Contrôle continu – 26 octobre 2011 - 30 minutes Partie ordres de grandeur et physique stellaire Sans documents, calculatrices de type collège autorisées

- 1- Donner la définition de l'unité astronomique, du parsec.
- 2- En déduire la valeur du parsec en unités astronomiques.
- **3-** Rappeler le diamètre typique du disque de notre Galaxie, et les distances typiques des galaxies les plus proches de nous.
- **4** Quel est le rapport des flux reçus du Soleil (magnitude apparente -27) et de la pleine Lune (magnitude apparente -12)?
- 5- La fusion nucléaire dans le Soleil transforme l'hydrogène en hélium:

$$p^+ + p^+ + p^+ + p^+ \longrightarrow {}^4H_{\rm e}^{++} + 2e^+ + 2\gamma + 2\nu_e.$$

Que représentent e^+ , γ et ν_e ?

Au cours de cette réaction, il y a une perte de masse de $0.028m_p$, où m_p est la masse du proton. Estimer la durée de vie du Soleil, sachant que seulement une fraction $f{=}10\%$ de la masse du Soleil participe aux réactions nucléaires, au centre de l'astre, et que le Soleil est essentiellement composé d'hydrogène.

Conclusion?

6- Estimer le rayon de Bételgeuse, sachant que sa température photosphérique est de $T\approx 3500$ K et que sa luminosité vaut $L\approx 3\times 10^5 L_\odot$ (où L_\odot est la luminosité du Soleil). On donnera ce rayon en UA.

Le comparer aux orbites planétaires de notre système solaire.

Quantités utiles:

Masse du Soleil: $M_{\odot}=2\times10^{30}~{\rm kg}$ Rayon du Soleil: $R_{\odot}=7\times10^8~{\rm m}$

Température photosphérique du Soleil: $T_{\odot} = 5770 \text{ K}$

Masse du proton: $m_p=1.67\times 10^{-27}~{\rm kg}$