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In the first two sections of this paper, the two basic methods of reducing occulta-
tion light curves—ocurve fitting and inversion—are reviewed and compared. It is
shown that the curve fitting methods have severe problems of nonuniqueness. In
addition, in the case of occultation curves dominated by spikes, it is not clear that
such solutions are meaningful. The inversion method does not suffer from these
drawbacks. Methods of deriving temperature profiles from refractivity profiles are
dealt with in the third section. It is shown that, although the temperature profiles
are sensitive to small errors in the refractivity profile, accurate temperatures can
be obtained, particularly at the deeper levels of the atmosphere. The final section
contains a brief discussion of the ambiguities that arise when the occultation curve

straddles the turbopause.

INTRODUCTION

Occultations of bright stars by planets
provide important information about
planetary upper atmospheres. By observ-
ing the rate of change of the star’s bright-
ness as it is occulted, the refractivity as a
function of height in the planet’s upper
atmosphere can be determined. To date,
four planetary occultations have been
observed successfully : ¢ Arietis by Jupiter
(Baum and Code, 1953), Regulus by Venus
(de Vaucouleurs and Menzel, 1960), BD
—17° 4388 by Neptune (Freeman and
Lynga, 1970; and others), and Beta
Scorpii by Jupiter (Veverka et al., 1971;
Hubbard et al., 1972; and others).

The details of a typical occultation of a
star by a planet are discussed by Baum and
Code (1953) and depicted schematically in
Fig. 1. As the star is occulted by the planet,
its rate of disappearance is determined by
the spreading of its light due to differential
refraction; ordinary extinction effects are
negligible. The total bending of a light ray,
8(r,), whose closest approach to the center
of the planet is »,, is given by

400 1 dn +°°dv
O(Tl)zf_w(%%)dx -

~ - - dx
o AT
Here n = n(r) is the index of refraction at
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(1)

level », v = n — 1 is the refractivity, and dx
is an increment of path length along the
direction of the ray (8 is assumed to be
small). The resulting occultation curve is
given by

(#*/¢) — 1 = D(dd/dr) (2)

where ¢* = unocculted star flux, ¢ = ¢(f) =
star flux at time ¢, and D = Earth—planet
distance. The parameters are defined such
that r increases upwards, v is everywhere
positive and increases inwards, 6 is every-
where negative, and || increases inwards.
Therefore, dv/dr is negative and df/dr is
positive.

Two different methods are available for
deriving information about atmospheric
structure from occultation curves. First,
an atmospheric profile can be assumed (one
specifies v as a function of ), and a synthetic
occultation curve is calculated which is
then compared with the observed curve.
The refractivity profile is varied until a
match which is considered satisfactory is
obtained. This procedure has been adopted
commonly in the past, but only for
restricted classes of »(r): for isothermal,
homogeneous, constant scale height atmos-
pheres (Baum and Code, 1953; Freeman
and Lynga, 1970), and for similar linear
temperature gradient atmospheres (Gold-
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F1a. 1. Schematic occultation scene. The frame of reference is such that the planet is stationary
and the observer moves with veloecity —v. The ray shown is bent by total amount 6, and its closest

point of approach to the center of the planet is »,.

smith, 1963; de Vaucouleurs and Menzel,
1960).

The second method for occultation light
curve reduction uses the fact that dé/dr can
be determined directly from the observa-
tions. Then, v(r) can be obtained from (1)
by inverting this integral equation. This
method has been used successfully by
Kovalevsky and Link, (1969) and by
Hubbard et al. (1972) in reducing occulta-
tion light curves and by Fjeldbo and his
coworkers in reducing spacecraft radio
occultation data (see for example, Fjeldbo,
Kliore, and Eshleman, 1971).

In occultation light curve work, the first
method has been used more frequently than
the second (in addition to references above,
see Freeman and Stokes, 1972; Larson,
1972), probably because its application is
computationally trivial. However, as we
shall show, in the case of occultation light
curves containing spikes, this method
cannot be applied meaningfully, and
attempts to do so lead to deceptive results.
Therefore, this approach must be avoided
in such cases.

Parrt I. FirsT METHOD : CURVE FITTING
1. Spikeless Occultation Curves.: Effects of
Noise

Given the density structure of a well-
mixed atmosphere, the problem is to derive

the occultation light curve, which is to be
compared with the observed occultation
curve., The density structure is altered
until a satisfactory match between the
calculated and the observed curves is
obtained. Although this method has been
applied frequently in the past, no discussion
of the effects of noise has been given.
Thesefore, we begin by considering this
question.

For simplicity, we will deal only with
homogeneous, isothermal, constant scale
height atmospheres. This case is of special
relevance since it has been used commonly
in past analyses of occultation light curves.

In the absence of noise, for an isothermal
atmosphere with scale height:

H = RT|pg,

the resulting occultation light curve is
given by the “Baum and Code” (1953)
equation:

4wl o

where

v = speed of the observer relative to the
planet’slimb. The planet is assumed
stationary, and the observer moves
in the —y direction (Fig. 1), -

t, = “time of occultation” = time for
which ¢ = ¢*/2,
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Fia. 2. Model light curve. Isothermal atmos-
phere v/H = 0.5sec™!.

g = acceleration due to gravity (assumed
constant),

p = mean molecular weight of atmos-
phere (assumed constant),

T = temperature of isothermal atmos-
phere, and

R = universal gas constant.

The quantities ¢ and ¢* have been previ-
ously defined in connection with Hq. (2).
We now consider how the comparison
between a calculated occultation curve and
an observed curve is affected by the
presence of noise. To make the discussion
concrete we deal with a particular, repre-
sentative case: a Baum and Code occulta-
tion curve for which v/H = 0.5sec™!. The
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theoretical curve for this case (Eq. 3) is
plotted in Fig. 2 from (&t —¢, ¢/¢*)=
(—15, 0.999) to (£ — to, $/d*) = (45, 0.046),
f being given in seconds.

The simplest way of obtaining v/H from
such a curve is to plot the quantity

[($*/¢) — 2) + In[($*/¢) — 1] = B(d*/¢)

against ¢. The result will be a straight line
with slope v/H , which crosses the horizontal
axisatf = t, (the “time of the occultation’).
Noise tends to make the fitted straight line
steeper; that is, it increases the inferred
value of v/H. However, since the effects
of noise on B(¢*/¢) are different at the two
ends of the range of the function (Fig. 3),
the fit is much more sensitive to noise on
the tail of the light curve where B(¢*/4)
goes to infinity as 1/X as X =¢/d* -0
than on the shoulder, where it goes to
minus infinity as InX as X — 1.

Artificial noise was superimposed on the
curve shown in Fig. 2, by generating ran-
dom numbers having a Gaussian distribu-
tion with zero mean value, and standard
deviation ¢. For each value of o, five
different runs were made.

For the reasons given above, in using
the straight line method, points near X =0
and X = 1should be avoided. To emphasize
this, we have carried out two sets of
calculations for the artificially noisy v/H =

[-3.086

'-5585
06
-20
L 1 oo o vl
0.0t 005 o1 0.2 05 1
Xz /™

Fia. 3. Behaviour of the Baum and Code function B(X) as a function of X.
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TABLE I

ErrEcTs OF NOISE: STRAIGHT-LINE FIT (0.999 > X > 0.01)*

Fitted parameters

Noise
level Trial 1 Trial 2 Trial 3 Trial 4 Trial 5
c=0.0 v/H 0.500
to 0.0
R 1.0
o = 0.005 v/H 0.599 0.871 0.636 0.724 1.376
to 3.98 16.97 9.22 13.01 27.02
R 0.686 0.315 0.615 0.623 0.185
o =0.010 v/H 0.970 1.232 1.408 0.758 0.843
to 15.09 19.22 27.89 4.95 3.08
R 0.209 0.281 0.176 0.432 0.235
o= 0.025 v/H 1.543 0.778 1.546 0.654 0.612
to 9.78 —16.17 25.53 —40.53 —13.8
R 0.117 0.168 0.151 0.137 0.274

¢ R 1s the regression coefficient. Values of R close to unity indicate good fits ; values much less than

unity indicate poor fits.

0.53sec™! data using the ranges (0.999 >
X >0.01) and (0.9> X > 0.1), respect-
ively. The fits were done by least squares.
The results are given in Tables I and II.

From Table I (0.999 > X > 0.01) it is
clear that, even in the presence of very
small amounts of noise (o= 0.005), ex-
tremely poor fits result. All fitted values
of v/H are larger than the true value, as
predicted above.

Reasonable results can be obtained by
avoiding the shoulder and tail of the
occultation curve and restricting the
straight line fit to the range 0.9> X >
0.1 (Table I1), but only if the noise level is
low. For noise levels =5%, meaningful
results cannot be expected. Usually, but
not always, a large regression coefficient
indicates a derived v/H close to the true
value.

Another method of fitting the same type
of data consists of finding the particular
values of »/H and ¢, which, when inserted
into Eq. (3), minimize the sum of the
squares of the differences between the
observed and calculated curves. This
method has an important advantage over
the previous one, since there is no undue
difficulty with data points close to X =0

or X =1. Results of a noise analysis
similar to that used in generating Tables 1
and IT are shown in Table ITI. This method
appears to give acceptable results even in
the presence of large amounts of noise and
appears to be preferable, in this respect, to
the straight line method discussed previ-
ously.

This method is, however, sensitive to the
choice of the zero and unity levels. This
problem has been discussed by Hubbard
et al. (1972).

2. Occuliation Curves with Spikes

A common feature of many occultation
curves is the presence of “spikes”—abrupt
intensity flashes probably due to fluctua-
tions in the atmospheric density structure
(Freeman and Lynga, 1970; Veverka et al.,
1971). A typical occultation light curve,
for the emersion of 8 Sco AB (May 13, 1971)
is shown in Fig. 4a, at a time resolution
of 0.1sec; also shown is the Fourier analysis
of this curve using 10 to 600 terms (Figs.
4b—-4g). Clearly the spikes represent the
high frequency component of the data, but
it cannot be true that they are ignorable
from the point of view of determining
atmospheric structure (as stated by Free-
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TABLE IT

ErrFEcTS OoF NOISE: STRAIGHT-LINE FIT (0.9 > X > 0.1)

Fitted parameters

Noise
level Trial 1 Trial 2 Trial 3 Trial 4 Trial 5

g=0.0 v/H 0.5
to 0.0
R 1.0

o= 0.005 v/H 0.504 0.500 0.491 0.498 0.496
to 0.03 0.01 0.02 —0.02 —-0.03
R 0.997 0.999 0.997 0.998 0.998

o=0.025 v/H 0.514 0.477 0.510 0.556 0.485
to 0.01 -0.11 —0.22 —0.08 —0.33
R 0.936 0.951 0.942 0.938 0.946

o = 0.050 v/H 0.815 0.658 0.547 0.486 1.009
to 0.16 —0.59 —0.28 0.12 0.24
R 0.738 0.689 0.806 0.922 0.345

o = 0.070 v/H 0.476 0.948 0.661 0.506 0.539
to —(.63 --1.85 —0.56 —0.10 -0.11
R 0.753 0.308 0.601 0.790 0.689

o= 0.090 v/H 1.239 1.025 0.720 3.944 0.500
to —1.28 0.03 0.32 —1.25 -2.50
R 0.270 0.328 0.732 0.162 0.565

man and Lynga (1970), for example).
Fitting a curve through the bottom of the
spikes cannot give the true atmospheric
profile since by conservation of photons the
light in the spikes must come from some-
where. On the other hand, it is not clear
that fitting a Baum and Code type curve

to an occultation light curve by least
squares is the answer. What is the meaning
of such a “solution’? Tt is our impression
that in the presence of spikes, occultation
curves cannot be analyzed meaningfully
by curve fitting; the inversion technique,
described in Part IT, must be used.

TABLE III

EFrECTS OF NoOISE: LEAST-SQUARES FiT FOR v/H AND {,

Fitted parameters

Noise - : —
level Trial 1 Trial 2 Trial 3 Trial 4 Trial 5
o=0.0 v/H 0.50
to 0.0
o= 0.025 v/H 0.52 0.52 0.50 0.50 0.50
to 0.1 0.2 0.1 0 0
o= 0.05 v/H 0.50 0.46 0.52 0.50 0.54
t 0.3 0.1 0.1 —0.1 0.1
o= 0.075 v/H 0.46 0.52 0.48 0.48 0.50
to 0.2 0.2 —0.3 0.3 —-0.2
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Fic. 4. Fourier analysis of an occultation curve. Shown are: (a) Observed light curve for the
emersion of B Sco AB at 0.1sec resolution. (b) Reconstructed curve using 600 Fourier components,
(c) 300 components, (d) 100, (e) 50, (f) 25, and (g) 10 components.

3. Uniqueness of Isothermal Solutions

At this point we must briefly consider
the uniqueness of the inferred atmospheric
profiles. To simplify the discussion we will
deal only with occultation curves totally
free of spikes and noise. It is clear that the
presence of noise will increase the difficulty
of reconstructing the true atmospheric
profile correctly.

Assuming that an isothermal fit to an
observed (spikeless) occultation curve has
been obtained, does this mean that the
atmosphere is isothermal? The answer is
definitely no, as was first shown explicitly
by Goldsmith (1963), who considered
atmospheres in which the temperature
varies linearly with height, while the mean
molecular weight remains constant. Thatis,

Tr)y=Ty+ I'(r—ry)
and (4)
H(r)y=H,+ G(r —r,)

where I'=dT/dr and G = RIjug. The

resulting occultation curve is given by,
o(t — ty) 1

X
=
——
%

|
N i

)(v+3/2)/(y+5/2)
_ 1}

)—1/(v+5/2):,

(5)
where y = 1/6.
For G — 0 this reduces to:

= a2 e )]

(6)
For G =0 this is the Baum and Code

equation (3). Equation (6) can be reduced
to a Baum and Code form by setting

H=Hy/(1+36)

(7)

In other words, for G small, a linear tem-
perature gradient atmosphere will produce
an occultation light curve which looks like
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Fi1a. 5. Best isothermal fit to a Goldsmith linear scale height gradient atmosphere. (Hy = 25km,

G = +0.1).

that produced by an isothermal atmosphere
of a different scale height. To illustrate this
we have generated a series of occultation
curves using Kq. (5) and the following
parameters: v = 8.5km/sec; H,=25km;
& =0.1,-0.1, and +0.3.

For each case, the best isothermal fit
was found by varying A and ¢, to minimize
the sum of the squares of the differences
between the two curves. The results are
shown in Figs. 5, 6, and 7. In each case, the
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isothermal fit agrees with the Goldsmith
curve to within a few percent, and in the
presence of small amounts of random noise
tt would be impossible to notice a difference.
For instance, for the case shown in Fig. 5,
a Goldsmith atmosphere with H, = 25km
and G =0.1 can be confused with an
isothermal atmosphere with H = 19.8km.
Equation (7) gives H = 22km, but this
expression is only approximate for & 5 0.
For ¢ = 0.3 (Fig. 7), H = 14.4km for the

Goldsmith ( Ho= 25km,G=-0.1)
Best fit Isothermol {H; *339km}

Fic. 6. Best isothermal fit to a Goldsmith linear scale height gradient atmosphere. (Hy = 25km,

G =-0.1)
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F1c. 7. Best isothermal fit to a Goldsmith linear scale height gradient atmosphere (Hy = 25km,

G =+0.3),

best isothermal fit; Eq. (7) predicts a
value of 17.3km.

This illustrates one important ambi-
guity, first stressed by Goldsmith (1963),
but ignored by many subsequent authors:
the occultation curve of any specific iso-
thermal atmosphere is for practical pur-
poses indistinguishable from that of a
family of constant gradient atmospheres.

More generally, it is often easy to find
excellent isothermal fits to occultation
light curves even when the true atmos-
pheric structure is quite nonisothermal.
One such example discussed in Part IV, is
shown in Fig. 18.

Part I1. SECOND METHOD : INVERSION

1. Review of the Inversion Method

We now show that the second method of
analysis_by formal inversion of the light
curve, is the preferable form of analysis,
and that it yields good results even in the
presence of numerous spikes. Since the
method is well-known and has been used in
the past by Kovalevsky and Link (1969)
and Hubbard et al. (1972) as well as by
Fjeldbo, Kliore, and Eshleman (1971) for
radio occultations, we review it briefly and
then show that the algorithm can be used
to successfully invert occultation curves

dominated by spikes. The uniqueness of
solutions found by this method is briefly
discussed in Section I1-2, as are the effects
of random noise.

It should be clear, that, whenever spikes
dominate an occultation curve, the inver-
sion method must lead to better results
than the curve fitting methods discussed in
Part I, because the inversion method uses
the information about the atmosphere
contained in the spikes. The curve fitting
method ignores this information.

In this discussion, it is assumed that
spikes are due to small density fluctuations
in the vertical structure of the atmosphere
as proposed by Freeman and Lyngé (1970).
In seeking a solution by inversion it is
implicitly assumed that ray crossing is
negligible. On this assumption, which
amounts to saying that the spikes really
occur at the level in the atmosphere indi-
cated by their position on the occultation
curve, even very spiky occultation curves
can be inverted successfully to yield
refractivity profiles. The spikes translate
into very small fluctuations in the refrac-
tivity profile (Fig. 9), and it is therefore
probably true that the inferred refractivity
profile is essentially correct even if some of
the spikes are due to severe ray crossing.
At any rate, in the usual case, there is no
way in which ray crossing can be dealt
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with, and therefore the assumption that it
is negligible is unavoidable.

The total bending of a light ray passing
through a spherically symmetric atmos-
phere is given by equation (1), which may
be written as:

(r)

where 7| is the distance of the ray at closest
approach from the center of the planet
(Fig. 1), and K(r) is the curvature of the
ray:

K(r)= (1/n)(dn/dr) = (d/dr)(Inn).

f(r,) = +z K(r)dx

We are adopting the assumptions listed,
and shown to be valid for a typical stellar
occultation, by Baum and Code (1953). A
more general treatment, applicable to radio
occultations is given by Fjeldbo et al.
(1971).

From the geometry of Fig. 1,

2 2

2t =712 —7r?

and
rdr

(7.2 — 7.12)1/2

dx =

Hence Eq. (1) may be rewritten as:

O(r,) =2 fw rdjdr)(inn)dr - o)

(rF = )7

The task is to invert this integral equation
to yield n = n(r).

Letting »,> = 1/s and r? = ljw, Eq. (8)
becomes:

s g, o

o \W

where
S(w) = (w'2[2)-(d/dw)-In (n).

Since the major part of the bending of
the light ray takes place over only a few
scale heights, and since H <r,, we can
approximate the » in the numerator of the
integrand of (8) by r,, in which case
(s/w)? =1, and we arrive at an Abel
integral equation:

o) — 2 f P(w) dw

e
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whose solution is (Bateman, 1910)
o Ld ™ f(s)ds
YO = o fo {w— sy

Recalling the definitions of the symbols,
we may rewrite this as

(11)

d L od [ () dr
LR e

and, after some manipulation, simplify to

d o ld [ 6()dr
L A

The conditions which must be satisfied for
Ji(w) given by (11) to be a unique solution
of (10), and to be continuous in the interval
(0 <w < b), are given by Bateman (1910).
These conditions are satisfied by typical
occultation light curves, on the assumption
that light rays do not cross.

Allowing the following approximations:

K(r) = (1/n)(dn/dr) ~ dn/dr
and 747, ~2r ~2R,
radius), Eq. (13) becomes:
dn -1 1 d J"O O(r,)dr,

r (7'1 - 7.)1/2

dr — = (2R,)*dr

(12)

(13)

(£, = planet’s

(137

This integral is negative and its magnitude
increases as 7 decreases. Therefore its
derivative with respect to r is positive and
dn/dr is negative, as it should be.

It follows from (13")

1 () dr

0 om0
where we are now using »’ as the dummy
variable of integration. Equation (14) is
the formal inversion of Eq. (8).

In order to evaluate (14) it is necessary
to determine 6(r) from the light curve data
points ¢(t). From the occultation geometry

(/¢ — 1) = D(46/4r) (2)

and
Ar + D46 = —p At

Solving this pair of equations for Arand 46:

Ar = v di($/¢*)
40 = —(1 — $/¢*)(v 4t/ D).
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Fi1c. 8. Schematic ray diagram illustrating how the various 46’s are obtained from the light

curve. (See text for details.)

Referring to Fig. 8, we set:
Ati =l
and
$i= (i1 + i)/2.
We arbitrarily start the integration at
some value of ¢ such that ¢/¢p* ~1 and

A48 ~ 0. At each time increment, we com-
pute 46, and 4r;. Then,

N
6, => 48,
1
N
r,= > Ar;
1

So that we have evaluated 6 on NV spherical,
concentric layers r| > r, > ry; > ... ry with
f; = 6(r;) such that |0,| < |0,] <\(9 | <..
|9N| Note that r, now denotes the upper-
most layer, rather than the level of closest
approach of a ray.

There are constraints on the practical
application of this procedure of determin-
ing (6,,7;). Starting too high in the atmos-
phere will lead to some positive 46’s (due
to noise). The 6 sum will be close to zero,
and the effect will average out. On the other
hand, at the other end of the occultation
curve, when the noise level is reached, and
occasional values of ¢/é* <0 are en-
countered, positive values of 4 result,
and these are meaningless. Therefore the
procedure must be stopped before the noise
dominated tail of the occultation light
curve is reached.

Since we cannot integrate to infinity in
Eq. (14), we must make the approximation

( "y dr’

1 r
v(r) ~ (ZR )1/2 f . (r' )i (15)

As it stands, Eq. (15) is not suitable for
numerical integration sincc the largest
contribution to the integral comes from
points close to #' = r where the integrand
has a singularity. The equation can be

integrated by parts (du =dr'[(+' —1)!/2,
v = (")) to give
_=2(ry — 1) 8(ry)
W =GR i

1 r ,
T AR f 20" —r)!'2deo
Then, the refractivity in the jth shell is
—20r, — 7,0,
vi= (ZR )1/2

)20
“’” sy — Ok_y)

(16)
As we have indicated, one would wish to
choose r; = « and 8, = 0(r,) = 0. But since
the occultation light curve does not extend
tor = «, it is necessary to start the integra-
tion at some point at which 6(r) is finite.
What is the error produced by this neces-
sary approximation?
Since from (14)

1
v(r) = (2R )1/2
@) dy’

a0y dr' "1
(e [ o] o
stopping the integration at » =, means
neglecting the second term as we did in
Eq. (15). The fractional error in v resulting
from this approximation is given by the
ratio of the second term to the first term,
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a quantity which we denote by €, (r,r,).
For an isothermal atmosphere

0(r") = B(rg) e oM

where r, is some reference level. In this
2 (r,r)y =1—erf [(r, —r)/H]V?. Thus for
(r,—7)=H, 2H, 3H, and 4H, ¢, = 16%,
5%, 1.5%, and 0.5%, respectively. Hence
a valid rule is that all values of v(r) deter-
mined from (16) for »; — r < 3H will have
significant errors (r, being the starting
point of the integration). Neglecting the
contribution to the total bending of layers
above the level r, will have almost no effect
on the values of v(r) inferred for layers for
which », —r > 3H.

The method outlined in this section has
been successfully used by Hubbard et al.
(1972) to invert occultation light curves.
We only wish to demonstrate that this
method works extremely well even in the
presence of numerous sharp spikes. In
Fig. 9 are shown: (a) an occultation light
curve obtained during the May 13, 1971
occultation of 8 Seco AB by Jupiter;
(insert) the inferred refractivity profile
obtained using Eq. (16); and (b) the
reconstructed light curve generated using
this refractivity profile and Eq. (1). The
close resemblance between curves (a) and
(b) 1s convincing proof of the power of this
method even in the case of very “spiky”
light curves.

It should be noted that we always neglect
inferred values of v(») for about three scale
heights below the starting level 7, since
these values are likely to be vitiated by the
assumed starting conditions in Eq. (16).
Hubbard et al. (1972) have attempted to
extract information from this part of the
refractivity profile by introducing ‘“‘cor-
rections”. We briefly discuss why we have
chosen to avoid such procedures.

By starting the integration at level »,,
the neglected term, ¥, is given by

B -

v

p H )1/2 -/ H r, —r 1/2
— (érr‘R; 016 1 |:l 4erf(7f) :l

assuming an isothermal atmosphere with
scale height H, above the level r,. This is
the second term in Eq. (17).

Hubbard ef al. (1972) have used such an
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expression to correct their refractivity
profiles. They find H as the best isothermal
fit to their refractivity profile using a least
squares fit, and 8, from the fact that for an
isothermal atmosphere.

0, =—(H[D)($*[¢, — 1)

The value of (¢*/é,) is read from their best
isothermal fit at a time corresponding to
the first data point used in the inversion.
Since (¢*/é,) is very close to unity (~0.98),
a very small uncertainty in (¢*/¢,) leads
to a very large error in 8, and hence, in the
“correction” FE,. We have, therefore,
chosen not to follow such a procedure.

2. Solution by Inversion : Effects of Noise

Since real occultation light curves are
subject to noise, its effect on the refractivity
profile solutions obtained by the inversion
method must be considered. Each incre-
ment in 0, 460, depends only on the
corresponding flux at that level:

40; = —(vdt| D) (1 — ¢,/$¥)
and
0:1 - % Agb
1

so that for values of ¢;/¢* close to unity,
the percentage error in 46, is much larger
than the corresponding percentage error in
¢;/d*. That is, the values of 48, closest to
the top of the occultation curve (those at
the beginning of the integration) are the
most susceptible to noise fluctuations.
Therefore the etfects of noise should be most
pronounced on the upper portions of
inferred refractivity profiles. They will
tend to damp out lower down because

J
Vi~ kgl (e = 7 )0y — b))

and 6,.,—6,_,=40,+ 46,_,, so that
large errors in the first few values of 46,
are summed into all later values of v;. Their
relative significance will decrease rapidly,
as we go deeper and deeper into the
atmosphere, since the refractivity, v, is
increasing exponentially.

The effects of noise are difficult to study
with any generality, and we restrict our-
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selves to a few specific examples to get a
feeling for the situation :

A. A constant gradient atmosphere,
G =01, Hy~25km, v= 7.5km/sec.
No noise.

B. Same as (A), but with 3% random
noise,

C. An isothermal atmosphere, H = 20.02
km and » = 7.5km/sec. No noise.

D. Same as (C), but with 3% random
noise.

The light curves are shown in Figs. 10 and
11. The isothermal atmosphere chosen is
that whose light curve provides the best
fit to the constant gradient atmosphere (A)
with the constraint that for both curves
t=0at ¢*/d =2, 1e., f, = 0. This fit differs
from that in Fig. 5 because the constraints
are different.

The refractivity profiles, obtained by the
inversion technique described in Section
I1-1, are compared with the true profiles
in Figs. 12 and 13. Representative values
are tabulated in Tables IV and V. The
actual values of v shown are obtained from
the equation:

¢ L
v 1+,(r—r)] G (18)
0{ HO 0
’T‘Tﬁif?A
0
09
o8
'y
07
‘k‘h

Intensity
[e) o
v [22]
-

(o)
N

o []
n W
L

O,l[
I W B 1

1
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where :
vy =
H,?
2H, R )\? 1
e B Y

(18)

Here, Bisthe Beta Function. In our case
1/G =10, and B = 0.5284. The value of D
used was that corresponding to the distance
of Jupiter on May 13, 1971 (6.538 x 10®
km). For @ = 0 equation (18) reduces to

v = e r=ro/H (19)
vo = (H|D)(H|2wR,)'"2,
and H is the isothermal scale height.

In both cases in the absence of noise the
calculated values of v approach the true
refractivity profile from below since we are
neglecting contributions from the upper-
most layers of the atmosphere. The effect
of 3% noise for the isothermal case appears
as an additive factor of about 7 x 10~!3 in
the refractivity at the beginning of the
integration. Although this effect quickly
becomes negligible, it does significantly
affect the slope of the refractivity profile
for about the first 100km. The noise is
somewhat smaller in the linear gradient
case and damps out faster, although it is

B T T T T

| 1 - | E— I

-20 -15 -10 -5 0

S 10 15 20 25

Time (sec)

Fre. 10. The light curves for a constant gradient atmosphere G = 0.1, Hy = 25km, with no noise
(dashed) and with 3% random noise (solid). A value of v — 7.5 km/sec is assumed, typical for a

Jovian cecultation.
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Fic. 11. The curves for an isothermal atmosphere H = 20.02km, with no noise added (dashed),
and with 3% random noise (solid). The value of v is that used in Fig. 10.

important to note that the specific effects
of noise are only illustrative since we are
examining only one of an infinite number
of possibilities.

The conclusion to be drawn from this
exercise is that if the first three scale
heights of the refractivity profile are
ignored (as suggested in Section I1-1), then,
even in the presence of reasonable amounts
of noise, faithful refractivity profiles can

be obtained by the inversion method. High
quality observed light curves should have
less than 3% noise.

It should be noted from Figs. 12 and 13
that, even in the presence of 3% noise, the
linear temperature gradient atmosphere
can be distinguished from the isothermal
one. In the former case, at the deepest
levels, the refractivity profile is nonlinear
and concave upwards; in the second case

TABLE IV

SELECTED REFRACTIVITY VALUES FROM FIGURE 12¢

Inversion v

Actual v
7 (km) Plp* (Eq. 18) No noise 3% Noise
30.1 0.985 6.17 (—12) 2.35 (—12) 2.84 (—12)
50.0 0.975 1.18 (—11) 7.32 (—12) 7.25 (—12)
75.3 0.91 2.83 (—11) 2.33 (—11) 2.47 (—11)
100.1 0.79 7.24 (—11) 6.75 (—11) 7.20 (—11)
129.1 0.50 2.42 (- 10) 2.40 (-10) 2.53 (~11)
150.1 0.25 6.37 (—10) 6.44 (—10) 6.65 (—10)
165.2 0.10 1.35 (—9) 1.37 (=9) —

2 In the last three columns each number is to be multiplied by the power of ten

indicated within the brackets.
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TABLE V

SELECTED REFRACTIVITY VALUES FROM FIGURE 13¢

Actual v

r (km) bld* (Eq. 19)
25.3 0.99 1.07 (—12)
50.2 0.98 3.72 (-12)
75.1 0.94 1.29 (—11)
100.4 0.81 4.56 (<11)
130.6 0.50 2.07 (—10)
150.2 0.27 5.48 (—10)
168.2 0.10 1.35 (—9)

Inversion v

No noise 3% noise
4.64 (-13) 1.34 (—12)
2.84 (~12) 4.77 (~12)
1.19 (—11) 1.57 (—11)
4.50 (—11) 4.96 (—11)
2.10 (~10) 2.15 (=10)
5.59 (—10) 5.73 (=10)
1.38 (—9) —

¢ In the last three columns each number is to be multiplied by the power of ten

indicated within the brackets.

the profile is linear at these levels. This is
significant since the isothermal atmosphere
was chosen to have a light curve as close
as possible to that of the linear gradient
atmosphere with the constraint that they
both pass through ¢ =0 at ¢/¢* = 0.5. As
pointed out previously, this gives a slightly
different fit than that in Fig. 5, where we
have not imposed any constraints on the
fit.

Part III. TEMPERATURE PROFILES

1. Deriving Temperature Profiles from
Refractivity Profiles

To generate temperature profiles from
refractivity profiles, refractivities must
first be converted into densities. Assuming
a constant mean molecular weight:

p(r) = (ps/ve) v(r) (20)

0 T T T T T I S T T 7 T T T

IOQE‘ l

F

3 :O'OE
5 E ?
6 %
02 i
7
R I L L L1 I 1 1 L ' L s L L 1 L :i
o] 100 20 30 40 50 60 70 80 90 100 10 120 10 140 150 60 170 18

[o]

Depth (km})

Fia. 12. Refractivity profiles obtained by inverting the light curves shown in Fig. 10 compared
with the true refractivity profile (solid). The inverted profiles correspond to the cases of no random
noise added (dashed), and to 3% random noise added (dotted). (See Fig. 10.)
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Fic. 13. Refractivity profiles obtained by inverting the light curves shown in Fig. 11 compared
with the true refractivity profile (solid). The inverted profiles correspond to the cases of no random
noise added (dashed), and to 3% random noise added (dotted). (See Fig. 11.)

where the subscript s refers to STP con-
ditions and:

ps = pmy L (21)

where my = mass of a hydrogen atom
and L = Loschmidt’s number.

To proceed we must specify the composi-
tion of the atmosphere. Since most recent
occultations have involved the outer
planets, we shall couch our discussion in
terms of hydrogen—helium atmospheres.

For such atmospheres, the refractivity
at STP is given by

Vs = fue(Vs)ue +fH2 Vs)l-l2

where f,;, = helium fraction by number —
p/2—1 and fy, = hydrogen fraction by
number =1 — fHe The refractivities of
hydrogen and helium at STP can be
represented with sufficient accuracy for
present purposes by

By,
(Vs)He = AHe (1 + WI;_) ’

by = A (14 52)

where the wavelength A is in micrometers
and the dispersion constants according to

and

Allen (1963) are 4, = 3.48 x 1075, By =
2.3 x 1073, Ay, = 13.58 x 107°, and By, =
7.52 x 1073,

Once fy. or fy, is specified, the refrac-
tivity profile can be converted into a
density profile using the formulas above.

2. Algorithm for Deriving Temperature
Profiles

The temperature profile can be derived
from the density profile using the perfect
gas law and the equation of hydrostatic
equilibrium. Divide the atmosphere into
N plane parallel layers, numbered down-
ward 1 to N. Choose P, to be small, but
arbitrary. The values of p,, p,, ... py are
known from above, and the temperature
structure can be found from:

pi = (pi + Pis1)/2

dP; _—ﬁigAr
Py =3 AP+ P, 2)
T, zfﬂ"_@.
kpi 1

It is clear that in the uppermost layers
the temperature derived will depend
significantly on the boundary condition:
P,. However, for P, > P, this influence
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should become negligible. This is illustrated
in the following section where the converg-
ence properties of the algorithm in the
case of a linear temperature gradient
atmosphere are studied.

3. Convergence of the Temperature Algor-
tthm n the Special Case of a Linear
Temperature Gradient Atmosphere

For alinear temperature gradient atmos-

phere (Goldsmith, 1963)
G -l
p=po|l+ ~(7‘~7)] (23)

Po l: HO 0
where the subscript zero refers to the level
at which ¢*/¢ =2, H = H,; also y = 1/G.
The pressure as a function of height is
given by

Piry="r, - J:l oy dr

where P, is the assumed pressure at the
boundary #»=r,. Substituting (23) and
integrating:

1

G -7
P(r) =P, +Po[10g([1+}7("'70)]
. 0

¢ - |
“'[”p’; (r, —70)} ) (24)
which, using the perfect gas law, gives
() = Py pogHowmy
kp kp
1. @ - “ .
Arem ool g el )
(25)

and eliminating p by using (23), we finally
have:

Hyum
T(r) = -"7012’“ "

G G ¥
R | A LR
prmy Py gHopmuly G T
gl ko i [”HO(“ ) )
(26)
Recall that P, represents the assumed

boundary value of the pressure, and say
that the true value is P,?, so that

P,=A-P} 27)
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where 4 is a constant. Since:
Py' = Po[1 4+ (G[Hy)r, — 1)),
Ty =gH,pumylk,
dT[dr = T(G[H,) = gGumy|k,

and P, = (po/umy) kT, Eq. (26) may *be
rewritten in the form:

Tiry="T,

4T ¢ v
t o r )+ [1 + H, (r— 7’0)]
e el -,

(28)

which gives the temperature profile in-
ferred in terms of the error factor A4
[Eq. (27)]. When 4 =1, Eq. (28) reduces,
as it should, to:

Tw)y=T,+ dT[dr){r — rqy)

Equation (28) can now be used to study
the effects of the pressure boundary con-
dition at 7, on the inferred temperature
profile. The problem cannot be pursued
in total generality and we consider only
two illustrative examples for the case
A = 0. This choice for 4 is reasonable since
the usual assumption is that P, =0 at
F=T,.

Table VI shows the results of these
calculations for atmospheres having T, =
150°K and G = +0.1 and —0.1 respectively.
Note that in this case, r — 7 is related to ¢
(the light curve flux) by:

(r = ro)[H =y [($*/ — 1)~/ — 1],
(30)

Ifin practice r = r| is taken to correspond
to the ¢ = 0.984* level, then for ¢ = +0.1,
r, —ro=3.7T Hy. For ¢ = —-0.1, the value
is 4.1 [,. Recall that ry i3 the level for
which ¢ = 0.50¢%.

It is clear from Table VI that the
temperature profile does not begin to
converge to the correct value until after
three scale heights from the upper bound-
ary. Below r,, convergence is rapid in both
cases.

For an isothermal atmosphere (G = 0)
Eq. (28) becomes

Tr)y=Tyl+ (44— ]_)e(r—rl)/H]

(29)

(31)
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TABLE VI

CONVERGENCE OF TEMPERATURE ALGORITHM FOR Two LINEAR TEMPERATURE
GRADIENT MODEL ATMOSPHERES?

G =40.1 G =-0.1
r—7g T (true) T (Eq. 28) % error T (true) T (Eq. 28) % error
4H, — — — 90 13.5 85
3H, 195 79.5 59.2 105 85.5 18.6
2H, 180 132.0 26.7 120 114.3 4.8
H, 165 147.0 10.9 135 133.0 1.5
0 150 143.5 4.3 150 149.2 0.5
~H, 135 133.0 1.5 165 164.7 0.2
—2H, 120 119.4 0.5 180 179.9 0.06

2 See text for details.

and (30) reduces to:

(r—7o)[H = —In($*/¢ — 1)

and ¢ = 0.98¢* corresponds to (r; —ry) =
3.9 H, so that:

T(7) — To[l + (A _ l)e-3.9e(r—ro)/H]_ (32)

The convergence properties for 7', =
150° and 4 = 0 are shown in Table VII.
Again, for about three scale heights from
the top convergence is poor, but becomes
satisfactory below r = 7.

We wish to stress that the above
examples should only be considered as
illustrative. The convergence properties
depend on the specific choice of 4, ¢ and
on the initial ¢ value (i.e., r,). For instance,
we have not proven that the trend evident

TABLE VII

CONVERGENCE OF TEMPERATURE ALGORITHM FOR
AN [sOTHERMAL MODEL ATMOSPHERE?

r—7g T (true) T (Eq. 32) % error
3H 150 88.5 41
2H 150 127.5 15
H 150 141.8 5.5
0 150 147.0 2.0
-H 150 148.9 0.73
—2H 150 149.6 0.27

4 See text for details.

in the above examples, that ¢ <0 con-
verges faster than G =0, which in turn
converges faster than ¢ >0, is always
true. Note, however, that our results are
independent of the scale height H, and
that the percent error in 7' given in
Tables VI and VII must be independent of
T, since it can be factored out of Eq. (28)
and (31).

4. Practical Applications of the Tempera-
ture Algorithm

The algorithm discussed in the two
preceding sections can be modified slightly
in practice. The initial boundary condition
P, =0 at r=r, implies 7, =0 which is
certainly not correct. By fitting a straight
line to the quasi-linear portion of refrac-
tivity profiles (such as those shown in
Figs. 12 and 13) an approximate scale
height I can be obtained.

After one iteration, if the inferred
pressure at level NV is Py, (using P, = 0), the
next iteration can begin with

Pl — PN e_(rl_rN)/H

or alternately, 7 can be used to estimate
the initial temperature 7';. Thus succes-
sive iterations are possible, with a new P,
being determined each time using H. This
process converges rapidly. We refer to this
method as Method A in what follows.

A related procedure for determining
T(r) was suggested by Hubbard ef al.
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(1972). From the perfect gas law:
dP = (kjumy)(T dp + pdT)

which, when combined with the equation
of hydrostatic equilibrium, gives

ldp 14T .
H(;%+?5):;1 (33)

Defining a density scale height H, by the
equation,

lﬁ :f‘ldp
Hy, pdr
Eq. (33) becomes
dH H
R | 34
dr " H, (34)

Assuming constant composition, we have
1 —ldp —ldv

H, pdr v dr’
and the refractivity profile gives H,(r).
Given an initial assumption for H, (as
discussed above), Eq. (34) can be inte-
grated numerieally to give H(r), and
hence T'(r), if a value of u is assumed. This
procedure we call Method B. It should be
clear that Methods A and B are conceptu-
ally equivalent. They both depend on
estimating the scale height at the beginning
of the occultation curve—a most un-
certain enterprise.

The methods discussed above can now be

tested by inverting the refractivity profiles
shown in Figs. 12 and 13. In each case we
need to estimate the quasiscale height A,
obtained by fitting straight lines to the
quasilinear portions of the refractivity
profiles in Figs. 12 and 13. The resulting
values of H are given in Table VIII. Note
that [7 departs from H in the third case,
even though the noise level is zero, because
the refractivity profile generated is not
exactly isothermal at the beginning of the
integration. This difficulty, discussed in
Section I1-1, is related to the assumption
that no light ray bending oceurs above the
first point of integration.

The temperature profiles generated by
Methods A and B are compared with the
true temperature structures for no noise in
Figs. 14 and 15; the resulting profiles in
the presence of 3% noige are shown in
Figs. 16 and 17. The following important
points emerge:

1. For about the first four scale heights
(depths <100km) ncither method gives
reliable results.

2. More than four scale heights below
the starting point (depths 2z 100km) both
methods give reasonable and quite com-
parable results.

3. The integration was stopped at a
level corresponding to ¢ = 0.1¢*. At that
point neither method had converged to
precisely the correct temperature profile.

TABLE VIII

VALUES oF THE QuasiscaLE HergHT H OBTAINED FROM FIGURES 12 AXD 134

Quasiscale
Range fitted height
Case Figure (km) H (km)
G=0.1, H,=25km Fig. 12
(no noise) (dashed line) 60-180 23.4
G@=0.1,H,=25km Fig. 12
(3% noise) (dotted line) 60-180 19.3
G =0,H =20.02km Fig. 13
(no noise) (dashed line) 80-180 23.0
G =0, H=20.02km Fig. 13
(3% noise) (dotted line) 80-180 21.9

4 See text for details.
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Fia. 14. Temperature profiles caleulated by Methods A and B from the refractivity profile in
Fig. 12 (no noise). Shown left to right are three cases corresponding to compositions of (1) 100% H,,
0% He. (2) 50% H,, 50% He, and (3) 20% H,, 80% He. In each case, the true atmospheric tempera-

ture profile has been sketched in.

4. Moderate amounts of noise (3% in
this case) do not have a significant effect
on the results.

The difference between the calculated
and true temperature profiles can be
attributed to three major factors:

1. Errors in the refractivity profile
introduced during the light curve inversion.
These are especially important near the top

of the refractivity profile (Section IT-T).
2. Errors in estimating A.
3. Errors due to random noise.

Note that either Method A or Method B
would give exactly accurate temperature
profiles everywhere if applied to an
exactly isothermal refractivity profile. In
that case I would equal H. This does not
oceur in the case of the ‘“‘no noise” refrac-

ZOF

/
v
40

@®
o
T

Depth (km)

L_

!

1

Y 1 ' L I

| L |
100 140 180

|
220 260 300 340

Temperature

F1c. 15. Same as Fig. 14 but for the dashed refractivity profile in Fig. 18 (no noise).
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Fic. 16. Same as Fig. 14 but for the dotted refractivity profile in Fig. 12 (3% noise).

tivity profile shown in Fig. 13 used to
generate the temperature profilesin Fig. 15,
since that profileis not truly isothermal due
to inversion errors as explained above.
Even in the case of an exact linear
gradient refractivity profile, neither
Method A nor Method B would give
exactly accurate temperature profiles near

the beginning of the integration, since, in
this case, H would be approximate.

In practice, the procedure is subject to
the three errors enumerated above, and
inferred temperature profiles cannot be
trusted for at least four scale heights from
the beginning of the integration. This point
is well illustrated in Figs. 15 and 17, where

[s:] [o2]
o (=]
T T
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o]
T
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L | L

L 1 )

L

I |
140 180 220

| |
260 300 340 380

Temperature

F1c. 17. Same as Fig. 14 but for the dotted refractivity profile in Fig. 13 (3% noise).
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it is seen that the effect of noise on the iso-
thermal case is to change the direction
from which the solutions converge to the
true temperature profile. In neither case,
“no noise’” and ‘3% noise,” would it be
correct to infer a temperature gradient in
the region between 100 and 170km
(Figs. 15 and 17).

In Figs. 14 and 16, the solutions suggest
a quasi-isothermal region between 100 and
130km, which, of course, is not real. How-
ever, by the time that the 100km level is
reached, the temperature algorithms have
correctly converged to the refractivity
profiles being used (Fig. 12). Unfortu-
nately, these refractivity profiles are not
exactly those of a constant temperature
gradient atmosphere, and this error in the
refractivity profiles is propagated into the
temperature profiles. Specifically, for the
G = 0.1 atmosphere, the true refractivity
profile must be concave upwards every-
where, on a plot such as that shown in
Fig. 12. However, starting the inversion
at a finite level makes the beginning part
of the refractivity profile concave down-
ward. There must then be a quasilinear
transition region which will appear in the
temperature profile as a quasiisothermal
portion.

The conclusion of this section is that no
matter how clever an algorithm is used to
derive temperatures from refractivity pro-
files, errors in the refractivity profiles will
propagate into the temperature calcula-
tions. It was shown in Section II-I that
calculated refractivity profiles do not
converge to the real values for about three
scale heights from the beginning level of
the calculation. The situation will there-
fore be even worse for the temperature
profiles. One must be especially cautious of
large temperature gradients and fluctua-
tions indicated in the initial portions of
temperature profiles (Figs. 14 and 17).
However, it appears that more than the
three to four scale heights below the
beginning of the integration reasonably
accurate temperature profiles can be
inferred from occultation light curves.

A note of caution is required at this
point. Even though spikes translate into
small fluctuations in the refractivity

343

profiles, they produce significant fluctua-
tions in the temperature profiles. If ray
crossing is severe, the bumps in the tem-
perature profile corresponding to spikes
will not only appear at the wrong level but
will be wrong in magnitude. All that can
be said is that, if most spikes in a light
curve do not involve severe ray crossing,
the fine structure of the temperature profile
will be essentially correct. Otherwise, it
will not. As stressed previously, from a
single intensity record of an occultation it
is impossible to determine whether or not
ray crossing occurred.

PARrT IV. CasESs OF VARIABLE MOLECULAR
WEIGHT

So far we have assumed that the mean
molecular weight of the atmosphere is
constant in the region sampled by the
occultation curve. However, in practice,
the occultation curve may start in the
region above the turbopause where p is
controlled by diffusive separation and
terminate in the layer below the turbo-
pause where u is constant and the atmos-
phere is well-mixed. Unfortunately, there
appears to be no way of telling from the
shape of an occultation light curve whether
the region being sampled is above, below,
or straddling the turbopause. We wish to
prove this assertion with one specific
example.

Consider the following idealized case, of
an occultation by a planet like Jupiter.
Assume that the turbopause occurs at a
number density of » =3 x 103em™3, and
that the hydrogen—helium atmosphere is
isothermal at 7' = 100°K below the turbo-
pause and p = 3. Above the turbopause,
the temperature increases linearly at
1.88°K/km, and p is determined by
diffusive separation.

The resulting occultation curve is shown
in Fig. 18. The corresponding physical
parameters of the atmosphere at various
levels are given in Table IX. In that table,
H* is the instantaneous scale height at a
given level determined by the equation
H*(r) = kT (r)/(u(r)g(rymg). Also shown in
Fig. 18 is the best isothermal fit (H; =

15
10.03km) assuming constant p. Even in
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F1a. 18. Occultation curve for an atmosphere in which the mean molecular weight varies with
height (see text and Table IX for details). Also shown is the best isothermal fit assuming a constant
molecular weight. Shown in the insert is a comparison of the true model temperature profile with

that given by the best isothermal (constant p) fit.

the absence of noise it is almost impossible
to tell that the turbopause is crossed at the
é/d* = 0.5 level, and that the atmosphere
is not close to isothermal!

A method of determining the mean
molecular weight, u, directly from the
arrival times of spikes at several wave-
lengths has been suggested by Brinkmann
(Brinkmann, 1971; Wasserman and
Veverka, 1973). If a large number of spikes
were observed in a light curve simul-

taneously at several wavelengths with a
time resolution of about 0.0lsec, the
constant u hypothesis could be tested.

In the meantime, it seems best to adopt
an indirect approach. From the occultation
light curve the number density at the
various ¢ levels can be estimated. Atmos-
pheric models can then be used to predict
the turbopause level. If the predictions
indicate that most of the light curve
corresponds to levels below the turbopause,

TABLE IX

ATMOSPHERIC MODEL CORRESPONDING TO FIGURE 18

bld* (r — ;) (km) 72 T (°K) H* (km)
<0.45 <0 100 10.6
0.73 10 2.65 119 14.0
0.88 20 2.46 138 17.8
0.94 30 2.33 157 21.4
0.97 40 2.25 176 24.9
0.98 50 2.19 195 28.4
0.99 60 2.14 214 31.8

2 The turbopause level is denoted by ;.
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the constant p assumption is justified.
Otherwise, the problem becomes intract-
able, barring the input of additional
information.
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