. Mathematically, the effect of my on m; could be treated by retaining

only long-period terms and these to lowest order in eccentricity, yielding F of the form

R = (sz/az)[FAelcos o, + FBeZ cos OB]; (13)

where 9y I 2h, - kl - % and op = 2\2 - AN - By The variation equations for orbital elements
of m involve partial derivatives with respect to elements of the inner orbit. The second
term in F only plays a role in variation of n - But, for sufficiently small eccentricities,
variation of m becomes negligible compared to variation of e, and & . Thus the second term
in # plays an insignificant role (for our purposes) and the analysis becomes analogous to
that of the previous section in which only one term was important. The value of o, can
librate about zero as observed (property (ii)) or, given suitable initial conditions, ¢, could

|
librate about 180°.

It is worth noting the physical significance that the second term would have in a higher-
eccentricity case. To compute the energy exchange near conjunction as in the mechanism dis-
cussed in Section 2, it would be important to consider the location of conjunction relative

to the apsides of both orbits.

The effect of m on m, could be computed in a manner similar to that of m, on m . We find

that conjunction could be stable at either apse of m,, i.e. o could librate about O° or
180° .

Why can't 9y and 9 both librate? In other words, given the observed and well-understood

lock of Enceladus' pericenter to the longitude of conjunction, why isn't an apse of Diome's
orbit also locked to conjunction? The answer to this question involves the effects of the
oblateness of Saturn's figure on the satellites' orbits. The primary effect of the oblateness
in this case is the precession of the line of apsides. Thus there is a tendency for &, and

&, to increase secularly, each at its own rate dependent strongly on its distance from Saturn.
In order to maintain the observed resonance lock, the two satellites must have a rate of pre-
cession of their longitude of conjunction (corresponding to the ratio of their mean motions)
which is sufficiently close to the rate of precession of o . Otherwise, like a pendulum with
too much kinetic energy, libration cannot occur. We do observe that the precession rates of
conjunction and of & are indeed sufficiently matched. However, the very different precession

rate of &, due to Saturn's oblateness precludes its libration about conjunction.

One outstanding property of the Enceladus - Dione resonance is the very small amplitude of
libration of Y about O (Table 1). This small value implies either remarkable random initial
conditions for the system or some evolutionary mechanism that has tended to lower the ampli-

tude to its present value (Sinclair, 1972).

6. MIMAS - TETHYS RESONANCE

The oblateness of Saturn restricts the resonance behavior of satellites Enceladus and Diome.
In describing the Titan - Hyperion resonance, I ignored the oblateness completely. This
neglect can be justified partially by the reduced influence of oblateness at greater distance
from Saturn. But, what is more important, any oblateness effects can be incorporatgd into
the Titan - Hyperion model with no change in the qualitative nature of the mechanism, The

oblateness simply implies that the stable configuration requires a slightly different ratio
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of mean motions to compensate for the additional motion of Hyperion's apsides. A third reson-
ance in Saturn's satellite system, the Mimas - Tethys interaction, involves the planet's

oblateness as an essential part of the mechanism.

The resonances described so far are of the eccentricity-type: the conjunctions librate about
an apse of one orbit. The Mimas - Tethys resonance is of the inclination-type; these satel-~
lites have an orbital period of 1/2 (see Table 1) and their conjunction librates about the
midpoint between their two ascending nodes on Saturn's equatorial plane. The classical analy-
sis of eccentricity-type resonances has suggested the physical interpretation which reveals
the underlying mechanism. In the case of the inclination resonance, the search for an analo-
gous physical interpretation reveals features of the resonance which are obscured by the clas~

sical theory.

This classical analysis, developed by H. Struve (Tisserand, 1896) and applied to an evolution
model by Allan (1969), is a study of the behavior of the resonance variable,

VEd, -2 -9, -9 (14)

U can be interpreted as twice the difference between the conjunction longitude, £ = 2, - Al'
and the average longitude of the nodes, Qavq = (y ¢+ Qz)/2. In the analysis, ¢ is evaluated
by Lagrange's planetary equations. If terﬁé are retained only to lowest order in inclinations

and in satellite-to-primary mass ratios, and if short-period terms are neglected, then

b= - Cf Z,8in ¢ (15)

where the coefficient ' > 0 is a function of the semi-major axes. It follows from (15) that
y is stable at O, i.e. conjunction is stable at Qavg'
As outlined in the previous paragraph, the analysis appears to hold for any reference plane
from which the inclinations are small, not only for the equatorial plane. But changing the
reference plane slightly can drastically alter Qav . Why does the Mimas - Tethys conjunction

g

librate about Qav measured on the equatorial plane instead of on some other reference plane?

g
From the point of view of the satellites' dynamics, the equatorial plane is special because
of Saturn's oblateness and, in fact, this characteristic is included implicitly in the tradi-

tioual analysis (Greenberg, 1973b).

Some of the short-period terms that were neglected from the disturbing function contained

the following as arguments of cosines:

wA=4}\2—2A1 - 29 (16)

and

wB = &AZ - ZAI - 292_ a7

The reason that these terms have significantly shorter periods than the y-term (on the order
of a year compared with a libration period of ~70 yr) is that the longitudes of the nodes
precess rapidly due to the planet's oblateness. Even with this precession, the periods of
these terms are much longer than those of the other neglected short-period terms. (The lat-
ter are on the order of orbital periods or about a day.) In order to understand the mechan-
ism that maintains the Mimas ~- Tethys resonance, we need to answer two interrelated questions:
What is the effect of terms with arguments by and wB? What role does the oblateness play?

The following analytic approach avoids obscuring these points.
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We can begin to answer these questions by first investigating the properties of inclination-—
type resonances with a model that does not include oblateness. We consider two small satel-
lites in circular orbits with orbital inclinations small relative to an inertial reference
plane and with periods nearly commensurable in a ratio of 1/2. The appropriate disturbing

function at either satellite is
R = Gm[CAil2 cos wA - 211y cos Y + CBiZZ cos wB], (18)

where m is the mass of the other satellite (the disturber) and the coefficients C, CA and CE

are positive functions of the semi-major axes.

The resonance analysis would be difficult with the disturbing function containing terms with
three different arguments instead of one. This problem can be circumvented by specifying
that one satellite is so much more massive than the other that its orbit plane is virtually
fixed. If this fixed plane is taken as the reference plane, then the inclination of the more

massive satellite's orbit is zero and two terms in (18) can be eliminated.

If the masses are comparable, as in the case of Mimas and Tethys (see Table 1), we need an-
other way to reduce the disturbing function to a single argument. We assume that the satel-
lites' total orbital angular momentum, f, measured relative to the planet is constant. Then
we select as a reference plane the plane through the center of the planet and normal to ﬂ.
Since L and the individual orbital angular momentum vectors are coplanar, {4 = Qo+ 180° in

this reference frame. It follows that

cos wA = CcOS y, = -COS Y a9

B
and R contains only one argument:

- A .o
R = Gm[CAL1 + 01112+ c

Bizzl cos ¥. (20)

In order to determine stable values of ¢y we must evaluate
..= . _ . . - . _.; —.. 21)
b=y -y + e, - 26 = ) - . (
Evaluating the variation of mean motions by Lagrange's equations gives

b= -120(C, 8 2 4 008, ¢ ChE,?) sin b o+ 4E, - 28 - T - 4y, (22)

where g = uznlza1 + 4u1n22a2. Following Allan (1969), to first order in u, we can ignore

EI, €, and variation of orbital elements as they appear in the coefficient of sin y. In gen-

eral, we cannot ignore ﬁl and @2 because, although they are of higher order in u, they are of

lower order in <. According to Lagrange's equations,
S < (23)
Q uznlal[(zz/zl) C + 20))cos .

Thanks to our choice of reference plane, iz/ilis a function of a,/a and ﬁl = 52. Thus

f o+ 8, = 28, = 2uma [ (1,/4))C + 20,19 sin v + 002E2). (24)

The complete expression for { from (22) and (24) is, to our approximation,
¥ = -4 sin ¥ + By sin v, (25)

where A and B are positive constant coefficients. This expression shows that ¥ is stable at

0. This condition, unlike that of the Mimas - Tethys case, can be described in a manmer in-
» =]

dependent of the reference plane. Conjunction is stable at elther of the two longitudes 90

from the satellites' "mutual nodes" (the nodes of one orbit on the plane of the other). As
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in the larger-eccentricity resonances the stable condition is a mirror-configuration with con-

junction stable at that longitude where the orbits are farthest apart.

These characteristics can be interpreted qualitatively by a mechanism analogous to the higher-
eccentricity mechanism which governs the Titan - Hyperion resonance. Suppose the orbital mean
motions are in a ratio of 2/1 so that conjunction occurs repeatedly at the same meridian with-
in 90° after the satellites' mutual node as shown in Fig. 3. Since the mutual inclination is

small, virtually no orbital energy is exchanged at conjunction by gravitational interaction.

However, energy 7g exchanged before and after conjunction. It is evident from Fig. 3 that
the gravitational effects are greater before conjunction because the satellites are closer to
one another than they are after conjunction. Moreover, the lines of force are directed more

nearly along the direction of motion before than after comjunction.

MERIDIAN

NNER
SATELLITE

Fig. 3. Orbits of two satellites projected onto the celestial sphere.
At conjunction they both lie on the same meridian. Mutual
forces just before and just after conjunction are also showm.
These forces control the net energy exchange which can main-
tain a commensurability.

Thus the net effect of the gravitational interaction is to transfer energy from the outer
satellite to the inner one as occurs before conjunction. This energy transfer slows the angu-
lar velocity of the inner satellite, lowering the mean motion ratio below the commensurable
value 2/1. Thus the next conjunction occurs further away from the mutual node of the satel-
lites. Similarly if conjunction occurs before the mutual node, the net effect of the gravi-
tational interaction is to cause conjunction to regress away from the mutual node. Since
there are two mutual nodes 180° apart, conjunction is stable at either of the two longitudes

90° from the satellites' mutual nodes.

For eccentricity resonances, if the eccentricities are very small, this sort of mechanism is
weak. However, the orientation of the major axis is more readily varied when the eccentricity
is small, and the radial perturbation forces tend to maintain the alignment of an apse with
the conjunction longitude. For inclination resonances, the expression for ¥ contains no term
that maintains stability for extremely low inclinations. (Compare eq. (25) with eq. (8)).

The physical reason is that while the orientations of the node lines are more readily varied
when the inclination is small, the normal perturbation forces (which tend to vary the orien-
tations) decrease with the mutual inclination. There is no low-inclination resonance mechan-

ism analogous to the small-eccentricity mechanism.
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This last point demonstrates the physical importance of the d'Alembert properties of the dis-
turbing function. These properties rule out any term in the disturbing function of first
order in inclination. Thus they effectively rule out any physically impossible low-inclina-

tion mechanism.

Now that we have reviewed the traditional analysis of the Mimas - Tethys case with substantial
oblateness of the primary and have examined the properties of inclination resonance with a
spherical primary, we may continue our analysis of the relative roles of oblateness and of
mutual perturbations by examining the intermediate case: the case with moderate oblateness
where the nodes precess significantly, but not so fast that wA and b can be censidered to
be short-period arguments. In order to complete our study of the interaction of oblateness
and mutual perturbations we shall then consider the Mimas - Tethys resonance as a limit of

this more general case.

All orbital elements are referred to the equatorial plane of the central body. Eviluation of

c, CA and CB yields

C=2, =205 < 0.4/a,. (26)
With the definition 4G = Q, - Q,, # takes the form
R .o Co. )
R/Gm = g lecos (y + AQ) - 03112COS v o+ E-zzzcos (b - a7, (27)
From Lagrange's equations variation of the conjunction longitude, £ ~ 21, - A, is governed by
E=6g[S 7 2 sin (4 - A2) - i 7,sin y + 53 2 sin(y - 40) (28)
g ] 1 N Sy, 5 5 A .

Due to the primary's oblateness, 9, and 2, are significantly varying functions of time. How~-
ever, at any instant, there are 'quasi-equilibrium" values of £ at which ¥ = 0. Those quasi-
equilibrium values toward which the value of § is accelerated shall be called "quasi-stable',
the others "quasi-unstable'". If (28) is set equal to zero and rearranged appropriately, the
quasi-equilibrium values can be expressed by

- o -1 -sin AQ im 5
= y *+otan [(il/ﬁy) - cos AD * 2 (29)

where {4 is any integer. It can readily be verified that solution (29) gives quasi-unstable
values for even & and quasi-stable values for odd %. By straightforward spherical geometry,
for even &, £ as described by (29) is identical to the longitudes of the mutusl nodes (Roy
and Ovenden, 1955); for odd 2, it equals the longitudes 90° away. We conclude that for in-
clination-type resonances with substantial primary oblateness, as well as for those with
spherical primaries, the mutual perturbations of the satellites tend to draw the longitude of

conjunction toward those longitudes 90° from the satellites' mutual nodes.

Why, then, is the Mimas - Tethys conjunction longitude observed to librate about e measured
Rahdv)
on Saturn's equatorial plane, rather than about one of the quasi-stable longitudes? In order
to answer this question, we next consider the behavior with time of the quasi-stable longi-
and o .
tudes and of Qavg

In Fig. 4, Qavg (measured from Ql) is shown as a function of AQ given by

_AQ
Qavg - =5+ A (30)

where ¥ is any integer. The independent variable AQ is convenient because it varies monotoni-

cally and, for the Mimas - Tethys case, nearly linearly with time.
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Fig. 4. Q (measured from Q,) shown by dotted lines, and quasi-stable

1%g§itudes (also measured from @, ), shown by solid curves, as
multi-valued functions of AR (from Greemberg, 1973b).

Figure 4 also shows, as functions of AQ, the quasi-stable longitudes (measured from £;) given
by eq. (29) with odd &. Here the inclinations have been chosen to have the observed values
for Mimas and Tethys. If 7,/Z, had a value closer to unity, then the '"dull saw-tooth" curves

would be more '"sharp'. For the singular case il = 17,, the saw-tooth curve would be so sharp

that the quasi-stable longitudes would equal the average longitudes of the ascending nodes
except at the dincontinuities at AQ = 2Nm where mutual nodes would not be well-defined. Our
problem would be solved because in this case the quasi-stable longitudes would always be at
the midpoint between equatorial nodes. However, in the more realistic case where the inclina-
tions are not equal, the curves of Fig. 4 represent the quasi-stable longitudes. Quasi-
stable longitudes oscillate about fixed values 7/2 + ¥m - @ while values of Qa circulate

va
through 360° relative to Q.

Suppose conjunction occurs at the midpoint between the equatorial nodes at an instant when
that longitude is quasi~stable (e.g. at AQ = 7). At the quasi-stable longitude the mutual
gravitational interaction does not accelerate conjunction one way or the other. Now suppose
the ratio of the mean motions of the two satellites is such that the conjunction longitude
follows one of the dotted lines. Immediately the mutual interaction tends to pull conjunction
dovmn toward the quasi-stable longitude. However, the time scale for response to this pull is
quite long. (The libration period for the Mimas - Tethys case is about 70 yr while AQ circu-
lates in ~1 yr.) Before conjunction can respond significantly it has moved along the dotted
line to a region where the mutual interaction tends to pull conjunction up toward the nearest
quasi-stable longitude. As conjunction follows a dotted line, it experiences exactly as much
pull up as down, so that the net effect is zero. In this sense, we see that conjunction at

the midpoint of the equatorial nodes is an equilibrium configuration.
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Is this a stable configuration? Suppose conjunction moves just below a dotted line. Most of
the time it is pulled upwards toward the quasi-stable longitude so that the net effect over
several years is to draw conjunction toward the dotted line. In this way we can show heuristi-

cally that conjunction is in stable equilibrium on the dotted line.

In summary, we have found that the instantaneous influence of mutual perturbation is to draw
conjunction toward the quasi-stable longitudes, but that the average effect, due to the planet’
oblateness, is to draw conjunction toward the observed stable longitudes. Thus, this figure
helps to demonstrate how the mutual perturbations (which draw conjunction toward longitudes

90° from the mutual nodes) and the oblateness perturbations (which precess the nodes) can com—

bine to produce the observed Mimas - Tethys resonance.

The mathematical theory of this resonance indicates that conjunction might also be stable at
either satellite's descending node on Saturn's equator, i.e. that wA or Y, might librate about
zero if Mimas and Tethys were given suitable mean motions (Sinclair, 1972). These alternate
possibilities are analogous to the alternatives available in the Enceladus - Dione case which
depended on the exact mean motion ratio. In wA libration, conjunction (measured from Ql) would
librate about w/2 + Nn. In terms of our figure, conjunction would librate about a horizontal
straight line. Along such a line the time-averaged pull toward quasi-stable longitudes is
zero. Similarly, in by libration, conjunction (measured from £ ) would librate about AQ + Jnm

+ n/2, a line about which the time-averaged pull is again zero.

One additional interpretation of the figure may be useful. We can regard the solid curves as
representing, at any instant, the positions of minima on a sinusoidal potential field govern-
ing the behavior of the conjunction longitude. As time goes on, the potential topography al-
ternately follows the average nodes and then jumps back 180° quite suddenly. 1In the case of
the observed Mimas - Tethys resonance, the sudden jumps occur too quickly for the system to

respond.

The stable configuration in the observed Mimas — Tethys resonance is not a mirror configura-
tion. However, Roy and Ovenden (1955) suggested that the period of libration of conjunction
about navg might be commensurable with the period of circulation of AQ in such a way that con~
junction might periodically return to mirror-configurations at points like(w,n/2) and (3n,3n/2)
in our figure. We have seen that the mirror configurations play an even more profound role

as they determine the quasi-equilibrium longitudes.

7. NEPTUNE - PLUTO RESONANCE

Neptune and Pluto are involved in a resonance which incorporates features of both eccentricity-
and inclination-type resonances although, strictly speaking, none of the mechanisms described
so far are applicable to this case. These planets have mean motions near a ratio of 3 : 2
with, as Cohen and Hubbard (1965) discovered through numerical integration, conjunction 1li-
brating about Pluto's aphelion longitude with an amplitude of nearly 80° and a period of near-
ly 2x10% yr (Table 1). Since Pluto has a large orbital eccentricity (0.25) and negligible
mass compared to Neptune, this resonance is superficially reminiscent of the Titan - Hyperion
case. However, Pluto also has a high inclination (17°). Williams and Benson (1971) have
demonstrated that Pluto's argument of perihelion (defined in the Appendix) librates about 90°
with an amplitude of about 24° and period of 4x10® yr. It follows that conjunction is locked
to a longitude 90° from the mutual nodes of the two orbits, a reasonable configuration accord-

ing to the considerations of the previous section.
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This resonance demonstrates both of the common properties of resonances. The stable conditions
are mirror configurations. Moreover, they represent configurations which tend to avoid close
approaches of the two bodies. In this resonance the latter property is particularly signifi-
cant, because Pluto's eccentricity is so large that at perihelion it is closer to the sun than
Neptune (Fig. 5). Before the resonance was discovered, it was quite reasonable to expect a
collision or near-collision in the future or to suggest that such an event had occurred in

the past (Lyttleton, 1936). The resonance precludes such events unless some dissipative

forces which have not been considered play a role in the orbital history.

A

Fig. 5. Orbits of Neptune and Pluto: (a) Planets at minimum separation
near conjunction. (b) Planets at next minimum separation, which
is nowhere near conjunction, but is comparable to separation in
(a). (From Cohen and Hubbard, 1965).

Cohen and Hubbard gave a qualitative explanation of the eccentricity aspects of this resonance
which is rather different than the mechanism presented in Section 2 for the Titan - Hyperion
case. The Titan -~ Hyperion case fails in this case because it depended on the notion that the
dominant effect of Titan on Hyperion was due to forces exerted near conjunction where the
bodies' separation was minimal. In the Neptune - Pluto case, however, Pluto's eccentricity

is so large that secondary minima are reached far from conjunction. For example, Fig. 5 shows
a case where a minimum separation near conjunction is followed by a comparable minimum far
from conjunction. The mathematical analysis of the Titan - Hyperion resonance, like the
physical model, breaks down in the Neptune - Pluto case. For ¢, I 0.25, terms from the dis-
turbing function of lowest order in eccentricity are not adequate; high-order terms must be
retained. According to the d'Alembert rules these additional terms represent higher order
harmonics of the Fourier expansion, which correspond to the additional periodic minimal
approaches. These changes complicate the analysis, as does an additional mathematical prob-
lem: the coefficients of the traditional expansion are ill-defined at those instants when
both planets are equally distant from the sun. As a result of such difficulties, numerical

studies of this resonance have generally been more useful than analytic ones.

Cohen and Hubbard described the qualitative physical mechanism of Neptune - Pluto resonance
by considering the orbit of Pluto in a reference frame rotating with Neptune's mean motion
(Fig. 6). Suppose conjunction occurs somewhat after Pluto's aphelion passage, but before
perihelion with a ratio of orbital periods of 3 : 2. Such a configuration would be repre-
sented with Neptune in the left-most position in Fig. 6. Now consider the effect of Neptune

on Pluto's orbital energy averaged over a synodic period. The greatest effect is when Pluto
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is on the left-most perihelion loop. Here the pull of Neptune is large because the planets
are closer together than on most of the path. Moreover, the orbital energy exchange is en—
hanced at this point because the force makes a large angle with the Sun - Pluto line. This
dominant force is in the direction of Pluto's motion in a non-rotating frame so the outer
planet gains energy and the ratio of orbital periods rises above 3 : 2. In this way conjunc-
tion is accelerated back towards aphelion. Such restoring accelerations govern the libration

about aphelion.

CIRCLED POINTS AT
STEPS OF 10,000 DAYS

PERIOD OF PATH
500 YEARS

PERIOD OF LIBRATION
20,000 YEARS

Fig. 6. Path of Pluto in a reference frame rotating with Neptune's mean
motion. Because of the commensurability of orbital periods,
Pluto makes two complete orbits around the sun between conjunc-
tions with Neptune. Thus there are two perihelia and two aphelia
on Pluto's path in this frame. The perihelia appear as loops,
because at perihelia Pluto's angular velocity with respect to
the sun is greater than Neptune's. Libration is represented by
oscillation of the position of Neptune in this frame. (From
Cohen and Hubbard, 1965).

Given that conjunction is locked to aphelion in this way, conjunction cannot also be locked
90° from the ascending node unless aphelion is maintained there. In fact the argument of peri-
helion is maintained at a value of 90° by a mechanism independent of the commensurability.
Kozai (1962) has shown that under certain circumstances the argument of perihelion of an
asteroid under the influence of Jupiter can be locked to a value of 90° when only secular
parts of the disturbing function are involved. Cincinnati (1373) is an example of such an
asteroid., Pluto's orbit is apparently maintained in a similar lock. Thus the inclination
aspect of the Neptune - Pluto resonance, although superficially similar to the Mimas - Tethys

case, is in fact governed by a very different mechanism.

8. SECULAR RESONANCES

Resonances which involve only secular terms are now believed to play an important role in the
dynamics of the solar system (Williams, 1973). These resonances do not involve commensur-
abilitiet of orbital periods. Thus aside from secular terms, no long-period terms need be
retained in the disturbing function. The theory leads to oscillatory behavior of certain

elements which belies the commonly applied term ''secular resonance'.
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One possible effect of a secular resonance might be maintenance of an alignment of the orien-
tation of the major axes of two or more satellites. Such a stable alignment does exist between
Saturn's satellites Rhea and Titan (Woltjer, 1922b). Rhea's longitude of pericenter librates
around Titan's with an amplitude of 9°.5 and a period of 38 yr (Struve, 1928). Brouwer and
Clemence (1961a) and Hagihara (1972) state that this case is not a libratiom. They point out
that the orbital periods are not commensurable and the mean longitudes do not librate. How-
ever, use of the term "libration" is appropriate in this case provided that it is clear what

is librating. Study of the Titan - Rhea interaction provides insight into the nature of secu-
lar resonance, although we shall see that the term "resonance" cannot apply to this particular

case.

Rhea's behavior is dominated by the effects of Titan and of Saturn's oblate figure. For our
purposes the effects of other satellites are negligible. Titan's orbit can be regarded as
unperturbed except for a slow uniform precession of its apsides due to the combined effects
of the oblate planet, the other satellites and the Sun. All motion will be assumed to be

equatorial. Let us consider the possible behavior of such a model (Woltjer, 1922b).

The disturbing function at the inner satellite, without terms of short period and of high

order in eccentricity, is

R = }Jr2GMa “3¢ 2 + (Gm,/a,)F (a) e ? - (Gmy/a,)F, (e eycos ¢ (31)

Here J, r and M are the planet's oblateness coefficient, radius and mass, respectively;
a = al/dz; $ = & - B,; the values of Fx and Fy vary monotonically from ~10"2 for o = 0.2 to
~1 for a = 0.8. The first term is due to the planet's oblateness; the second represents the

effect of m, distributed around a ring of radius a Note that, since variation of g and a,

2
is negligible, the "oblateness term" and the "ring term" have the same functional form, as
one might expect intuitively. The last term is the "critical" term. It is important when

the precession rates are nearly identical, because then ¢ is nearly constant.

Because Rhea's eccentricity is very small (~0.001), we put R in terms of % and k, redefined

as h = e cos & and k = ¢ sin @:

R

[ $Jr2aMa, =3 + (Gn,/a,)F ) (2 + ki ?) =1 ©n,/ax)F, ) (yfy + Ky Kp) - (32)

For small ¢ and low inclination, % and Xk are governed by variation equations derived from
eqs. (5) and (6):

dh _ 1 3R dk _ 1 9R
EE--—-—nazﬁand'a'E —'—-—37. (33)

Inserting R from (32) into eq. (33) and applying Kepler's third law yields

day dk,

e = -Akl + Bkz and ol Ahl - th (34)
where

A = mldria =2 + 2u,0F (35)
and

B = nluzafb . (36)

We let the slow variation of hz and k2 be given as
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hz = e, cos (Nt + D) and kz = e, sin (Nt + D) (37)

where N is the outer satellite's constant precession rate, €, is its constant eccentricity and

D 1s a phase constant. The solution to eq. (34) is

hy = c cos(At + &) + Khz and k; = ¢ sin(4t + §) + Kk2 (38)

where ¢ and § are arbitrary constants of integration and X=B/(4-N). We can think of hl and kl

as orthogonal components of an eccentricity vector 61 whose magnitude is e, and direction is

1
moves in a circle about Xé, (as shown in Fig. 7)

1 il - LR

& . Thus the solution (38) indicates that &
with an angular velocity 4. If |e| < |K|e,, ¢ librates. Otherwise it circulates through 360° .
K is a measure of the likelihood of libration in the sense that the larger its absolute value,
the larger the area on the hl,kl plane in which initial conditions will give |e]| < |K|ez. Ke,
is the amplitude of the '"forced" oscillation of h, and kl; and ¢ is the amplitude of the free
oscillation. The term "proper" eccentricity is often used to describe ¢. Note that as ¢

varies in libration or circulation, 2 varies also.

Akzesin®
eZ
(At+3)
C
3 K3,
(Nt+D)
hzecosw

Fig. 7. Rhea's eccentricity vector, él, with magnitude e and direction
, is defined by a point which moves uniformly in a circle
around Ke,. Because ¢ < Kez, quibrates about &

5
Inserting numerical values for the Titan - Rhea case, 4 = 10°/yr, B = 0.35" /yr and # = 0.5 /yr.
Therefore X - 0.035. Observations of Rhea's motion give ¢ = 0.0003 (Struve, 1928). VN is
negligible compared to A. The value of A is primarily due to Saturn's oblateness with only

a slight correction from Titan's "ring" term. B is directly proportional to m,, so K is

approximately proportional to m If Titan were not a giant satellite, that is if its mass

e
were more typical of other Saturn satellites (~107%M), Rhea's e, would have to be very small

(~Ke2 - 1075) for the libration to exist. It is unlikely that e could remain so small in a

real satellite system.

On the other hand, if A and N were nearly equal, X could have a large value even if m, were

small. A4 would be smaller if J were smaller or if a; were larger. W would be larger if my
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were influenced by the "ring" term of another satellite further out. Thus one could construct
hypothetical satellite systems in which 4 * N. X would be enhanced by a 1 : 1 commensurability

"natural" precession rates. (Here the "natural" precession rate is defined as the

of these
rate calculated from the "oblateness" and "ring" terms only.) The term "resonance" would be

appropriate as the forced amplitude becomes large for commensurable natural frequencies.

In a sense, the Titan - Rhea interaction might be called a commensurability because, on the
average, the apsidal precession periods are in a ratio of 1 : 1. However, it is more useful
to reserve the term "commensurability" for cases in which the natural precession rates are

equal and thus enhance the perturbations (Sinclair, private communication).

This analysis leads to a simple physical interpretation. We have already seen in Section 4
how an impulsive force exerted on a satellite in a direction radially outward from its primary’
will accelerate the nearest apse toward the longitude at which the force is exerted. In the
absence of a commensurability of mean motions, the effect on Rhea can be modelled by a radial
force exerted when Titan is at pericenter, the point at which the two orbits are closest to~
gether. Thus @ can be accelerated toward &2. With suitable initial conditions 8, will

librate about & If the natural precession rates, that is the rates independent of this

e
effect, were 1 : 1 commensurable, Titan's mass could be much smaller and still maintain the

libration.

The secular theory for a larger number of bodies can be developed in a manner similar to the
Titan - Rhea case (e.g. Brouwer and Clemence, 196la). A set of linear equations analogous to
(34) is set up for each body in the system with terms on the right hand sides for each of the
other bodies. An independent set of equations of the same form is considered for the behavior
of inclinations and nodes. An eigenfunction solution is obtained. If any pairs of natural
precession rates are 1 : 1 commensurable, the solution will have resonant oscillations of the
relevant bodies' eccentricities or inclinations. A classical analysis of this type was per-
formed by Brouwer and Van Woerkom (1950) for the planetary system. Their solution for the
"secular" variations (which are in fact periodic in nature) of the planet's orbits have been
confirmed by numerical integration of the orbits. Brouwer and Van Woerkom also found that
particles with certain semi-major axes in the asteroid belt would experience secular reson-
ance. Williams (1969) extended the secular theory of asteroid orbits to include higher in-
clinations and eccentricities. He found that the observed asteroid belt is remarkably de-
pleted of particles near such orbits. Williams suggests that the oscillation of eccentricity
and inclination in secular resonance may have carried asteroids into collision orbits with
other planets. This mechanism provides a possible source for a substantial portion of the

bodies which are known to have bombarded the terrestrial planets.

9. COUPLED LIBRATIONS

Several minor planets near mean motions commensurable with Jupiter's undergo strong variation
due to secular terms in the disturbing function (Schubart, 1970). Numerical integration of
the motions of asteroids near the 2 : 1 commensurability with Jupiter by Franklin et al.
(1975) has revealed a previously undiscovered type of orbital behavior. Over a time scale

of thousands of years, several asteroids are predicted to alternate between two modes of
libration. 1In one mode the asteroid's perihelion longitude librates about that of Jupiter

as in a secular resonance. In the other mode the asteroid's aphelion librates about the
longitude of conjunction of the asteroid and Jupiter, as in a small-eccentricity resonance.

The alternation between these two modes of libration suggests that they are coupled in some
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way. A highly simplified analysis keeps the problem solvable and the mechanism unobscured

(Greenberg and Franklin, 1975).

Our model will have the ratio of orbital periods mear 2 : 1, and nearly circular coplanar

orbits with m, unperturbed by m . The relevant terms of the disturbing function at m, are
= 2
R (sz/az)[Fx(a)e1 + Fy(a)elezcos ¢ + FA(a)elcos o, * FB(a)ezcos oB]. (39)
The arguments ¢ = ml - o, and GA = ZXZ - Al - ml are in essence the quantities that were

found to librate alternately by Franklin et al. The argument ag = ZA? - Al - o, is included
because of its long period.

Lagrange's equations yield the following variation of orbital elements:

él = —uznla[—Fyezsin ¢ + FAsin o] (40)

. Hyn

b o= e [Zer1 + Fyezcos o + FAcos ol (41)
1

hl = —3u2n12u[FAelsin o+ FBe2sin(o + ¢l (42)

where ¢ = 9y and I has been replaced by o + ¢. £, is nearly constant. The variation of the

critical arguments is given by

b =i (43)
and
G = m, ~m -G - (44)

After inserting (41) into (43) and (44), we will have a set of equations, (40), (42), (43)

and (44), whose solution will describe the behavior of ¢ and o.

In order to simplify these equations and permit an analytic solution, we note that changes in

n, are of order ¢. Thus any changes in n, on the right sides of (40), (43) or (44) will be

assumed negligible. This reduces the problem to three first-order differential equations.
Integration of (44) yields o = At — ¢ where 4 = n, - n, and where ¢ = O when o = ~¢. This
expression can be substituted into (40) and (43), a pair of equations which can be linearized

by substitution of the elements % = e,cos ¢ and k = e,sin ¢ to obtain

1
h

1t

—pzunl[Fxh + FAsin At] (45)

k

upom [Fk + Foe, + Fycos At] . (46)

The solution of these equations is

ho=C cos(u anF t + §) + Fycos At - Fyez (47)
2 1Y A7iu2an1) = ZFx 2Fx
k = ¢ sin(2 Fa Sin A (48)
pzaanxt *o) A7(u2un1) - 2Fx

where ¢ and § are arbitrary constants of integration. This solution can be represented in
(h,k) rectangular coordinates, equivalent to (e,$) polar coordinates, as the sum of three
vectors: (1) A = —Fyéz/(ZEr), k = 0, (ii) a vector of fixed magnitude C circulating at rate

2u2an1Fx and (iii) a vector of fixed magnitude FA/(A/(uzunl) - ZFx) circulating at rate A.
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In order to interpret this result, we require some numerical values. The semi-major axis of
9594 P-L, a typical asteroid exhibiting the coupled librations remains nearly constant and
corresponds to the value a = 0.643, so that Fm = 0,426, Fy = -0.644, FA= -1.262 and Z(nz/nl) -
1 = 0.032. For Jupiter, m,/M = 1073 and e, = 0.05. Using these values as sufficiently accur-

ate, we obtain

% =C cos(6.9 x 1073 + §) ~ 0.026 sin(0.40t) + 0.038 (49)

k

C sin(6.9 x 10”3t + 8) - 0.026 sin(0.40t) (50)

where t is expressed in units of Jupiter's orbital period.

In polar coordinates, (e,,9) describes a circle of radius 0.026 about a point P. P in turn,

as is shown in Fig. 8, slowly circulates about point % = 0.038, k = 0. If (0.038 - 0.026) <

C < (0.038 + 0.026), ¢ will alternately librate and circulate. During the libration the mean
value of ¢ will gradually increase. At each transition between libration and circulation and
vice versa, the value of e, momentarily drops nearly to zero. Equations (49) and (50) imply
that when ¢ circulates (i.e. when (6.9 x 1073t + 6) = 7, as in Fig. 8 (E)), ¢ itself is approx-
imately equal to 0.4 ¢ + m. Since o = 0.4t - ¢, it then follows that ¢ librates about n. On

the other hand, when ¢ librates as in Fig. 8 (A), o must circulate.

The relatively short-period variation of ¢ is forced by the ¢ term in the disturbing function.
If n,/n) were not close to i, [4] would be much larger and the behavior of ¢ would be either
perpetual circulation or libration, depending on the value of C. (The Rhea - Titan system is
an example of the latter case.) In either situation terms containing o could then be neglected
from the disturbing function without substantially changing the results—just as we have left
out many other terms from R in eq. (39). On the other hand, even with n,/ny * %, ¢ can circu-
late or librate perpetually given a suitable initial value of (. However, as shown above, in

such a case the period is controlled by the ¢ term.

The validity of the various assumptions in this analysis has been discussed by Greenberg and
Franklin (1975). The properties revealed by this analysis are all essential elements of the
behavior discovered by Franklin et al. (1975). The period of libration or circulation of ¢
and ¢ is given by 2n/0.4, which is ~200 yr, in good agreement with their result. The period
of alternation between libration and circulation is 2#/6.9 x 1073 or ~11,500 yr, which for
9594 P-L is about three times their value. J. G. Williams (private communication) has noted
that this discrepancy can be accounted for by incorporating the variation in A, due to first
order variation in n, into eqs. (40) and (41). No qualitative changes are introduced into
the solution, but this correction yields a long period of alternation between libration and

circulation ~4000 yr, in agreement with the numerical evaluation of Franklin et al.

Physically, we may interpret the coupled behavior by noting that the apsides are accelerated
toward the longitude of conjunction of the asteroid and Jupiter by the small eccentricity
mechanism described in Section 4. They are also accelerated toward Jupiter's perihelion longi~
tude by the secular resonance mechanism. The coupled resonance described here is simply the

combined response to these two perturbing effects.
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Fig. 8. The h, k vector behaves according to eq. (49) and (50). The
point (h,k) rotates counterclockwise about a circle of radius
0.026, whose center, P, in turn rotates relatively slowly in
a counterclockwise direction about a circle of radius ¢ center-
ed at & = 0.038, k = 0. ¢ librates in (a), (b), (c), and (g)
and circulates otherwise. (From Greenberg and Franklin, 1975).

10. THE LAPLACE RELATION

Three Galilean satellites of Jupiter, Io (1), Europa (2) and Ganymede (3), are involved in
another type of coupled libration, the stability of which was first demonstrated by Laplace.
The quantity 0 = Ay T 3%2 +2h, is locked to a value of 180" with a libration amplitude
<0%.03, too small to detect (DeSitter, 1931). This expression implies that whenever Europa

and Ganymede are in conjunction with respect to Jupiter (i.e. whenever A, = X3), To is 180°
away (Fig. 9). The three satellites are prevented from lining up on the same side of Jupiter.
The commensurability relation between mean motions is given by differentiating the librating
quantity to obtain n; - 3n2 + 2n3: 0. Moreover, taken by adjacent pairs the mean motions have
ratios of 2 : 1. Thus, expressing the resonance variable as (2>\3 - X)) - (ZX2 - Xl) demon-

strates that the longitudes of conjunction of pairs are separated by 180° .

To analyze this resonance we follow the theory of Souillart (Tisserand, 1896) and note that

the important terms are those whose arguments are slowly varying due to the 2 : 1 commensur-
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Fig. 9. © is the longitude of satellite 1 relative to satellite 2 at
the instant of conjunction of satellites 2 and 3. For Io,
Europa and Ganymede O = 180° . (From Greenberg, 1975).
abilities between adjacent satellites. Retaining only such terms, and these terms only to

lowest order in eccentricity, yields—for example—the disturbing function at satellite 1:
R = (Gmy/a,) Fye cos(D, = A - &) + Fgeycos(2h, = A} - &) (51)

which is identical to R for the Enceladus - Dione case (eq. (13)).As the eccentricities are

small and variable, we redefine # = ¢ cos & and X = esin . Also let uij = 2Aj - Ai' Thus

Rl = (sz/az)[FA(hlcos Uy, + Ksin up,) + FB(hzcos U 5 + kysin up,)] (52)

with similar expressions for R, and R,.

In order to investigate the behavior of 0, we must evaluate
0 =n = 3n, + My (53)

(Variation of e, the mean longitude at epoch, is negligible.) In order to demonstrate evalua-
tion of expression (53), let us consider in detail the first term only. Lagrange's planetary

equations give

ﬁl = —3u2n12a[ih(hlsin U 5, = Kycos upp) + FB(hzsin uyp =~ kpcos 1 ,)1. (54)

The most important part of this variation is not the first order (in u) solution obtained by
considering the elements on theright side of (54), except for U; ,, to be constant. The second
order effect due to variation of A's and k's on the right side of (54) is more significant for
two reasons: (i) it is not proportional to the small eccentricities and (ii) it contains

the fixed argument © and the small divisor nl‘— 2n,. To demonstrate these second order effects

consider the variation of hl given by eq. (33):

hl = —uznlaFAsin Uy,e ) . (55)
Integration yields the first order variation
H,m aF cos u
21774 12
M S ———— | (56)
(2n, - n)

Similar results are obtained for the remaining %'s and k's.
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Thus the important second order variation of n is given by

. 87:11 an, ar'zI 2
A= —— Ah] +— bk, — bh, + —— bk, . (57)
ahl akl ahz Bk2

The appropriate substitutions and algebraic and trigonometric manipulation yield

3u ualF F 2y

3
O - e SR (58)
2n2 -

Similar evaluation of hz and h3 and substitution into eq. (53) yields

Moy EOR AL
+ +

2
aya,m FpFp
2 2 2

-n
a, a, a, (2n2 1)

sin @ . (59)

oof Lo

This equation for the behavior of @ is analogous to that of a pendulum. Evaluation of the
coefficient shows it to be positive. Thus © is stable at the value 180°. This mechanism can
also be described qualitatively in the following manner (this description is necessarily sim-

plified to include only those effects which contribute significantly to the behavior of ©).

First consider the effect of Ganymede (3) on Europa (2). If the ratio of their orbital periods
were exactly 2 : 1, the longitude of conjunction of this pair would be fixed. In fact, because
the ratio is only approximately 2 : 1, conjunction regresses at a rate of about 0%74/day. As
a result of the planet's oblateness and the secular effects of the other satellites, Europa's
pericenter advances. Thus conjunction circulates in the retrograde direction relative to the

apsides of Europa's orbit.

We can approximate the effect of Ganymede on Europa as an impulsive force exerted radially
outward from Jupiter whenever conjunction occurs. We know that such a radial force tends to
cause a regression of the apsides if exerted near pericenter and an advance of apsides if
exerted near apocenter. As conjunction passes Europa's pericenter the advance of the apsides
slows down; as conjunction passes Furopa's apocenter, the advance of apsides speeds up. Thus

Europa's pericenter spends more time near the longitude of conjunction than does the apocenter.

Next consider the effect of Europa (2) on Io (1). Suppose conjunction of these two satellites
occurs after Europa's pericenter, but before apocenter. Since the velocities are diverging

at such a conjunction, the two satellites are closest to one another shortly before conjunc-
tion. Thus when the satellites are closest (and the perturbing force is greatest), Europa is
slightly ahead of Io. Therefore Io gains orbital energy and its period increases. As a
result, conjunction is accelerated forward towards Europa's apocenter. Similarly, if conjunc-
tion occurs after apocenter and before pericenter, conjunction is accelerated back towards
Europa's apocenter. This effect is rather weak due to the small eccentricity. Therefore it
operates over such a long time scale that Europa's apocenter may be considered to be, on the
average, 180° from conjunction of Europa and Ganymede. Thus conjunction of Io and Europa

tends to be restored to a longitude 180° from conjunction of Europa and Ganymede.

Similar consideration of the effects of each of the three satellites on each of the others
supports the same conclusion: © is stable at 180°. Sinclair (1975) noted that, in addition

to 0, the quantities 21, - Ay @y, 24, = A - @, and 2X3 -, - &, also librate.
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It is clear that the mechanism governing the Laplace relation among the Galilean satellites
depends on pairwise commensurabilities. However, there is another Laplace relation in the
solar system which does not include pairwise commensurabilities: the interaction of Miranda,
Ariel and Umbriel, the three inner satellites of Uranus, which we shall refer to as 1, 2 and
3, respectively. (This notation is in violation of the classical numbering sequence.) In
this case O circulates slowly (é = -0.08/day). But theory shows that if the satellites’
masses were slightly larger or if © were slightly closer to zero, © would librate (Greenberg,
1976).

In the Uranus system the quantity ]nl ~ 2n,| is not much smaller than the mean motions. Thus

2 I
the coefficient in eq. (59) is not enhanced by a small divisor. More fundamentally, the terms
retained in the disturbing function (eq. (52)) are not the only important terms for the Uranus
satellites. Nevertheless, the system is simplified in some respects. Photometric estimates
indicate that the mass of Miranda is small enough for us to ignore its effects on the other
satellites. The lack of pairwise commensurabilities ensures that no first—order (in u) effects
can be important, because, aside from secular terms (Greenberg, 1975), there are no long-period
terms in the first-order variation. For our purposes here, the orbits will be considered

coplanar.

Sinclair (1975) notes that terms of zeroth order in eccentricity can be as significant in the
Uranus system as terms considered for the Galilean satellites. For example, one term in hl

due to satellite 2 is

%7 = u?_Asin(A1 - Az) (60)

where 4 is a function of n and n,. The second order variation of n is due in part to varia-

tion of n, on the right-hand side of (60). One term in n, due to satellite 3 is

n, = u B sin 200, = X)), (61)

Integrating (61) yields, to first order in u,

uaB
A?’lz = = 7’1—2’?—71—3_ cos 2()\2 - )\3).

Part of the second order variation of dn, /dt is thus given by

7 uz(aA/an)An2s1n(Al - Az)

= -u,u3(34/3n,)

PR cos Z(A2 - A3)sin(),1 - AZ)
n, = ng

sin O + other terms. (62)

—hu 34/ 0my)
(ny = n)

In this way the argument © can appear in the expression for 0 (eq. (53)) as a combination of

arguments such as Al - Xz and Z(A2 - Xa) from the zeroth order (in e) portion of the disturb-

ing functions, Moreover, as Sinclair has noted, combinations of argument 3()\1 - Az) with

2(11 - As) and of argument A, - Aa with 3(>\2 - Xs) also yield second order (in u) perturba-

tions with long-period argument ©. Combinations of multiples of these arguments yield terms

with multiples of O as arguments. No terms in O contain small divisors. Thus, in this case,

there is no reason for these additional terms to be much smaller than the term which dominated

in the Jovian system.
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In most resonance cases, long-period variations in orbital elements depend on a system's
asymmetry due to significant eccentricity or inclination. If eccentricities and inclinations
are zero, symmetry would seem to prevent any long-period variation of mean motions. How can
Sinclair's mechanism, which is independent of eccentricity and inclination, yield such long-
period effects? With three satellites involved the symmetry does not carry through to second
order in pu. For example, consider the direct effect of Umbriel (3) on Ariel (2). Just before
conjunction of these two satellites, Ariel will gain energy. Just after conjunction, Ariel
will lose energy. Thus Ariel will be moving relatively slowly at conjunction with Umbriel.
Now let us consider the effect of this disturbed satellite on Miranda (1). Suppose O is a few
degrees less than zero. At conjunction of Ariel and Umbriel, Miranda is a few degrees behind
them. We have already seen that Ariel is moving more slowly than usual at this point. Thus
as viewed from Miranda, Ariel spends less time ahead of Miranda than behind. Thus Miranda
suffers a net loss of energy and speeds up, yielding 6 > 0. Similarly, if © > O, 9 < 0.

Thus this simplified description indicates that © would be stable at O.

Evaluation of all significant terms in the expression for O (Greenberg, 1975; 1976) reveals
that terms generated by the Souillart analysis are comparable to Sinclair's zero eccentricity
effects. A generalized Souillart approach must be used which includes all terms in R of first
order in eccentricity, not just the 2 : 1 terms. It is found that the potential well whichis
centered at © = 0 has a small bump at the bottom, so that 0 would actually be stable at +36° .
In fact, 0 is circulating through this potential topography, albeit slowly. The circulation
is slow enough for observable variation in Miranda's longitude to be produced. Given the
scarcity of observations of Miranda, we can now only use this theory to place an upper limit

on W M4, the product of the masses of Ariel and Umbriel, of ~10~% (Greenberg, 1976).

11. TROJAN ASTEROID ORBITS

The Trojan asteroids are locked to longitudes 60° from that of Jupiter. It follows that their
mean motions are in 1 : 1 resonance with Jupiter's. Since it also follows that their semi-
major axes oscillate about the value of Jupiter's distance from the sun, our expansion of the

disturbing function becomes useless in this case.

A convenient way to handle this case analytically is to assume Jupiter's orbit to be circular
and then to make use of the well-known restricted three-body problem (e.g. Danby, 1962). The
motion of an asteroid (which is treated as an infinitesimal test particle) can then be studied
in a reference frame rotating with Jupiter's mean motion about the Sun - Jupiter center of
mass. In this rotating frame, the motion is governed by the gravitational potential, by the
centrifugal force and by the Coriolis force. The centrifugal force depends on position only,
so it can be incorporated with the gravitational potential into a corrected potential field.
In a search for equilibrium points a particle's velocity can be set equal to zero. A parti-
cle will be in equilibrium at any point at which the gradient of the corrected potential is
zero. The locations about which the observed Trojans oscillate (generally called the L, and
L5 points) are indeed such equilibrium points. However, an interesting fact, often glossed
over in treatments of the restricted problem, is that these points represent maxima, not
minima, of the corrected potential. How can these be stable equilibria? The answer is that
as soon as a particle starts moving near these points, the velocity-dependent Coriolis force

plays a dominant role which tends to restore the stable configuration.

This configuration shares the characteristics, common to many resonances, that the gravita-—

tional perturbations act to prevent close approaches of bodies to the perturber.
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12. HIGHER ORDER COMMENSURABILITIES

With the exceptions of the 1 : 1 resonance and secular resonances, the commensurabilities dis-
cussed so far have involved ratios of periods of the form (j + 1) : j where § is an integer.
In general, the mechanisms are dominated by the repetitious forces exerted near conjunction,
where the separation of interacting bodies is minimal. An outstanding exception is the
Neptune - Pluto case, in which Pluto's large eccentricity introduces additional minima that
dominate the interaction. The largest value of j for a known (j + 1) : j resonmance is 3. For
higher values of j, semi-major axes would be nearly equal so that even moderate eccentricities

would lead to the sort of complications found in the Neptune - Pluto case.

For higher order commensurabilities of the form (j + q) : j, resonance effects are considerably
weakened for integer ¢ > 1. Conjunctions occur at q different longitudes. For example, in a

3 : 1 commensurability with small eccentricities the inner body would make 1} revolutions to
the outer body's } revolution between conjunctions. Thus any effects at one conjunction would
be largely neutralized by effects at the next conjunction. The d'Alembert rules reflect this
weakened mechanism by reducing coefficients of the relevant terms in the disturbing function.
In the 3 : 1 case the argument O = 3A2 - Xl - 2% would have a long period but it is clearly

of second order in e, according to the d'Alembert rules. Note that the longitude of conjunc-
tion in a 3 : 1 resonance would be at (3, - Al)/Z, so O would represent twice the longitude

of conjunction measured from &,. If © librates about a fixed value a, then conjunction occurs

at the two longitudes o and a + 180°,

Resonances with g > 1 are so weakened in this way that they only exist when the eccentricities
are large enough for interactions well-removed from conjunction to dominate, as in the Neptune
Pluto case. Consider the example of asteroid Alinda (887) with eccentricity =0.54 (Marsden,
1970; Janiczek et al., 1972). This asteroid is locked to a 3 : 1 resonance with Jupiter.
Reference to Fig. 10 indicates that the effect of Jupiter on Alinda at aphelion tends to main-
tain the resonance by a means analogous to Cohen and Hubbard's Neptune - Pluto mechanism. ©
librates about a value near 180° . This might seem to imply that conjunction occurs 90° before
and after perihelion. However, for such a large eccentricity we must be careful to note that
Alinda's mean longitude would be very different from its true longitude, so each conjunction

actually occurs about 65° before and after perihelion.

JUPITER

JAVAN

PATH OF ALINDA

Fig. 10. Approximate path of asteroid Alinda (887) in a frame rotating
with Jupiter's motion. Libration is shown by oscillation of
Jupiter's position. The effect of Jupiter on Alinda prevents
conjunction near the latter's aphelion. The mechanism is
analogous to the Neptune - Pluto interaction, Section 7.

Other examples of high-order asteroid resonances are discussed by Janiczek et al. (1972), 1Ip

and Mehra (1973) and Marsden (1970). Two of the most remarkable examples involve the asteroids
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Toro (1685) and Ivar (1627). Toro apparently alternates between libration in a 13 : 5 reson-
ance with Venus and libration in an 8 : 5 resonance with the Earth. Ivar undergoes libration
in an 11 : 28 resonance with the Earth. Despite the extremely high order, this libration is
apparently quite stable. As in the Neptune - Pluto case, the analytical obstacles in these
large-eccentricity cases are overwhelming. They are generally discovered and investigated by

numerical techniques.

13. CONCLUSION

Orbit - orbit resonances occur in a wide variety of types: small eccentricity (Enceladus -
Dione), larger eccentricity (Titan - Hyperionm), very large eccentricity (Neptume - Pluto),
inclination (Mimas - Tethys), three satellite (Io - Europa - Ganymede) and secular. In this
paper I have discussed various examples to illustrate the variety and underlying similarities
of these phenomena. Because of this specific pdrpose, a great many other examples have been
ignored as they cast no additional light on the resonance mechanism. In particular the aster-
oid belt, which spans a region of low order commensurabilities with Jupiter, contains numerous
examples of the various types. Recent reviews by Peale (1976) and Hartmann et <. (1976)
provide information on these cases. Older, but still useful compendia of resonance data are

by Brouwer and Clemence (1961b) and Hagihara (1972).

The close correspondence between the terms of the expanded disturbing function and the types

of resonance should now be clear. Most interactions can be represented by the Fourier decom-
position of the mutual forces into a d'Alembert series. When orbits have commensurable periods
repetitive configurations tend to enhance their mutual effects. Correspondingly, certain terms
in the expansion have long periods. Actually, for any pair of planets or satellites, an in-
teger ratio can be selected which is arbitrarily close to the ratio of mean motions. Hence
there are always long-period terms. However, unless the mean motions are commensurable, the
integer ratio will be of high order. The d'Alembert rules as well as physical intuition as-
sure us that the long-period terms are only important in cases of small-integer commensur-—

ability.

Long-period effects can result in enhanced perturbations which may tend to maintain the periodi
city of a system. The expanded disturbing function may thus serve as a catalog of stable
periodic orbits which would be possible for properly chosen initial conditions. Conditions

in the solar system have been such that it contains a remarkably diverse collection of reson-

ances.
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Appendix
Definitions of Orbital Elements

In order to summarize the celestial mechanical terminology and define the notation used in the
text, the following definitions are provided. For a more detailed discussion the reader should

use a reference such as Danby (1962). ,

The figure of a satellite's orbit can be specified by its eccentricity, ¢, which determines
the orbit's shape, and its semi-major axis, a, which determines its size. The plane of the
orbit is usually specified by its inclination, %, to the inertial reference plane and the
longitude of the ascending node, 9, i.e. the angular position on the reference plane of the
point in the orbit where the satellite ascends across the reference plane. The orientation of
the ellipse on its own plane is given by the argument of pericenter, w, the angle between the
line of the ascending node and the line from focus to pericenter. The longitude of pericenter,
® = w + Q, can be used instead of w. It is particularly useful when 7 = 0 and the nodes are
not well-defined. The position on the orbit can be given by the true anomaly, n, the angular
position measured from pericenter in the direction of motion. Since real satellites move in
continually perturbed orbits, these orbital elements refer only to the instantaneously "oscu-

lating" orbit which would ensue if the perturbing forces could be suddenly eliminated.

The mean motion, », the time-averaged angular velocity on the orbit, is related to the semi-
major axis in unperturbed elliptical motion by Kepler's third law, n2a3 = G(M + m), where G
is the gravitational constant and M and m are the central body and satellite masses respec-

tively. Thus n can be used as an alternative to a as an orbital element.

The mean anomaly, M, defined as the product of the mean motion and the time after pericenter
passage, can be used instead of n to specify position on the orbit. Another alternative is to
use the mean longitude, X = @ + M, At a given time, the position on the orbit can also be

specified by the mean longitude at epoch, e, defined by
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