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Summary

In this paper a tidal origin of commensurable satellite mean motions is
proposed. It is shown that special cases of commensurate mean motions are
not disrupted by tidal forces. Furthermore, at least four, and probably seven,
of thebest examples of commensurabilities have thisstability. Thesignificance
of these stable configurations to the evolution of satellite systems is
discussed and some inferences are drawn about tidal dissipation in Jupiter
and Saturn.

1. Introduction.—The existence of near-commensurabilities among the mean
motions of the satellites and planets has been known for many years. The most
famous of these commensurabilities involves the Jovian satellites Io, Europa and
Ganymede. Within observational accuracy (9 significant figures) the mean
motions (n,, n, and ny; respectively) of these satellites obey the relation
n,—3n,+2n3=0. The motions of these satellites have been studied in great
detail, first by Laplace, and subsequently by many other authors. In addition to
this three-body commensurability, several cases of near-commensurabilities
between the mean motions of two satellites have also been known for quite some
time. The motions of these pairs of satellites have also been intensively studied
since they yield data from which a determination of the satellite masses can be made.
More recently, A. E. Roy and M. W. Ovenden (1, 2) have examined the mean
motions of pairs of planets and satellites in a new light. They considered the
question of whether the observed number of near-commensurate pairs of mean
motions in the solar system was too great to have arisen from a random distribution
of mean motions. As this paper isintended to provide answers toseveral intriguing
questions that they raised, we shall begin with a discussion of the contents of
their two papers.

In their first paper, the authors arived at the conclusion that the preference for
near-commensurate mean motions in the solar system is inconsistent with the
assumption of a random distribution of mean motions for the planets and satellites.
A sketch of their proof of this important result will be presented next.

Before we can prove anything, a sharper definition of near-commensurate mean
motions must be given. Let n, and n, (n, > n,) be the mean motions of two bodies
about a common centre of force. If two integers, 4, and A4,, exist such that

ny, A,

mo 4,
where € is a small positive number, then these mean motions are said to be nearly

=€
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commensurate in the ratio 4,/4,. Since the ratio n,/n, can always be approxi-
mated with arbitrary accuracy by the ratio of two integers, it is necessary to limit the
size of the integers considered. In their paper, Roy and Ovenden arbitrarily
set this limit for 4, at seven. This restriction to small integers in no way limits
the scope of their discussion. In fact, it can easily be shown from classical
perturbation theory that the dynamical consequences of near-commensurabilities
decrease as A;— A, increases. Using our definition of near-commensurability,
we may assign two integers, 4, and A4,, to every pair of mean motions, 7, and 7,,
whose ratio ny/n, > 1/7. Since the smallest difference between adjacent fractions
i8 1/6 — 1/7 = 1/42 there can be at most one pair of integers, A,, A,, for each pair of
mean motions, 7,, 71y, such that

ny A,

=e<1/82=0"01100.
ny 1
From A, and A4,, with 4, <7, we can form 17 fractions with values between 1/7
and 1. Thus, given ¢, <o0-01190 the probability that a randomly chosen ratio
in the range 1/7 to 1 lies within ¢, of one of these fractions is

P =17 x2¢yX7/6=39-67 €.
Roy and Ovenden considered 46 pairs of mean motions, and compiled
a table which compares 46 P_, for various ¢, < 0-01190, with the observed number

of pairs of mean motions for which a near-commensurability exists with e <e,.
This table, minus their control distribution data, is reproduced below.

TasLE I
€ 0'0119 0-0089 0°0059 00030 00015
46P 217 162 108 53 2°5
Observed number of pairs
of mean motions 33 26 20 ‘12 6
with €< ¢

As Roy and Ovenden pointed out, there are two reasons why the observed
number of near-commensurabilities, which are listed in their table, might be
misleading. In the first place, if 7, is nearly commensurable with both 7, and n,
then it may also be the case that n, is nearly commensurate with n,. If this is so,
then it is unclear whether the commensurability between 7, and n3 should be
considered as an independent one. In their first paper, Roy and Ovenden showed
that this problem of ‘‘multiple counts’’ was likely to affect the number of
independent observed commensurabilities listed in Table I, by 2 or 3 for ¢, =0-0119
and by even less for smaller ¢, 'The second source of error arises from the non-
uniform distribution of the ratios 7,/n, in the interval 1/7 to 1. In fact, no ratio
exists with a value greater than o-75. While it is difficult to correct accurately
for this effect, the authors do estimate that P, is better taken to be P, = 42:8¢, rather
than P_=39-36¢, as was used in Table I.

In light of the preceding discussion we see that the distribution of mean
motions among the planets and satellites very definitely deviates from randomness,
but it is difficult to say precisely how large this deviation is.

In the present paper we desire a more accurate measure of the preference for
near-commensurability among the observed mean motions. We can obtain an
improved measure by slightly modifying the anlaysis given by Roy and Ovenden.
This modification is intended to include the effect of the non-uniform distribution
of the ratios 7,/n, in the interval 1/7to 1. We proceed as follows. For each ratio
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ny/n; we form the difference of the two fractions, 4,/4; and A’,/A’; which bound
it most closely from above and below. We then take as the probability that n,/n,
should be within ¢, of one of these integers

2€
P =0
60 AZ—— A12
4, 4,

(‘Thatis, this is what we would consider this probability to be if ny/n, was arandomly
chosen number in this range.) We can repeat this procedure for each of the 46
ratios considered by Roy and Ovenden. Doing this we arrive at the following
result. If, aside from their particular distribution between the fractions A4,/A4,,
the ratios 7,/n, showed no preference for commensurability then the expectation
value for the number of near-commensurabilities with € < ¢, would be E, =2092¢,,
The argument just presented has shown the importance of the non-uniform
distribution of the ratios n,/n, on the expected number of near-commensurabilities

arising from a chance distribution of mean motions. It enables us to supplant
Table I by Table II below.

TaBLE 11
€ 00019 00089 0°0059 0°0030 0°0015
E,, 24°9 186 12°3 6-3 31
Observed number of pairs
of mean motions 33 26 20 12 6
with €< ¢

In their second paper Roy and Ovenden examined the preference for near-
commensurability between the outer satellites of Jupiter and the Sun and between
Saturn’s satellites, Iapetus and Phoebe. They claimed that these satellites
showed a tendency toward near-commensurabilities of the form n,/n, ~1/A4.
That these satellites should exhibit any preference for near-commensurabilities is
contrary to the hypothesis that will be expounded in this paper. 'This hypothesis
implies that a preference for near-commensurability should be exhibited only
by those satellites for which tidal effects have been sufficient to produce an appreci-
able change in semi-major axis during the lifetime of the satellite (which is assumed
to be ~4x10%yr). Since the tidal effects for the satellites considered here are
completely negligible we would not expect them to show any preference for
commensurabilities. For the preceding reasons we see that it is important to
demonstrate that these satellites do not in fact show any preference for commen-
surability. This is done using the methods just outlined. We consider a ratio
ny[n, for which 1/(A+1)<ny/n, < 1/A. Then,ifny/n,is otherwise randomly chosen
in this interval, the probability that it would be within ¢ of either 1/(4 + 1) or 1/4
(where e<1/24(A+1)) is 2¢A(A+1). In Table III we have reproduced the
data tabulated by Roy and Ovenden and in addition we have included possible
commensurabilities between Phoebe and the Sun and the Moon and the Sun in the
last two lines. In the final column we have listed 2e4(A+1). We must note
that, as used below, 4'=A4 if (ny/n,)—1/A'<oand A'=A+1if nyfn,—1/A' > 0.

Obviously, the probabilities listed in the last column of Table III for the
individual pairs of mean motions do not bear out Roy and Ovenden’s claim of a
preference for near-commensurability. However, the entries for the Sun and the
mean of J VIII, JIX, and J XTI and for the Sun and the mean of J VI, J VII,and J X

do appear to present a strong case for some sort of preference for commensurability.

II
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TaBrE 111
. ny ’ g I
Satellites - A — - — 2A4(A+1)e
n, nm A
Sun 0°17055 6 +0°00388 0233
Jvil
Sun 0'17196 6 4 000529 0:317
JIX
Sun 0°15982 6 — 000684 0°574
JXI
Sun and mean of 016725 6 + 000059 0°035
J VI J IX, JXI
Sun 0-05784 17 — 00098 0-600
JVI
Sun 0+06002 17 4- 000120 0653
JVII
Sun 0-05867 17 —0'00015 0°'092
JX
Sun and mean of 005883 17 —0°00001 0°006
JVI, VVII X
Sun 0°14564 i +0°00278 0234
T XI1I
Tapetus 014411 7 4000125 0015
Phoebe
Sun 0°05125 20 4000125’ 0°950
Phoebe
Sun o-07480 13 —0'00212 0772
Moon

This case is rapidly dissolved when we investigate the uncertainties in the mean
motions used in Table III. 'These uncertainties, which are mainly produced by
the large perturbations of the satellites’ orbits by the Sun, cause uncertainties in
the individual quantities (ny/n,) — (1/4") which are comparable in magnitude to the
values given in Table III. These uncertainties may be carried through to"give
the uncertainties in the entries under the Sun and mean of J VIII, J IX, J XI and
under the Sun and mean of J VI, JVII, JX. The apparently significant, small
values for (ny/n,) — (1/A") in these two cases now appear to be fortuitous. Of
course, the arguments just presented, while indicating that the evidence presented
in T'able ITI does not constitute a strong case for commensurability, do not rule out
the possibility that such commensurabilities may exist.

As an example of the uncertainty in the differences (ny/n,) — (1/A4’), we present
the results given by Nicholson (3) for JIX. For the period of JIX he gives
758 £ 25 days. This would imply that the value of (ny/n,)—(1/4’) for J IX is
000828 + 0-00577 and that 2¢4(A4+1)=0497 +£0-346. These values, while
including the ones given by Roy and Ovenden, show clearly how uncertain they are.

It should be noted that if the numbers given by Roy and Ovenden in Table ITI
were free of any uncertainty then it would be very difficult to explain the results
listed under the Sun and mean of J VIII, J IX, J XI and under the Sun and mean
of JVI, JVII, JX. 'This is because the members of these two groups of satellites
are so small that no significant interactions can exist between them. Hence, even
if the mean motions of the individual satellite orbits were oscillating about some
orbit which was commensurate with the Sun there would be no explanation for the
phases of oscillation in the three satellite orbits to be correlated. Thus, there
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would be no explanation for the mean of the mean motions of the three satellites
to be so much more nearly commensurate with the Sun’s mean motion than the
mean motion of any of the individual satellites.

In closing this section we might point out that the grouping of Jupiter’s
satellites’ mean motions near values of 6, 7 and 17 times the mean motion of the
Sun (as seen from Jupiter) may be of significance when considering the possible
capture of these satellites by Jupiter.

2. The mirror theorem.—In their second paper, Roy and Ovenden prove that,
‘“If n point-masses are acted upon by their mutual gravitational forces only, and
if at a certain epoch each radius vector from the (assumed stationary) centre of
mass of the system is perpendicular to every velocity vector, then the orbit of each
mass after that epoch is a mirror image of its orbit prior to that epoch’’. The
authors call this theorem the mirror theorem and the special configuration described
above is called a mirror configuration. As a corollary to the mirror theorem, they
provea periodicity theorem which states that, ‘‘ If » point-masses are moving under
their mutual gravitational forces only, their orbits are periodic if, at two separate
epochs, a mirror configuration occurs ”’.

After proving the preceding theorems, Roy and Ovenden suggest that the
frequent occurrence of mirror configurations will cause perturbations on the
orbits to undergo frequent reversals so that the disturbances they generate cannot
build up to magnitudes so large that they endanger the stability of the motion.

Finally, Roy and Ovenden examined in detail, three of the best cases (i.e.,
those for which e is smallest) of near-commensurabilities in the solar system.
These include three pairs of satellites in Saturn’s system: Hyperion and Titan,
Enceladus and Dione, and Mimas and Tethys. The values of (n,/n,) — (A4,/A4,) for
these satellite pairs are —0:000566, +0-000643 and —0-000784 respectively.

Observation provides the following remarkable results: conjunctions of -
Enceladus and Dione always occur near the perisaturnium of Enceladus. For
Titan and Hyperion, the conjunctions always occur near the aposaturnium of
Hyperion. For Mimas and Tethys, the relation involves their nodes and the
conjunctions of these two satellites oscillate about the midpoint between their
two ascending nodes on Saturn’s equator plane.

Examination of the motions of these satellite pairs thus reveals that they satisfy
the mirror theorem, at least to a first approximation. The nature of this approxi-
mation and its dynamical significance will be the subject of the rest of this paper.

3. Classical perturbation theory.—In this section a brief outline of the relevant
portions of celestial mechanical perturbation theory will be presented. We shall
describe the orbit of a satellite of mass m, about a planet of mass M, by the following
six elements:

a—is the semi-major axis of the orbit.
e—is the eccentricity of the orbit.
i—is the inclination of the orbit to the planet’s equatorial plane.
Q—is the longitude of the ascending node.
@&—is the longitude of the pericentre.
& =w+Q where w is the angle between the ascending node and the
pericentre.
e—is the mean longitude at epoch.

11¥

© Royal Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1965MNRAS.130..159G

FTY9B5VNRAS, 1307 “159G!

164 P. Goldreich Vol. 130

¢
To give the position in the orbit, we will use the mean longitude /\=f ndt +e.
0

n, the mean motion of the satellite is equal to 27/P where P is the satellite’s
revolution period. For motion about a spherical planet n=+/(GM)/a%2.

For unperturbed motion about a spherical planet a, ¢, 7, 2, & and € are constant.
If the motion is perturbed then g, ¢, 7, Q, & and e will, in general, vary with time.
For a satellite moving in a total potential V' (F) we may define the disturbing
function R(F) as R(F)=V(F)—(GM]/r). In terms of the disturbing function we
may write down the equations of motion for a, ¢, 7, Q, @ and e. In what follows, R
is considered to be a function of a, ¢, 7, Q, @ and A. In the interest of simplicity
we shall neglect powers beyond the second in the satellite’s eccentricity and
inclination. This allows us to write (4):

da 2 OR
dt na oA
de —10R
dt  na’e 06
di —10R
dt~ na%oQ
de —20R (1)
dt~ na da
dao 1 OR
@t naPe de
dQ 1 OR

dt  na® i

Perturbations of the first order are obtained by treating a, e, 7, Q, & and € as
constants on the right hand sides of the perturbation equations, while the mean
longitude A is taken to be a linear function of the time.

The disturbing function due to the action of a satellite with mass 7’ on one with
mass m is given by

T xx Yy +
Reon (3~ =)

Coordinates are measured from the centre of the planet. Primes refer to the
disturbing satellite. A?=(x—«')2+(y—y' )2+ (2—2")%

It can be shown that R is expandable in the following form (5):
R=3F(a, d, ¢ ¢, i, i')cosT where T=[mA+hXN+go+g'ad" +fQ+f Q]

and A, W', g, g, [, f are integers. (2)
The requirement of rotational invariance gives us the single restriction
[A+h +g+g +f+f]=o0. (3)

Terms with 2=A"=o0 give rise to secular changes in &, Q and e. The results
obtained from first order perturbation theory are only approximate due to treating
a, e, 1, Q, & and € as constants in the right hand sides of the perturbation equations.
If necessary, calculations may be extended to include higher order (the order being
measured by the power of m’/M) perturbations. This is done by substituting the
results of the first order calculations into the right hand side of the perturbation
equations. Higher order perturbation theory is required when treating cases of
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commensurability involving more than two satellites. One result that we shall
quote for later use is Poisson’s famous theorem on the invariability of the semi-
major axis. This theorem, which is often quoted in discussions of the stability of
the solar system, states that there is no secular term, due to gravitational inter-
actions between satellites, in the expression for the semi-major axis, both in the
first and second orders of perturbation theory.

Since we shall apply perturbation theory in cases where near-commensurabili-
ties exist, a brief summary of the effects of near-commensurabilities in perturbation
theory will be given next. If we write R=YCcos T, then the perturbation
equations yield, upon integration:

Cycos T - Cosin T
ba=2+ hn+h'n 81w=z+h;+kn'
C/cosT C,sinT
=2 A e @
) C,"cosT CysinT
=2 = 2t T

(Note: 8, denotes first order perturbations. )

t
From the definition of A= j ndt + € we see that
0

1
S = f Sndt+5,e
0

m M nmn _.:

=3 { s+ ) )
(hn+h'n')?>  (hn+h'n')
A near-commensurability implies that one of the terms A*n+ A'*n’ is very small
compared to n or n’.  From the expressions above, we see that a near-commen-
surability produces an enhanced amplitude for perturbations of angular frequency
h*n+h'*n’. Since only 6;A has the small divisor squared, we see that the principal
effect of a near-commensurability will be observed in the perturbations of mean
longitude.

4. Hypothesis of tidal stability.—We are now in a position to examine the
hypothesis of tidal stability as an explanation of the observed commensurabilities.
Our considerations will find application to the two-body cases of Enceladus and
Dione, Mimas and Tethys, and Hyperion and Titan, as well as to the three-body
case of Io, Europa and Ganymede. Other likely candidates for stable commen-
surabilities, to which these results would also apply, are mentioned in Section g.

As a start we shall consider a planet surrounded by several satellites which move
in orbits of low inclination and eccentricity. We shall make the assumption that
the tidal torques on these satellites have produced considerable evolution in their
mean motions over a period comparable to the age of the solar system (which we
take as four billion years).

Let us make the further assumption that the tidal evolution of the mean motion
of each satellite is independent of the other satellites. 'This independent evolution
of mean motions is implied (at least to second order perturbation theory) by
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Poisson’s theorem on the invariability of the semi-major axis (see Section 2).
Since the mean motions of different satellites will, in general, evolve at different
rates (if this assumption is correct), the ratios of the mean motions of pairs of
satellites will vary with time. In so doing they may occasionally pass through a
low order commensurability. However, at any one time, the ratios of the
satellites’ mean motions will exhibit a tendency for commensurability which is
consistent with a random distribution of mean motions. Such a situation would
certainly fail to explain the strong tendency for near-commensurate mean motions
that is observed among the satellites of the solar system.

If, on the other hand, these near-commensurabilities were stable, then we could
account for the large number of observed near-commensurabilities. Suppose,
for example, that during the tidal evolution of their mean motions, the ratio of the
mean motions of two satellites approaches very closely the ratio of two small
integers. If a near-commensurate motion of these two satellites exists, which is
stable under further tidal evolution, then the satellites would remain in the near-
commensurability rather than merely passing through it. However, the tidal
torque on each of these satellites will not be affected by such a near-commensur-
ability of their mean motions. This being the case, in order for the further evolu-
tion of the satellite orbitals to proceed without disrupting the near-commensur-
ability of their mean motions, angular momentum must be secularly transferred
between the satellites. At first sight this condition might appear to be a violation
of Poisson’s theorem on the invariability of the semi-major axis. However, this
theorem only treats secular terms in the expression for da/dt. 'That is, only terms
which do not depend on the longitudes of the two satellites. In the case of stable
near-commensurabilities the terms responsible for the secular transfer of angular
momentum are periodic terms, whose periods turnouttobeinfiniteasaconsequence
of the commensurability. These terms are not dealt with in Poisson’s theorem.

We now realize (if we assume that the conjectures of the last paragraph are
correct) that the orbits of a pair of near-commensurate satellites will still evolve
as the tides feed angular momentum from the planet’s spin into the satellites’
orbits. However, we shall see that the satellites will share this angular momentum
between them in just the correct proportion to keep their mean motions near-
commensurate.

The question of which near-commensurabilities are stable will be dealt with
next. From the discussion of the previous paragraph we see that a necessary
condition for the stability of a near-commensurability is that the direct gravitational
forces between the satellites involved are strong enough to be able to distribute the
angular momentum fed into the system by the tides in the manner necessary to
maintain the commensurability relation. Application of this condition would, in
principle, enable us to place bounds on the tidal dissipation in the planets. In
practice, however, the small variety of observed near-commensurablemean motions
severely limits this possibility.

An examination of the direct gravitational forces between satellites reveals
that they decrease rapidly both as the order of the commensurability increases and
also as the number of satellites involved increases. This accounts for the low
orders of the observed near-commensurabilities (for example, 2 to 1, 4 to 3, 4 to 2,
etc.) and for the fact that they only involve two or three satellites. When the
direct gravitational forces between satellites are too weak, and angular momentum
cannot be transferred between them at a sufficient rate, near-commensurabilities
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will not be stable and the satellites’ mean motions will evolve 1ndependently, each
at a rate determined by the tidal torque on the single satellite.

As discussed in Section 1, the orbits of several pairs of the best examples
of commensurabilities exhibit remarkable regularities. Not only are the mean
motions of these satellites near-commensurate, the motions also show a relation
between the conjunctions of the satellites and one or more of their orbital elements.
Since these relations, relevant to the various satellite pairs, differ only in detail, we
shall concentrate our attention on the system of Enceladus and Dione whenever
an explicit example is called for.

Denoting the orbital elements of Dione by primes, we can state the observations
in the form below (see Section 2 for a definition of these elements).

do
2n’ —n— Z =°

2X —A—& =V where V oscillates about 0° with a small amplitude. Actually, as
we shall see later on, V' should oscillate about an angle very close to, but not equal
too®. Thesecond relation, which implies the first one, states that conjunctions of
Enceladus and Dione always occur near the perisaturnium of Enceladus. Thus
we see that this commensurability relation implies that terms in the disturbing
function wth argument ® =2)" —A— & are of infinite period. We shall show that
when V oscillates about an angle different from o°, these terms can produce secular
changes of the semi-major axis. It may also be noted that what we have here
might be considered, not as a near-commensurability of mean motions, but rather
as an exact commensurability involving the mean motions of Enceladus and Dione
together with the motion of the perisaturnium of Enceladus. 'Thefact that we have
a near-commensurability of mean motions is then seen to be merely a consequence
of the small size of

@l

/"

Roy and Ovenden attempted to show that these near-commensurate satellite
pairs satisfy the hypothesis of their mirror theorem. In the approximation that
the inclinations of Enceladus and Dione are neglected and that the eccentricity of
Dione is taken as zero, we see that this is the case. Furthermore, when even then
eccentricity of Dione is taken into account, it may still be argued that mirror
configurations do occur. However, in the other cases of near-commensurability
described by Roy and Ovenden, mirror configurations occur only in a first approxi-
mation to the actual orbits (for example, when only one eccentricity is taken as
non-zero or when both inclinations are considered to be equal, etc.).

5. Formation of commensurabilities.—In this section we shall describe the
formation of stable commensurabilities. Proofs of some of the statements made
in this section will be given in Section 6. Because there is some difference in
detail between commensurabilities of the form ny/n,~ 4,/A, where A,=A,+1
and those for which 4,=A4,+v where v>1 we shall describe them separately.
Representatives of both types are to be found in the solar system. For example,
the pair of Enceladus and Dione is an illustration of the former (4,=2, 4,=1)
while Mimas and Tethys provide an example of the latter* (4,=4, 4,=2).

*TFor an explanation of the distinction between a 2 to 1 and a 4 to 2 commensurability see
Section 8.
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Of the other two-body near-commensurabilities (including those for which we
may only assume stability) all except the pair of J III and JIV (for which 4,=7,
Ay,=13) are of the form 4, =4,+1.

Anidealized model which contains all of the relevant features will be considered
next. Although the situation envisaged in this idealized model does not corres-
pond to any actual near-commensurability it allows us to present the essential
features of near-commensurabilities without any unnecessary additions. We
imagine two satellites with masses m and m’ orbiting about a planet of mass M.
The masses of these satellites obey the relations m/M< 1, m'/M <1 and m'[m< 1
while their orbits satisfy the restrictions i=i"=o0, e=o0, <1, a<a’. The
restriction m'/m< 1 allows us to neglect perturbations of m by m’. 'We shall also
assume that the initial periods of revolution are at least as long as the planet’s
rotation period so that the tides feed angular momentum into the satellites’
orbits. Since m'/m<1 and a<a’ we shall neglect the tidal evolution of m"’s

orbit. We define d&’'/dt as the observed secular rate of change of @ while

(d&@’[dt),is that part of d&’ /dt which is produced by secular terms in 7" s disturbing

function. This distinction between d&'/dt and (d&'/dt), is a non-trivial one if
the satellites are part of a near-commensurability. For in that case some
argument (for example, 21’ —A—@&’) is constant. Then periodic terms in the
disturbing function having this argument will also produce secular motions of &’.

These are included in d&’/dt but not in (d&’/dt),.
The first case we shall discuss is one in which initially 27’ —n— (d&’/dt), < o.
We shall neglect the possibility of near-commensurabilities other than the one for

which 2n' —n—da'[dt=0. As m’s orbit expands due to the addition of angular
momentum by the tides, 2n' —n— (d@’/dt), will approach zero through negative
values. As this occurs m will force an ever increasing eccentricity onto the orbit
of m’. The pericentre which corresponds to this forced eccentricity will satisfy

the relation 2n’ —n—(d&'/dt)=0. When this eccentricity becomes of sufficient
size m’s orbit will no longer expand independently of m'’s. Indeed, as we shall
discover, m will begin to feed angular momentum into m’’s orbit at such a rate
that the approach of 2n' —n— (d&’/dt), to zero is slowed down. In fact if the tidal
torque on m is not too large this state of affairs will persist for many times the age
of the solar system. 2#n'—n— (d®’/dt), will continue to approach zero but always
decelerating, and the forced eccentricity of m’’s orbit will continue to increase.
In this manner a stable near-commensurability is formed.

We may now modify this argument so that it applies to a case where initially
3n' —n—2(d&'[dt), is slightly less than zero. This time as m moves out it does
not force an appreciable eccentricity on the orbit of m’. Hence, angular momen-
tum cannot be secularly transferred from m to 7’ and m will move out without
affecting m’. Eventually when 3n" —n—2(d&’/dt), has become very close to zero a
stable near-commensurability may be formed (if the tidal torque on m is not too

great). Inthiscase d&’/dt will be very nearly equal to (d&’/dt),and the eccentricity
of m'’s orbit will be its free eccentricity. Furthermore, once this commensur-
ability has been established 37’ —n—2(d&’/dt), will remain essentially constant
and will not continue to change as 2n' —n— (d&’/dt), did in the case of the two to
one near-commensurability.

Finally, we must mention that similar commensurabilities involving the
satellites’ inclinations and ascending nodes can be formed. However, no analogue
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to the A, =A4,+ 1 commensurabilities can exist which involves inclinations and
nodes. Only cases for which 4;> 4,+2 are possible when these elements are
involved.

6. Analysis of near-commensurabilities.—In this section proofs for some of
the statements made in the preceding section are provided. Throughout, we
shall neglect the effects of m’ on m and the action of the tides on m’ as well. 'The
first case to be treated will be the two to one near-commensurability.

In our stability analysis we shall neglect all periodic terms in #7’’s disturbing
function except those having 2A" —A—@&’ as their argument. It is easy to see
why terms of this argument might produce instability. By hypothesis, this
argument has zero secular rate of change. Substituting terms with this argument
into the perturbation equations we see that they produce secular changes in the
orbital elements. It might be suspected that these secular changes will disrupt
the near-commensurability. However, we shall prove that under certain con-
ditions this does not happen. Terms in the disturbing function whose arguments
are integer multiples of ® will be neglected since their coefficients are small than
those of the terms with argument @ by ¢’ raised to the power of the absolute value
of the corresponding integer multiple minus one. All periodic terms whose
arguments are not multiples of ® produce only small magnitude, short period
perturbations of m"’s orbit, since their amplitudes are not enhanced by integration
(see Section 3). Finally, Poisson’s theorem on the invariability of the semi-major
axis tells us that we need not worry about secular terms in the expression for the
rate of change of the semi-major axis.

The term in m"’s disturbing function with argument @ is given to first order
in ¢’ by

¢ Gm

Rd="2
2a

(C(a)) cos @ (6)

where e« =a/a’ and C(«) is a sum of Laplace coefficients which may be expressed
in terms of elliptic integrals. We shall need the value of C(«) when we apply
our results to specific satellite systems. At present we shall merely use the result
that C(«) is positive.

Using equations (1) and (6) we arrive at the following expressions for the
rates of change of the orbital elements when tidal forces are absent.

d77zt’ == g?{:%, =— ‘% 88% =3e'(]‘—7;)n'2 C(a)sin® (7)
% = - ﬁ’z—a’ %R;—: = +e'(]—‘-7;> n [C(oc) +ocdcdf:):| cos D,

We define V=2 -A=0+&'.
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d*V  2dn’ 2d% L m\ .
=M M e <M)n2C(oc)sm‘I)

-—2e< ) [C(a)+adc(“)] c1>

It is a trivial matter to verify that a zero order solution of the above equations is
given by

o ' m C(“) n' T~ 7 At
O =, =180°, e—eo—<M) ) T e = = (®)

This solution corresponds to a situation in which the free eccentricity is equal to
zero and the total eccentricity has just its forced value ¢'.
Next we consider first order deviations from this solution. Setting

O=Py+D,, e=¢+e,/, and &'=&)+&,
the relevant equations take the following form:

de,’ n C(oc)
dt =<M) 2
da,’ m\ n'C(«)
v <JT4) e O

d_;;l =—6e0’<]$> n'? C(oc)<I>1+zeo< ) I:C( )+“dC(a):| Ydr dt

@0, dV,
e a4 df’

In most cases we may safely neglect the @, d®,/d¢ term in the equation for
d?V,/dt®. We shall drop it for the time being and later formulate the condition
under which it is negligible. In writing down equations (9) we have assumed
®,}< 1 although the analysis is not very different in cases with @, of order unity.

From the equations for de,’/dt and d&,’/dt we obtain

()= e
S e T
ar b \31 1=~y P (10)

Thus @, is seen to satisfy a simple pendulum equation (in the small amplitude
approximation). Solving this equation we find

®, =0sinyt. (11)
The neglect of the @, d®,/dt term in equations (9) is now seen to be equivalent
to neglecting fy/n. This quantity may be computed in cases of observed
commensurabilities.

The next question to be dealt with is the stability of this near-commensurability
when tidal forces are present. In this section we shall denote the rate of change of
m’s mean motion due to the tidal forces by dn,/dt. In Section 11 this quantity is
related to the properties of the satellite and its planet. ~Rewriting equation (10)
to include tidal effects we get

a>® dn
721 = —y2sin®, — dtT' (12)

(9)
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If the tidal term is sufficiently small then

. I dn
®,=0sinyt— ;thT (13)
(we have again assumed @, <1).

Hence the only effect on ®,; produced by the tidal torque, is a phase shift.
Thus ““weak *’ tidal forces do not disrupt the relation 2n' —n— (d&'/dt)=0. To
consider the stability of the near-commensurability in mean motions we must
evaluate (d%V,/d#*)= (2dn’/dt)— (dn/dt). In the absence of mutual interactions
between the satellites this quantity would be equal to —dn,/df and the near-
commensurability in mean-motions would not persist. However, using
equations (9) and (13) we find

dn,,

dt

[efesfa)e] ™

From this equation we see that apart from an oscillating term the forced eccentricity
of m"’s orbit allows a transfer of angular momentum from m to m’ which decreases

dn’ dn m
— — = — 4 2 1 —
25 =2 = —6e, <M>n C(«) Bsinyt

L0
dt df
from
dny
dr
to
dn,,

P

Since we know that ¢, increases as 2n’—n— (d®’/dt), goes to zero, this tells us
that

dn’ dn

2 — —

dt dt

continues to decrease as 2n'—n—(d@’/dt), approaches zero. This analysis
is only valid for ¢,’ <1 so that the details of this process cannot be followed
indefinitely. However, it seems likely that if the eccentricity of m'’s orbit
becomes large enough it may cross or nearly cross the orbit of 7. In this case a
near collision or a physical collision between these satellites would become likely.
This might lead to the capture of m’ by m. Insome cases, however, ¢, will remain
small for many times the age of the solar system and the analysis just presented will
be quite adequate to describe the commensurability for all times less than this.

The analysis just presented for the case 4, =2, 4,=1 can easily be modified
to fit the case 4,=73, A,=1. The full details of the proof in this case will not be
written out. However, differences between this case and the preceding one will be
pointed out. If we set ®=3X" —A—2&' '

e2Gm

2a

RO= [B(«x)] cos ®. (15)
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It is the extra power of ¢’ in R’ that makes this case different from the former one.
In particular, an examination of equations (1) shows us that no large forced eccen-
tricity is produced in this case. However, given a free eccentricity ¢, a stable
near-commensurability can be formed. The solution which corresponds to this
case is easily seen to take the following form:

o ztﬁo'_ , o (da m\ |,
®,=180°, 7 =3 —n—z(ﬁ)s +<M>n B(«)
@, =fsinyt— d;’_tf/yz (16)

&V, _dv'  dn &0,

@ Sad @ ar
Thus we find that ®, oscillates about — (dn,/dt)/y?.3(dn’/dt)— (dn/dt) also
oscillates but in this case it has no constant part as it did in the preceding case.
de,’|dt has a constant part equal to — (mn'B(«)/M2) (dny/dt)/y?. This tells us
that the free eccentricity is increasing due to the mutual interaction of the tides
and m.

= — ‘y29 sin L.

7. Explanation of the results of Sections 5 and 6.—The discussion in this section
is intended to provide physical explanations of the results obtained in the
preceding two sections.

We shall begin by considering the two to one near-commensurability which
was described in these sections. For this near-commensurability we have seen
that conjunctions between the two satellites take place when m' is close to apocentre.
In the first instance we shall neglect tidal torques and investigate the stability of
® =2)"—A—a" about 180°. Once again we use the restrictions placed on m, m’
and their orbits in Section 4. We suppose, for the sake of argument, that @ is
initially chosen slightly greater than 180° and d®/dt is taken to be zero. Then the
next conjunction will take place after ' has passed through apocentre. This
produces a net transfer (over an entire revolution of m’) of angular momentum from
mtom’. 'Toseethis we mustobserve that between an opposition and the following
conjunction 7 is taking angular momentum from m’, while after conjunction until
the next opposition m is adding angular momentum to m'. By symmetry, if the
conjunction occurs when m’ is at apocentre, the net transfer of angular momentum
would be equal to zero. However, if m’ is slightly past apocentre when this
conjunction takes place, then the asymmetry in the relative separations of the
satellites, at equal times before and after conjunction, will imply that a net transfer
of angular momentum will take place. Rather than take the space necessary to
prove it, we shall merely state that ® — 180° positive implies a net gain of angular
momentum by m’, while ® — 180° negative implies a net loss of angular momentum
by m’. 'This net transfer of angular momentum to 7’ (we have chosen ® — 180°
positive initially), increases m’’s period and at the next conjunction m’ will be
closer to apocentre than at the previous one. Thus @ will have been decreased.
Similarly if ® becomes smaller than 180° there will be a net loss of angular momen-
tum by m’. Inthiscase ® will beincreased toward 180°. The process we have
just described is the one which stabilizes ® about 180° and produces the librations
whose angular frequency is given by y in equation (11). A similar argument will
show us that 0° is not a stable value for ® in this case.
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When tidalforces are present, m’s period is steadily lengthening. This tendsto
produce conjunctions at values of @ slightly in excess of 180°. Hence, as we have
just seen, m will, on the average, (over many libration periods) feed angular
momentum into m'’s orbit. 'This will enable m to push 7’ out ahead of itself at
just the correct rate needed to maintain their near-commensurability.

The stability of the three to one near-commensurability has a similar origin.
However, in this case conjunctions occur alternately near 7'’s apocentre and its
pericentre. 'The net transfer of angular momentum (when @ s0) which arises
due to the asymmetry before and after each conjunction is of opposite sign for
conjunctions occurring near m’’s apocentre and pericentre. To first order in ¢/,
the two contributions cancel each other. However, there is still a net effect to
order ¢ which insures stability in this case. It is just this cancellation, which
occurs in all cases except A+ 1 to A commensurabilities, that prevents the
production of large forced eccentricities in this case.

We turn next to the discussion of the other major difference between the three
to one and the two to one near-commensurability. In the case of the two to one
near-commensurability itis the forced eccentricity of m"’s orbit which is responsible
for the stability of ®. When this forced eccentricity is small, the pericentre
associated with it behaves as though it had a very small ‘“inertia’’. That is, this
pericentre is able to adjust itself so that conjunctions of the satellites oscillate about
a point which is very close to apocentre. When this is the case, the tidal stability
described above will not be present and m will move out without pushing 7’ ahead
of it. However, as the forced eccentricity of m’’s orbit increases its pericentre’s
effective ‘“inertia ’’ increases as well. The forced eccentricity now behaves more
like its free counterpart (in the case of the three to one commensurability) and
m will begin to feed angular momentum to m’. The behaviour just described
explains equation (14) which shows how the difference (2dn’/dt) — (dn/dt) decreases
asthe forced eccentricity e, increases. 'This behaviour is to be contrasted with that
expressed by equations (16) for the case of the three to one commensurability.
Here (3dn’/dt) — (dn/dt) has no constant part once the commensurability has been
established.

8. Observed stable near-commensurabilities.—In this section we shall indicate
how the results derived in Section 6 apply to those observed near-commensura-
bilities for which tidal stability may be explicitly demonstrated.

(a) Enceladus and Dione

‘The pertinent data are listed below.

TaBLE IV
Enceladus Dione
P=27n/n=1-37028 days P’ =27[n'=2-73691 days
e=0°'0045 e’ =0-0021
i=00° i’ =00°
dw|dt=12343° per year dw' [dt=3074° per year
M/m=8x 10° M|m' =55 x 10°

This commensurability involves the argument ®=2)"—-A-&. It is an
example of a two to one near-commensurability. @ oscillates about o° with a
period of approximately 12 years and an amplitude of about 20’. 'The phase shift
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in @ due to the tides has a value of about 4 x 1073/Q radians and is too small to be
observed since Q for Saturn is of the order of 10% to 10° (see Section 12).

(b) Titan and Hyperion

The pertinent data are listed below

TABLE V
Titan Hyperion
P=27[n=15045452 days P’ =270’ =21-27666 days
€=0"0290 , e =o'104
i=03° i'=05°
dw|dt=0-0512° per year dw’|dt=18652° per year
M/m=4-15+ 10, M/m'=5+104

This system is similar to that of Enceladus and Dione. However, the analysis
is complicated by the large mass of Titan which forces a correspondingly large
eccentricity onto the orbit of Dione. 'This makes it necessary to keep many terms
in the disturbing function of Hyperion in order to get accurate numerical results.
However, the essential details of this system are quite straightforward.

~ !

do

40’ —3n— —- =0

and the angle ® =4\ — 31— &’ oscillates about 180°. Unfortunately, in this case
the phase shift in ® due to the tidal forces is even smaller than that for Enceladus
and Dione and offers no hope for direct observations.

(¢) Mimas and Tethys

The pertinent data are listed below.

TaBLE VI
Mimas Tethys
P=27[n=0942422 days P'=27/n'=1-887802 days
e=0"0201 e’ =00
i:I-So i,=I'I°
dQ/dt=1365-2° per year dQ'|dt="72-2° per year
M/m=1-5+ 107 M|m' =8+ 10°

This commensurability involves the orbits’ nodes instead of their pericentres.
The conjunctions of these two satellites oscillate about the midpoint of their two
ascending nodes on Saturn’s equator plane. The commensurability between
Mimas and Tethys is properly classified as a four to two rather than a two to one
near-commensurability. This distinction arises because the term in the
disturbing function which has constant argument is proportional to

cos (4N —2A— Q' — Q).

In this case the inclinations of these satellites’ orbits are free inclinations rather
than forced ones. Furthermore, as we would expect from the discussion of
Section 6 (d/dt)(Q'+ Q) is very close to [(d/dt)(Q+Q')], and the discrepancy
between these numbers is within the margins of observational error. Once again
the phase shift in ® produced by the tides is unobservably small.

9. Two-body mear-commensurabilities among Fupiter’s Galilean satellites.—In
addition to taking part in a three-body commensurability (which is discussed

© Royal Astronomical Society ¢ Provided by thé NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1965MNRAS.130..159G

FTY9B5VNRAS, 1307 “159G!

No. 3, 1965  Occurrence of commensurable mean motions in the solar system 175

in the following section) Jupiter’s Galilean satellites are involved in several
two-body near-commensurabilities. Denoting the mean motions of Io, Europa,
Ganymede and Callisto by 7, 7,, 75 and 7,, we can write the relations satisfied by
their mean motions in the following form:

Ny

I
— — - = —-0001817
n, 2
ny 1
— — - = —0'0036
P 3647
ng I
— — - = — 0002725
o4

- n
3 +0-000128
ng

Due to the large masses of these satellites and to the presence of commen-
surabilities, the mutual perturbations of the orbits of these satellites are both large
and complicated. For this reason, any attempt to prove that these two-body
near-commensurabilities are tidally stable would require a considerably more
involved analysis than that presented in Section 6. Fortunately, while a more
detailed analysis is lacking, there do exist two related pieces of evidence which
strengthen our belief in the stability of these near-commensurabilities. The first
piece of evidence is the remark of Griffin (6) that for the first three Galilean satel-
lites, the inner of the pair is near perijove and the outer near apojove whenever a
conjunction takes place. Since relations of this type are just what we have found
to occur in tidally stable commensurabilities this remark strongly suggests that
these commensurabilities are stable. The second piece of evidence favouring
stability is the following : If we consider only the pair of Io and Europa and neglect
the presence of Ganymede and Callisto then the arguments presented in Section 6
would tell us that the outer satellite (Europa) should be at apojove and the inner
satellite should be at perijove whenever conjunctions occurred. Furthermore,
2n’ —n would be less than zero. The three restrictions just enumerated are
necessary conditions for a stable commensurability to exist between Io and
Europa. Since all three are satisfied in this case and in the case of Europa and
Ganymede as well, we may conclude that while no proof of the stability of these
two-body near-commensurabilities has been presented there is good reason to
believe that they are stable.

10. The Laplace relation.—The three-body commensurability between Io,
Europa and Ganymede was first discussed by Laplace and since then has been
investigated by many authors (7). In this system the commensurability relation
involves the mean-motions of these three bodies. (They will be denoted by
ny, ny and 7n3.) A, —3X,+ 2X3 oscillates about 180° with a very small amplitude.
The proof of the stability of this relation, under the action of tidal forces, involves
second order perturbation theory; otherwise it goes through in exactly the same
manner as the stability proofs in the two-body cases. The stability for this case
was known to Laplace (8). In this case also, the phase shift in ® is very small.
It can be estimated to be approximately 6 x 10~2/Q radians.
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In the past, several authors have placed lower limits on the value of Q (for a
definition of Q see Section 11) of Jupiter. This was accomplished by noting
that observations of Io (Jupiter I) gave no secular acceleration, to within the
observational accuracy. Lower bounds on Q as high as 10? have been set by this
method. It is interesting to see how the tidal stability of the commensurability
relation changes our estimates of this lower bound. The amount of angular
momentum which the tides transfer from the spin of Jupiter into orbital angular
momentum of the satellites is not affected by the commensurability. However, in
order to maintain the relation n, — 31, + 2n; =0, this angular momentum must be
shared among Jupiter’s satellites in a special way. Three possibilities will be
considered. They differ in their assumptions about the stability of the near-
commensurabilities between pairs of the Galilean satellites. These near-com-
mensurabilities may be written as 2n,—n,=0, 2n;—#n,=0 and 7n,—3n3=0.
These may or may not be stable relations (see Section 9). If we assume the
stability of the first two, two-body commensurabilities, and the three-body one,
then the lower bound of Q must be decreased by a factor of about 5. If we assume
all the above commensurabilities are stable, then we must decrease this bound by a
factor of approximately 7:4. If only the three-body commensurability is assumed
stable, we again get a reduction of about a factor 5.

11. The success of the hypothesis of tidal origin for the commensurabilities.—We
have proposed that commensurabilities are a consequence of the tidal evolution
of satellite orbits. If this hypothesis is to be tenable, the tidal evolution of the
satellite systems involved must have been appreciable. If we assume that these
satellites have existed for a time comparable to the age of the solar system (which
we take as 4 x 10° years) we can examine this question of tidal evolution in some
detail. The rate of change of a satellite’s mean motion due to tidal friction is

given by (9) dn,  27mt ) m\ (R\S 1
) TZt—T _ _4_(1‘_4)(;) (I_+_I_9M_>Q (17)

-

Here we have used a homogeneous sphere model of our planet. p, g, R, pand Q
are its density, surface gravity, radius, rigidity and specific dissipation function
respectively, O is defined as 27 times the peak energy stored in a cycle divided
by the energy dissipated over the cycle (for a more complete discussion of Q and
its relation to the phase lag of the tides see reference (10)). Jeffreys (11) has
tabulated d¢/dt (¢ is defined by n=ny¢—3 where n, is the present value of the mean
motion) for all satellites in the solar system. From his list we have selected those
values of dn/dt=d{[dt(1+19u/2gpR)Q which are greater than 1017sec—.
These quantities have been listed in Table VI.

From the results of previous sections we now know that stable commensur-
abilities exist between Mimas and Tethys, Enceladus and Dione, Titan and
Hyperion and Io, Europa and Ganymede. Furthermore, it is strongly suspected
that Io and Europa, Europa and Ganymede, and Ganymede and Callisto form
stable two-body commensurabilities while Dione, Rhea and Titan may possibly
take part in a stable three-body commensurability.

From Table VI (and remembering that Ganymede is being pushed out by Io
and Europa) we see that in all the above-mentioned commensurabilities, excepting
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the system of Titan and Hyperion, at least one of the satellites involved has
dn/dt>10714 (sec)~t. Turning this argument around, we may ask the following
question: what percentage of all satellites, for which dn/dt>10"14sec™? is
involved in a commensurability relation? Inspection of Table VI tells us that
every satellite, except Phobos, which fulfils this criterion is part of at least one
definitely stable commensurability. Furthermore, it is no surprise that Phobos
is not involved in a stable commensurability with Deimos, the other Martian
satellite. 'This is because the mutual gravitational interactions between them are
very weak as a consequence of their small size (about 8 and 4km in radius,
respectively).

TasrLe VII
Satellite dn/dt=d{[dt(1 + 19uf2gpR)O(sec)?
Phobos 2:6 x 10714
Jupiter V 7:0X 10718
Io 4-9gx 10718
Europa 16 x 10714
Ganymede 2°5 X 10715
Callisto 40%x 10717
Mimas 40X 10714
Enceladus 16 X 10714
Tethys 32X 10714
Dione 1'ox 10”14
Rhea 20X 10718
Titan 69 x 10718
Ariel 23X 10710

Looking at the Jovian commensurabilities, we see that the only condition that
must be satisfied, in order that a tidal origin theory be tenable, is that the tidal
evolution of Io’s orbit has been appreciable. This being the case Io would have
pushed out the orbits of the next two Galilean satellites as a consequence of their
commensurability. :

In the Saturnian system, we have three stable two-body near-commensura-
bilities. In this case the condition that a tidal theory of origin be tenable is a far
stricter one than for the Jovian system. Due to the strong dependence of a
satellite’s tidal acceleration on the distance from its primary the present value of
d£|dt, for a satellite whose orbit has undergone appreciable tidal evolution, is very
closely specified. We can express this behaviour quantitatively by integrating

equation (17) to obtain:
3/13
I: /(1—13 7 >:| . (18)

In this equation T is the time elapsed since the satellite’s mean motion was 7.
If we consider two satellites whose values of d¢/dt differ by a factor of 10, then
assuming the maximum possible change in 7 for the satellite with greater d¢/dt
we see that n/ny= (10/9)13 = 1-023 for the other satellite. 'Thus the mean motion
of the satellite with smaller d¢/dt was only changed by 2 per cent. 'This example
illustrates the severe restriction our tidal hypothesis places on the present values of
d¢/dt. For if all the satellites involved in commensurabilities are assumed to be of
the same age, and in addition the orbit of at least one satellite in each commen-
surate pair is assumed to have undergone appreciable tidal evolution, then the

I2
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present values of d¢/dt for these satellites should be very similar. In the Jovian
system this requirement presents no test of the theory since it is only necessary
that Io’s orbit should have been appreciably expanded by the direct action of the
tides. In Saturn’ssystem however, thesituationis quite different. Here we have
three distinct cases of two-body near-commensurabilities. For the pairs of
Enceladus and Dione and Mimas and Tethys we find d¢/dt for the four satellites
varying by a factor four. Given the uncertainties involved in taking Q indepen-
dent of the frequency and amplitude of the tides, as well as the assumption that
these satellites are all of the same age, this agreement is remarkably close and offers
some evidence for our hypothesis. The third near-commensurate pair in Saturn’s
system, that of Titan and Hyperion, presents quite another story. By far the
larger values of dn/dt (6-9 x 10~1%sec) belong to Titan. However, this value is
very small when compared to the values of Enceladus, Dione, Mimas and Tethys.
In this case we are forced to admit that this near-commensurability is due to chance
or, in other words, to a particular set of initial conditions. It could not have arisen
from any conceivable tidal evolution. Of course, once it had been formed it
would not have been broken down by the tides since Titan has Hyperion very
firmly locked into this commensurability. At first sight this exception to our
hypothesis might seem to spell its downfall.  Fortunately, this does not turn out
to be the case. Using the results quoted in Section 1, we may observe that in a
random sample of 46 ratios of mean motions, the expected number, having e
smaller than that for the system of Titan and Hyperion is about one. Thus we
may safely conclude that this commensurability arose by chance.

Thus far in this section we have shown that the stable commensurabilities
involve those satellites for which d¢/dt is greatest (with the exception of the
Titan-Hyperion commensurability). 'This behaviour is in complete accord with
what would be expected if these commensurabilities were of tidal origin. Further
more, if we subtract from the listed number of observed near-commensurabilities,
those which we believe to have been formed by the tides, the Table IT will show
no significant preference for near-commensurability among the remaining ratios
of meanmotions. Thisagreementiseven morestriking when we take intoaccount
the possibility of ‘‘multiple counts *’ discussed in Section 1.

We may conclude this section by stating that insofar as they have any leaning
on our hypothesis, the observations fully tend to confirm it.

12. Estimates of Q.—Information obtained about the Q’s of Jupiter and Saturn
is summarized in this section.  Strictly speaking, all numbers refer to the combina-
tion O(1+ 19u/2gpR). However, (1+19u/2gpR) is likely to be very close to
unity for these planets. For this reason we shall always refer to Q in what follows.

A method of bounding Q from below that immediately suggests itself is the
following. We assume that all the inner satellites of these planets were formed
(with essentially their present masses) at about the same time that the Earth was
(about 4 x 10%years ago). 'Then assuming, in addition, the Q was constant during
this period we may apply equation (18) which tells us each satellite’s value of #
(as a function of Q) 4 x 10°years ago. We then ask for the smallest value of Q,
consistent with none of the satellites being at its planet’s surface less than 4 x 10°
yearsago. 'This gives us the first lower bound for Q. Any bound derived in this
manner is open to some doubt owing to the presence of cooperative interactions
between the satellites in question. However, bearing this in mind we have
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calcuated this bound using the values appropriate to the satellite of each planet
with the greatest value of df/d¢ (see Table VI). In this manner we arrive at
the results listed below. '

QO for Jupiter >7:6 x 105 (based on d¢/dt for Io)
O for Saturn > 6-4 x 10* (based on d¢/dt for Mimas).

However, if we use the additional information (see Section 10) that Io is involved
in at least one stable commensurability, then this bound for Q is lowered by a
factor of between 5 and 7-5.

It is perhaps worth mentioning that if the procedure described above is applied
to the Earth-Moon system a puzzling result is obtained. In this case d¢/dt is
known from observation. However, using the observed value of d¢/dt is equation
(18) we find that the Moon should have been near the Earth approximately
1-6 x 10%years ago. Possible resolutions of this apparent paradox are discussed
by MacDonald (12). Theyinvolve the rejection of one or both of the assumptions
made above. Firstly, that the value for the O of the Earth has been sensibly
constant during the Earth’s history and secondly, that the Moon, with essentially
its present mass, has been in an Earth orbit for approximately the lifetime of the
Earth. ‘

The second method of deriving a lower bound for the Q of Jupiter is by direct
observation of the secular acceleration of Io. The absence of any observable
secular acceleration has produced a lower bound of 10% in past discussions. As
mentioned in Section 10 these observations must be interpreted in light of the
commensurabilities among Jupiters’ Galilean satellites. If this is done we arrive
at a lower bound between (1-5—2) x 102 for the Q of Jupiter. 'This bound, unlike
the previous one, does not depend on any assumptions concerning the ancient
history of these satellites.

Upper bounds for the Q’s of Jupiter and Saturn may be estimated if we make
the additional assumption of the tidal origin of commensurabilities. This asump-
tion implies that those satellites which are involved in commensurabilities have
had considerable evolution of their mean motions. This conclusion tells us that
the first set of lower bounds for Q, derived in this section, is also close to the upper
bounds for Q. In conclusion, our best estimates of the Q’s of Jupiter and Saturn
are listed below.

For Jupiter Q=~(1—2)x10°

For Saturn Q~(6—7) x 10t

13. Further areas for possible investigations.—In this paper we investigated
the stability of commensurabilities under the action of tidal forces. However,
no analysis of the formation of these commensurabilities was presented. It is
of crucial importance to our arguments to understand this problem in some detail.
In particular, we would wish to understand how the amplitude of free libration
depends on the conditions of formation of a commensurability. Even more
important would be the discovery of some criterion which could tell us the condi-
tions necessary for the formation of a commensurability. At present, these are
completely unknown.

Another area for further investigation is the search for stable commensura-
bilities involving three or more satellites. One possible example of such a case

12%
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is described below. Denoting the elements of Dione, Rhea and Titan by the
subscripts 4, 5 and 6 respectively, the following relations may be noted:

6mg — 575+ 2m; = 000081529 degrees per day (13)

d
7 (@4+2Q3)=0'0815 + 0-001 degrees per day (14).

Hence,

d
6ng—5n5+2n,— p (@4+ 2£25) =000-0000 + 0-0001 degrees per day.

We see that this relation holds to within the observational accuracy of six signi-
ficant figures. Ifitis a stable commensurability relation then a direct observation
of the tidal phase shift should be possible.

The stable commensurability relations which were discussed in this paper
referred only to satellite systems and not to the planetary system. Tidal effects
on the planet’s orbits are too small to have any significance, even over ages com-
parable to that of the solar system. However, the stability proof discussed in this
paper, would apply equally well to other phenomena which might produce secular
changes in the semi-major axis of planets or satellites. In particular during the
process of planet formation such forces would undoubtedly have existed in one
form or another. Itisthen possible that the planets might also have been involved
in commensurability relations of the types discussed, and that their present
distribution of mean motions is at least partially a reflection of these relations.
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