Examen – 10 janvier 2011 Partie: ordres de grandeur et physique stellaire Corrigé succint

Etoiles

- 1- $M_{*,\rm min} \sim 0.08 M_{\odot}$. Pour $M \leq M_{*,\rm min}$, la pression de Fermi devient trop importante, ce qui stoppe la contraction du corps et empêche d'atteindre la température critique $T \sim 10^7$ K au-delà de laquelle peut se produire la réaction thermonucléaire $4H \to H_e+$ énergie.
- **2-** $M_{*,\rm max} \sim 100 M_{\odot}$. Pour $M \geq M_{*,\rm max}$, la pression interne des photons devient supérieure à la pression exercée par la gravité: l'étoile explose. De plus une telle étoile vivrait de toute manière très peu de temps.
- **3-** $t_{{
 m vie},\odot}\sim 10$ milliards d'années. Fusion thermonucléaire $H\to H_e+$ énergie.
- **4** La phase la plus longue de la vie stellaire est celle où elle produit de l'énergie thermonucléaire. Donc les étoiles "s'accumulent" dans la SP (effet "embouteillage").
- 5- $L \propto M^3$
- **6** Stock d'énergie thermonucléaire totale $\propto M$, taux de perte d'énergie $=L \propto M^3$, donc durée de vie $\propto M/L = 1/M^2$.
- 7- $t_{\rm vie}=t_{\rm vie,\odot}(M_{\odot}/M)^3$. Pour $M=0.08M_{\odot}$, $t_{\rm vie}\sim2\times10^{13}$ ans. Largement supérieure à l'âge de l'Univers ($\sim1.4\times10^{10}$ ans).
- **8-** $m_v=M_V+5\log_{10}(d_{\rm pc}/10)\sim 24$. Détectables car instruments actuels détectent jusqu'à $m_v\sim 28-30$.
- **9-** $gt_{\rm cl}^2 \sim R$, $g \sim GM/R^2$, soit $t_{\rm cl}^2 \sim R^3/GM \sim 1/G\rho$.
- **10** AN. $t_{\rm cl} \sim 1$ seconde.
- **11** AN. $t_{\rm cl} \sim 30$ millions d'années.
- 12- Ce temps est court par rapport à l'âge de la Galaxie ($\sim 14 \times 10^9$ ans). Donc des étoiles peuvent se former continuellement dans notre Galaxie.