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In  the  first two sections of this  paper ,  the  two basic me t h o d s  of  reducing occulta- 
t ion l ight  c u r v e s - - c u r v e  f i t t ing and  inversion are reviewed and  compared .  I t  is 
shown t h a t  the  curve f i t t ing m e t h o d s  have  severe problems of  nonuniqueness .  In  
addi t ion,  in the  case of  occul ta t ion curves domina t ed  by spikes, it  is no t  clear t h a t  
such solutions are meaningful .  The inversion m e t h o d  does no t  suffer f rom these  
drawbacks .  Methods  of der iving t empe ra tu r e  profiles f rom ref rac t iv i ty  profiles are 
deal t  wi th  in the  th i rd  section. I t  is shown tha t ,  a l though the  t empe ra tu r e  profiles 
are sensit ive to small errors in the  ref rac t iv i ty  profile, accurate  t empera tu res  can 
be obta ined,  par t icular ly  at  the  deeper  levels of  the  a tmosphere .  The final sect ion 
contains  a brief  discussion of the  ambigui t ies  t h a t  arise when the  occul ta t ion curve 
s t raddles  the  turbopause .  

~NTRODUCTION 

Occultat ions of bright  stars by  planets 
provide impor tan t  information about  
p lane ta ry  upper  atmospheres.  By  observ- 
ing the ra te  of change of  the star 's  bright- 
ness as it is occulted, the ref rac t iv i ty  as a 
funct ion of height in the planet 's  upper  
a tmosphere  can be determined.  To date, 
four p lane ta ry  occultat ions have been 
observed successfully : ~ Arietis by  Jup i t e r  
(Baum and Code, 1953), Regulus by  Venus 
(de Vaucouleurs and Menzel, 1960), BD 
--17 ° 4388 by  Neptune  (Freeman and 
Lyng/t, 1970; and others), and Beta  
Scorpii by  Jup i t e r  (Veverka et al., 1971; 
H u b b a r d  et al., 1972 ; and others). 

The  details of a typical  occultat ion of a 
s tar  by  a planet  are discussed by  Baum and 
Code (1953) and depicted schematical ly in 
Fig. 1. As the sear is occulted by  the planet,  
its ra te  of disappearance is determined by  
the spreading of its light due to differential 
refract ion;  ordinary ext inct ion effects are 
negligible. The total  bending of  a light ray,  
0(rl) , whose closest approach to the center 
of  the planet  is rl, is given by  

Here  n = n(r) is the index of refract ion at  
Copyright © 1973 by Academic Press, Inc. 
All rights of reproduction in any form reserved. 
Printed in Great Britain 

level r, v = n - 1 is the refract ivi ty ,  and dx 
is an increment  of pa th  length along the 
direction of  the ray  (0 is assumed to be 
small). The resulting occul tat ion curve is 
given by  

(5"/¢) -- 1 = D(dO/dr) (2) 

where ¢* unoccul ted star  flux, ~b - ¢(t) = 
star  flux at  t ime t, and D = E a r t h - p l a n e t  
distance. The parameters  are defined such 
tha t  r increases upwards,  v is everywhere  
positive and increases inwards, 0 is every- 
where negative,  and [0t increases inwards. 
Therefore,  dr/dr is negative and dO/dr is 
positive. 

Two different methods  are available for 
deriving information about  a tmospher ic  
s t ructure  from occultat ion curves. First ,  
an atmospheric  profile can be assumed (one 
specifies v as a funct ion of t ) ,  and a synthet ic  
occultat ion curve is calculated which is 
then  compared with the observed curve. 
The ref rac t iv i ty  profile is varied unti l  a 
match  which is considered sat isfactory is 
obtained. This procedure has been adopted  
commonly  in the past,  bu t  only for 
restr icted classes of v(r): for isothermal,  
homogeneous,  constant  scale height atmos- 
pheres (Baum and Code, 1953; F reeman  
and Lyngg~, 1970), and for similar linear 
t empera tu re  gradient  atmospheres (Gold- 
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FIG. 1. Schemat ic  occul ta t ion  scene. The f rame of reference is such t h a t  the  p lane t  is s t a t ionary  
a n d  the  observer  moves  wi th  veloci ty  - v .  The ray  shown is ben t  by  to ta l  a m o u n t  0, and  its closest 
po in t  of  approach  to t he  cen te r  of  the  p lane t  is r 1. 

smith, 1963; de Vaucouleurs and Menzel, 
1960). 

The second method for occultation light 
curve reduction uses the fact that  dO~dr can 
be determined directly from the observa- 
tions. Then, ,(r) can be obtained from (1) 
by inverting this integral equation. This 
method has been used successfully by 
Kovalevsky and Link, (1969) and by 
Hubbard et al. (1972) in reducing occulta- 
tion light curves and by Fjeldbo and his 
coworkers in reducing spacecraft radio 
occultation data (see for example, Fjeldbo, 
Kliore, and Eshleman, 1971). 

In occultation light curve work, the first 
method has been used more frequently than 
the second (in addition to references above, 
see Freeman and Stokes, 1972; Larson, 
1972), probably because its application is 
computationally trivial. However, as we 
shall show, in the case of occultation light 
curves containing spikes, this method 
cannot be applied meaningfully, and 
attempts to do so lead to deceptive results. 
Therefore, this approach must be avoided 
in such cases. 

PART I. FIRST METHOD : CURVE FITTING 

1. Spik~eless Occultation Curves." Effects of 
Noise 

Given the density structure of a well- 
mixed atmosphere, the problem is to derive 

the occultation light curve, which is to be 
compared with the observed occultation 
curve. The density structure is altered 
until a satisfactory match between the 
calculated and the observed curves is 
obtained. Although this method has been 
applied frequently in the past, no discussion 
of the effects of noise has been given. 
Thclefore, we begin by considering this 
question. 

For simplicity, we will deal only with 
homogeneous, isothermal, constant scale 
height atmospheres. This case is of special 
relevance since it has been used commonly 
in past analyses of occultation light curves. 

In the absence of noise, for an isothermal 
atmosphere with scale height: 

H = RT/t~g, 

the resulting occultation light curve is 
given by the "Baum and Code" (1953) 
equation : 

v(t-- 2)+ln l) 
where 

v = speed of the observer relative to the 
planet's limb. The planet is assumed 
stationary, and the observer moves 
in the - y  direction (Fig. 1), 

t o = "time of occul ta t ion"= time for 
which ¢ = ¢*/2, 
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Fro. 2. Model light curve. Isothermal atmos- 
phere v/H - 0.5sec-L 

g = acceleration due to gravi ty  (assumed 
constant),  

ff = mean molecular weight of atmos- 
phere (assumed constant),  

T = temperature  of isothermal atmos- 
phere, and 

/~ - universal gas constant.  

The quanti t ies ¢ and ¢* have been previ- 
ously defined in connection with Eq. (2). 

We now consider how the comparison 
between a calculated occultat ion curve and 
an observed curve is affected by  the 
presence of noise. To make the discussion 
concrete we deal with a particular,  repre- 
sentative case: a Baum and Code occulta- 
tion curve for which v/H = 0.5sec -~. The 

theoretical curve for this case (Eq. 3) is 
plot ted in Fig. 2 from ( t - t o ,  ¢/¢*)= 
(--15, 0.999) to (t to, ¢ / ¢ * ) -  (45, 0.046), 
t being given in seconds. 

The simplest way of obtaining v/H from 
such a curve is to plot the quan t i ty  

[(¢*/¢) - 2 )  + In [(¢*/¢) - 1]  _= B ( ¢ * / ¢ )  

against t. The result will be a straight  line 
with slope v/H, which crosses the horizontal  
axis at  t - t o (the " t ime of the occultat ion").  
Noise tends to make the fitted s traight  line 
steeper; tha t  is, it increases the inferred 
value of v/H. However,  since the effects 
of noise on B(¢*/¢) are different at  the two 
ends of the range of the function (Fig. 3), 
the fit is much more sensitive to noise on 
the tail of the light curve where B(¢*/~b) 
goes to infinity as 1/X as X ~ ¢ / ¢ * - ~  0 
than  on the shoulder, where it goes to 
minus infinity as l nX  as X --> 1. 

Artificial noise was superimposed on the 
curve shown in Fig. 2, by  generating ran- 
dom numbers  having a Gaussian distribu- 
tion with zero mean value, and s tandard  
deviation a. For  each value of  ~, five 
different runs were made. 

For the reasons given above, in using 
the straight  line method, points near X = 0 
and X - 1 should be avoided. To emphasize 
this, we have carried out  two sets of  
calculations for the artificially noisy v/H =: 

B6°( \ 
7 \ 

i-sos~-] 
1-5585l 

9 1-7.906~_ 

• 1 I I I J I I I t l  [ I I I I I I I ] _ _  I I I I 1  

001 0.05 0.1 0 2  0 5  1.0 

x= ~s/~* 

]~Io. 3. Behaviour of the Baum and Code function B(X) as a function of X. 
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T A B L E  I 

EFFECTS OF NOISE: STRAIGItT-LINE FIT (0.999 > X / >  0.01) a 
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Fitted parameters 

Noise 
level Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 

(~ = 0.0 v / H  0.500 
to 0.0 
R 1.0 

a = 0.005 v / H  0.599 0.871 0.636 0.724 1.376 
t o 3.98 16.97 9.22 13.01 27.02 
R 0.686 0.315 0.615 0.623 0.185 

a = 0.010 v / H  0.970 1.232 1.408 0.758 0.843 
to 15.09 19.22 27.89 4.95 3.08 
R 0.209 0.281 0.176 0.432 0.235 

a - 0.025 v / H  1.543 0.778 1.546 0.654 0.612 
t o 9.78 16.17 25.53 - 4 0 . 5 3  - 1 3 . 8  
R 0.117 0.168 0.151 0.137 0.274 

" R is t h e  r eg re s s ion  coefficient.  Va lues  o f  R close to  u n i t y  i nd i ca t e  good  f i ts ;  vMues  m u c h  less t h a n  
u n i t y  ind ica te  p o o r  fits. 

0.5sec -1 da ta  using the ranges (0.999 ~> 
X ~> 0.01) and (0.9 ~> X ~> 0.1), respect- 
ively. The fits were done by  least squares. 
The results are given in Tables I and II .  

F rom Table  I (0.999 ~> X ~> 0.01) it  is 
clear that ,  even in the presence of  ve ry  
small amounts  of noise (a = 0.005), ex- 
t r emely  poor fits result. All f i t ted values 
of  v/H are larger than  the t rue  value,  as 
predicted above. 

Reasonable  results can be obta ined  by  
avoiding the shoulder and tail of  the 
occul ta t ion curve and restr ict ing the  
s t ra ight  line fit to  the range 0.9 ~> X ~> 
0.1 (Table II) ,  bu t  only if the noise level is 
low. For  noise levels >~5%, meaningful  
results cannot  be expected.  Usually, bu t  
not  always, a large regression coefficient 
indicates a der ived v/H close to the t rue  
value. 

Another  me thod  of fitt ing the same type  
of da ta  consists of finding the par t icular  
values of v/H and t o which, when inserted 
into Eq.  (3), minimize the sum of  the 
squares of  the differences between the 
observed and calculated curves. This 
me thod  has an impor t an t  advantage  over  
the previous one, since there  is no undue  
difficulty with da ta  points close to X = 0 

or X = 1. Results  of  a noise analysis 
similar to t h a t  used in generat ing Tables I 
and I I  are shown in Table I I I .  This me thod  
appears  to give acceptable results even in 
the presence of large amounts  of noise and 
appears  to be preferable,  in this respect ,  to 
the s t ra ight  line me thod  discussed previ- 
ously. 

This me thod  is, however,  sensitive to the 
choice of the zero and un i ty  levels. This 
problem has been discussed by  H u b b a r d  
et al. (1972). 

2. Occultation Curves with Spikes 
A common feature  of  m a n y  occul tat ion 

curves is the presence of  " s p i k e s " - - a b r u p t  
in tens i ty  flashes p robab ly  due to fluctua- 
t ions in the atmospheric  densi ty  s t ruc ture  
(Freeman and Lyngh,  1970; Veverka et al., 
1971). A typical  occul ta t ion light curve, 
for the emersion offl  Seo AB (May 13, 1971 ) 
is shown in Fig. 4a, a t  a t ime resolution 
of 0. l sec; also shown is the Four ie r  analysis 
of  this curve using 10 to 600 terms (Figs. 
4b-4g). Clearly the spikes represent  the 
high f requency component  of the data,  bu t  
it  cannot  be t rue  tha t  t hey  are ignorable 
f rom the point  of  view of  determining 
a tmospher ic  s t ructure  (as s ta ted by  Free- 
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T A B L E  I I  

E F F E C T S  OF N O I S E :  S T R A I G H T - L I N E  F I T  (0 .9  ~ • ~ 0 . 1 )  

Fitted parameters 

Noise 
level  Tr ia l  1 Tr ia l  2 Tr ia l  3 Tr ia l  4 Tr ia l  5 

= 0.0 v/H 0.5 
to 0.0 
R 1.0 

a = 0.005 v/H 0.504 0.500 0.491 0.498 0.496 
t o 0.03 0.01 0.02 0.02 0.03 
R 0.997 0.999 0.997 0.998 0.998 

a = 0.025 v/H 0.514 0.477 0.510 0.556 0.485 
t o 0.01 -0 .11  0.22 0.08 - 0 . 3 3  
R 0.936 0.951 0.942 0.938 0.946 

a = 0.050 v/H 0.815 0.658 0.547 0.486 1.009 
to 0.16 - 0 . 5 9  - 0 . 2 8  0.12 0.24 
R 0.738 0.689 0.806 0.922 0.345 

a = 0.070 v/H 0.476 0.948 0.661 0.506 0.539 
t o - 0 . 6 3  - 1 .85 0.56 - 0 . 1 0  -0 .11  
R 0.753 0.308 0.601 0.790 0.689 

a = 0.090 v/H 1.239 1.025 0.720 3.944 0.500 
t o - 1 . 2 8  0.03 0.32 1.25 2.50 
R 0.270 0.328 0.732 0.162 0.565 

m a n  a n d  L y n g £  (1970) ,  f o r  e x a m p l e ) .  
F i t t i n g  a c u r v e  t h r o u g h  t h e  b o t t o m  o f  t h e  
s p i k e s  c a n n o t  g i v e  t h e  t r u e  a t m o s p h e r i c  
p r o f i l e  s i n c e  b y  c o n s e r v a t i o n  o f  p h o t o n s  t h e  
l i g h t  i n  t h e  s p i k e s  m u s t  c o m e  f r o m  s o m e -  
w h e r e .  O n  t h e  o t h e r  h a n d ,  i t  is  n o t  c l e a r  
t h a t  f i t t i n g  a B a u m  a n d  C o d e  t y p e  c u r v e  

t o  a n  o c c u l t a t i o n  l i g h t  c u r v e  b y  l e a s t  
s q u a r e s  is t h e  a n s w e r .  W h a t  is t h e  m e a n i n g  
o f  s u c h  a " s o l u t i o n " ?  I t  is  o u r  i m p r e s s i o n  
t h a t  i n  t h e  p r e s e n c e  o f  s p i k e s ,  o c c u l t a t i o n  
c u r v e s  c a n n o t  b e  a n a l y z e d  m e a n i n g f u l l y  
b y  c u r v e  f i t t i n g ;  t h e  i n v e r s i o n  t e c h n i q u e ,  
d e s c r i b e d  i n  P a r t  I I ,  m u s t  b e  u s e d .  

T A B L E  III 

E F F E C T S  OF N O I S E  : L E A S T - S Q U A R E S  F I T  FOR v/H AND l o 

Noise 
level  

F i t t e d  p a r a m e t e r s  

(~ = 0.0 v/H 0.50 
to 0.0 

a = 0.025 v/H 0.52 0.52 0.50 0.50 0.50 
t o 0.1 --0.2 --0.1 0 0 

(~ = 0.05 v/H 0.50 0.46 0.52 0.50 0.54 
to 0.3 --0.1 0.1 --0.1 0.1 

a = 0.075 v/H 0.46 0.52 0.48 0.48 0.50 
to 0.2 0.2 - 0 . 3  0.3 - 0 . 2  

Tr ia l  1 Trial  2 Trial  3 Trial  4 Trial  5 
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FIG. 4. Four ie r  analysis  of an occul ta t ion  curve.  Shown are:  (a) Observed  l ight  curve for the  
emers ion of  fl Sco AB at  0.1 sec resolution.  (b) Recons t ru c t ed  curve using 600 Four ie r  componen t s ,  
(c) 300 componen t s ,  (d) 100, (e) 50, (f) 25, and  (g) 10 components .  

3. U n i q u e n e s s  o f  I s o t h e r m a l  S o l u t i o n s  

At this point we must  briefly consider 
the uniqueness of the inferred atmospheric 
profiles. To simplify the discussion we will 
deal only with occultation curves tota l ly  
free of spikes and noise. I t  is clear t ha t  the 
presence of noise will increase the difficulty 
of reconstructing the true atmospheric 
profile correctly. 

Assuming tha t  an isothermal fit to an 
observed (spikeless) occultat ion curve has 
been obtained, does this mean tha t  the 
atmosphere is isothermal? The answer is 
definitely no, as was first shown explicitly 
by Goldsmith (1963), who considered 
atmospheres in which the temperature  
varies linearly with height, while the mean 
molecular weight remains constant.  Tha t  is, 

T ( r )  = T o + F ( r  --  ro) 

and (4) 

H ( r )  = H o + G(r - ro) 

where / ' =  d T / d r  and G =  R F / f f g .  The 

resulting occultation curve is given by, 

v(t  - to) = 1 

Ho (1 + ~G) 
x [ ( ~  _ 1)<'+3/2)/<'+5/2) _ 1] 

+ G [1 _ ( ~  _ 1)-'/( '+'/2)] 

(5) 

where ~ ~ 1/G. 
For G -~ 0 this reduces to : 

v ( t  - to)  1 

(61 
For  G - 0  this is the Baum and Code 
equat ion (3). Equat ion  (6) can be reduced 
to a Baum and (?ode form by sett ing 

g = g0/(1 + ~a) (7) 

In  other words, for G small, a linear tem- 
perature gradient  atmosphere will produce 
an occultation light curve whieh looks like 
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Fro. 5. Best isotheImal fit to ~ Goldsmith linear scale height gradient atmosphere. (Ho = 25km, 
G = +0.1). 

tha t  produced by  ~n isothermal atmosphere 
of  a different scale height. To illustrate this 
we have generated a series of  occultat ion 
curves using Eq. (5) and the following 
parameters :  v - 8.Skin/see; H o = 25kin ; 
G = 0.1, - 0 . l ,  and +0.3. 

For  each case, the best isothermal fit 
was found by  varying H and t o to minimize 
the sum of  the squares of  the differences 
between the two curves. The results are 
shown in Figs. 5, 6, and 7. In  each case, the 

isothermal fit agrees with the Goldsmith 
curve to within a few percent,  and in the 
presence of small amounts of random noi~'e 
it wou.ld be impossible to notice a difference. 
For  instance, for the case shown in Fig. 5, 
a Goldsmith a tmosphere  with H o = 25kin 
and G - - 0 . l  can be confused with an 
isothermal atmosphere with H 19.8km. 
Equa t ion  (7) gives H =  22kin, but  this 
expression is only approximate  for G # 0. 
For  G = 0.3 (Fig. 7), H = 14.4kin for the 

" ~  . . . . . . .  Goldsmith [ Ho = 2 5 k m , G = - O . I )  
09(:  Rest fit lsothcrmol ( H i = 33.9 km ) 

~x 

0~8C 

0,7C 

0 6 C  

.~ o ~  

0 . ~  

0 . ~  

O.IC ~ 

OOC .. i I 1 I I " "15sec i "e  . _ J ~ l  I - -  i I I J 
0 

T i m e  

FIG. 6. B e s t  i s o t h e r m a l  fit to  a G o l d s m i t h  l inear  scale h e i g h t  g r a d i e n t  a t m o s p h e r e .  (Ho ~ 25kin ,  
G = - 0 . ] . )  
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FI(L 7. Best isothermM fit to a Goldsmith linear scale height gradient ~tmosphere (Ho = 25kin, 
G = +0.3)~ 

best isothermal fit; Eq. (7) predicts a 
value of 17.3 kin. 

This illustrates one important ambi- 
guity, first stressed by Goldsmith (1963), 
but ignored by many subsequent authors: 
the occultation curve of any specific iso- 
thermal atmosphere is for practical pur- 
poses indistinguishable from that  of a 
family of constant gradient atmospheres. 

More generally, it is often easy to find 
excellent isothermal fits to occultation 
light curves even when the true atmos- 
pheric structure is quite nonisothermal. 
One such example discussed in Part  IV, is 
shown in Fig. 18. 

]:)ART I I .  SECOND METHOD: INVERSION 

1. Review of the Inversion Method 

We now show that  the second method of 
analysis; hy  formal inversion of the light 
curve, is the preferable form of analysis, 
and that  it yields good results even in the 
presence of numerous spikes. Since the 
method is well-known and has been used in 
the past by Kovalevsky and Link (1969) 
and Hubbard et al. (1972) as well as by 
Fjeldbo, Kliore, and Eshleman (1971) for 
radio occultations, we review it briefly and 
then show that  the algorithm can be used 
to successfully invert occultation curves 

dominated by spikes. The uniqueness of 
solutions found by this method is briefly 
discussed in Section II-2, as are the effects 
of random noise. 

I t  should be clear, that, whenever spikes 
dominate an occultation curve, the inver- 
sion method must lead to better results 
than the curve fitting methods discussed in 
Part  I, because the inversion method uses 
the information about the atmosphere 
contained in the spikes. The curve fitting 
method ignores this information. 

In this discussion, it is assumed that  
spikes are due to small density fluctuations 
in the vertical structure of the atmosphere 
as proposed by Freeman and Lyng£ (1970). 
In seeking a solution by inversion it is 
implicitly assumed that  ray crossing is 
negligible. On this assumption, which 
amounts to saying that  the spikes really 
occur at the level in the atmosphere indi- 
cated by their position on the occultation 
curve, even very spiky occultation curves 
can be inverted successfully to yield 
refractivity profiles. The spikes translate 
into very small fluctuations in the refrac- 
t ivity profile (Fig. 9), and it is therefore 
probably true that  the inferred refractivity 
profile is essentially correct even if some of 
the spikes are due to severe ray crossing. 
At any rate, in the usual case, there is no 
way in which ray crossing can be dealt 



330 W A S S E I : t M A N  A N D  V E V E R K A  

with, and therefore the assumption tha t  it 
is negligible is unavoidable. 

The total  bending of a light ray  passing 
through a spherically symmetric  atmos- 
phere is given by equation (1), which may  
be writ ten as : 

O(r,) = f+£ K( , )dx  (1') 

where r I is the distance of the ray at  closest 
approach from the center of the planet 
(Fig. 1), and K(r) is the curvature of the 
r a y  : 

K ( r ) -  (1/n)(dn/dr) (d/dr)(lnn). 

We are adopting the assumptions listed, 
and shown to be valid for a typical  stellar 
occultation, by Baum and Code (1953). A 
more general t reatment ,  applicable to radio 
occultations is given by Fjeldbo et al. 
(1971). 

From the geometry of Fig. l, 

X 2 r 2 _ r l  2 

and 

r dr 
d x -  

( r 2  - -  r 1 2 )  1/2 

Hence Eq. (1') may  be rewrit ten as: 

f + r(d/dr)(ln n) dr 
O(q) 2 (r2 ~ rl2)l/2 (8) 

r 1 

The task is to invert this integral equation 
to yield n - n(r). 

Lett ing r lZ=  1/s and r 2=  1/W, Eq. (8) 
becomes : 

¢(W) dW 

where 

¢(w) = (w'/2/2) • (d/dw). In (n). 

Since the major  par t  of the bending of 
the light ray  takes place over only a few 
scale heights, and since H < rl, we can 
approximate the r in the numerator  of the 
integrand of (8) by  r~, in which case 
(s/w)l/2= 1, and we arrive at  an Abel 
integral equation : 

f :  ¢(w)dw O(s) 2 ( s - w )  ~/2 (lO) 

whose solution is (Bateman, 1910) 

1 d f ~  O(s)ds 
¢(w) - 2rcdw (w - s) ~/2" (11) 

Recalling the definitions of the symbols, 
we may  rewrite this as 

d ( l n n  ) = _ 1  dr; rO(r~)dr 
dr rrr dr T12012__ r2)J/z (12) 

and, after some manipulation,  simplify to 

d ( l n n  ) l d f 7 0 ( r , ) d r  
dr 7rdr (raZ_r2)l/2. (13) 

The conditions which must  be satisfied for 
¢(w) given by (11) to be a unique solution 
of (10), and to be continuous in the interval 
(0 ~< w < b), are given by Bateman (1910). 
These conditions are satisfied by typical 
occultation light curves, on the assumption 
tha t  light rays do not  cross. 

Allowing the following approximations:  

K(r) = (1/n)(dn/dr) ~_ dn/dr 

and r + r  l~_2r 1 ± 2 R  v (R v planet 's  
radius), Eq. (13) becomes: 

dn --1 1 d ( ~  O(r,)dr, 
d~ ~ = -r; (2Rp) '/2dr . J  - -  (~'l -- r) '/2" (13') 

This integral is negative and its magni tude 
increases as r decreases. Therefore its 
derivative with respect to r is positive and 
dn/dr is negative, as it should be. 

I t  follows from (13') 

l f: O(r')dr' 
~(r) ~ ( 2 R , ) 1 .  - ( r ' - ~ ) , / 2  (14) 

where we are now using r' as the d u m m y  
variable of integration. Equat ion (14) is 
the formal inversion of Eq. (8). 

In  order to evaluate (14) it is necessary 
to determine O(r) from the light curve da ta  
points ¢(t). From the occultation geometry 

(¢*/¢ - 1 ) -  D(,JO/2~) (2') 
and 

Ar + DAO = - v A t .  

Solving this pair of equations for Ar and A 0 : 

Ar - -vzJt(¢/¢*) 
~o = - ( 1  - ¢ / ¢  *)(v,Jt/ D).  
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F IG.  8. S c h e m a t i c  r a y  d i a g r a m  i l l u s t r a t i n g  h o w  t h e  v a r i o u s  A 0 ' s  a r e  o b t a i n e d  f r o m  t h e  l i g h t  
c u r v e .  (See  t e x t  f o r  d e t a i l s . )  

Referr ing to Fig. 8, we set : 

A t  i = t i l  ~ - -  t i 

and  
@ = ( ¢ , + ,  + ¢ , ) / 2 .  

We arb i t ra r i ly  s t a r t  the  in tegra t ion  a t  
some value of ¢ such t h a t  ¢/¢* ~ 1 and  
A0 _~ 0. At  each t ime  increment ,  we com- 
pu te  AO~ and Ar  t. Then,  

N 
Oi -- ~ AOi 

1 

N 
r i ~ ~ d r i  

1 

So t h a t  we have  eva lua ted  0 on N spherical,  
concentric layers  r, > r 2 > r 3 > ...  r N wi th  
0 i = 6 ( r ~ )  such t h a t  1011 <1021 < 1 0 3 1 < . . .  
[0NI. Note  t h a t  r I now denotes  the  upper -  
mos t  layer,  r a the r  t h a n  the level of  closest 
app roach  of a ray.  

There  are const ra in ts  on the  pract ical  
appl ica t ion  of this procedure  of  de termin-  
ing (Oi,q).  Star t ing  too high in the  a tmos-  
phere will lead to  some posi t ive AO's (due 
to noise). The 0 sum will be close to zero, 
and the  effect will average  out.  On the other  
hand,  a t  the o ther  end of the  occul ta t ion 
curve,  when the noise level is reached,  and 
occasional values  of  ¢ / ~ * <  0 are en- 
countered,  posi t ive  values  of  Ar  result ,  
and  these are meaningless.  Therefore  the 
procedure  mus t  be s topped  before the  noise 
domina t ed  tail  of  the  occul ta t ion l ight 
curve is reached.  

Since we cannot  in tegra te  to infinity in 
Eq.  (14), we mus t  make  the  a p p r o x i m a t i o n  

I f ~  O_,(r')dr' (15) 
v(r) _ rr(2Rp), /z  q ( r  - r) '-/2 

As it s tands,  Eq. (15) is not  sui table for 
numerical  in tegra t ion  sinc~ the  largest  
cont r ibut ion  to the integral  comes f rom 
points  close to r ' =  r where the in tegrand 
has a singulari ty.  The  equa t ion  can be 
in tegra ted  b y  pa r t s  ( d u = d r ' / ( r ' - r )  '/2, 
v = O(r')) to give 

- - 2 ( r  I - -  r ) l / 2 0 ( r  1) 
v(r) -- ~(2R,), /2 

1 2(r' -- r)l /2dO 
Tr(2Rp) '/2 rl 

Then,  the  re f rac t iv i ty  in the j t h  shell is 

- - 2 ( r  1 - -  r j )  1/2 0 t 
v j  = r r ( 2 R p ) , / 2  

J 1 
- " - - -  Z ( r k -  rJ)'/z(ok+l -- ok t) ~(2Rp) '/2 __  

k=l  
(16) 

As we have  indicated,  one would wish to 
choose r I = ~ and  01 = O(r l )=  O. But  since 
the  occul ta t ion light curve does not  ex tend  
to r = ~,  it is necessary to s t a r t  the  integra-  
t ion a t  some point  a t  which 6(r) is finite. 
W h a t  is the error p roduced  b y  this neces- 
sary  approx imat ion?  

Since f rom (14) 

1 
I~(f) - -  7 T ( 2 R p ) , / 2  

× r)l/2 + (17) 
, ,  (r' - (r - r ) ' /2J  

s topping the in tegra t ion a t  r = r 1 means  
neglecting the second t e rm  as we did in 
Eq.  (15). The fract ional  error in v result ing 
f rom this app rox ima t ion  is given b y  the  
ra t io  of  the  second t e rm  to the  first te rm,  
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a quan t i ty  which we denote  by  e,(r, rl). 
For  an isothermal a tmosphere 

O(r')  = O(ro) e - ( ~ ' - ' o ) / "  

where r o is some reference level. In  this 
.sv(r, rl) = 1 -- err  [(r I -- r ) /H]  1/2. Thus for 
(r t - r ) =  H, 2H, 3H, and 4H, % = 16%, 
5%, 1.5%, and 0.5%, respectively. Hence 
a valid rule is tha t  all values of v(r) deter- 
mined from (16) for r I - r < 3H will have 
significant errors (r~ being the s tar t ing 
point  of the integration). Neglecting the 
contr ibut ion to the total  bending of layers 
above the level r~ will have almost no effect 
on the values of v(r) inferred for layers for 
which r I - r > 3H. 

The method  outl ined in this section has 
been successfully used by  H u b b a r d  et al. 
(1972) to invert  occultat ion light curves. 
We only wish to demonst ra te  tha t  this 
method works ext remely  well even in the 
presence of numerous  sharp spikes. In 
Fig. 9 are shown: (a) an occultat ion light 
curve obtained (luring the May 13, 1971 
occultat ion of /3 Sco AB by Jup i t e r ;  
(insert.) the inferred ref rac t iv i ty  profile 
obtained using Eq.  (16); and (b) the 
reconstructed light curve generated using 
this ref rac t iv i ty  profile and Eq. (1). The 
close resemblance between curves (a) and 
(b) is convincing proof  of the power of this 
method even in the case of ve ry  " sp iky"  
light curves. 

I t  should be noted tha t  we always neglect 
inferred values of v(r) for about  three scale 
heights beh)w the s tar t ing level r~, since 
these values are likely to be vi t ia ted by the 
assumed star t ing conditions in Eq. (16). 
H u b b a r d  et al. (1972) have a t t emp ted  to 
ex t rac t  informat ion from this par t  of the 
ref rac t iv i ty  profile by  introducing "cor- 
rections".  We briefly discuss why  we have 
chosen to avoid such procedures. 

By  star t ing the integrat ion at  level r~, 
the neglected term, E~, is given by  

E~ 

__ i" H ~l/20,  e ( r_r ) / . [1  _erf[ .1H__) ] / r  - r  \l/2q 
~ 27r Rp!  

assuming an isothermal a tmosphere  with 
scale height H, above the level r~. This is 
the second te rm in Eq. (17). 

H u b b a r d  et al. (1972) have used such an 

expression to correct  their  re f rac t iv i ty  
profiles. They  find H as the best isothermal  
fit to their  re f rac t iv i ty  profile using a least 
squares fit, and 01 from the fact t h a t  for an 
isothermal atmosphere.  

O~ = - ( H / D ) ( ¢ * / d ? ~ -  1) 

The value of (¢*/¢1) is read from their  best 
isothermal  fit at  a t ime corresponding to 
the first da ta  point  used in the inversion. 
Since (¢*/¢1) is ve ry  close to uni ty  (~0.98), 
a ve ry  small uncer t a in ty  in (4"/41) leads 
to a very  large error in 01, and hence, in the 
"cor rec t ion"  E v. We have, therefore,  
chosen not  to follow such a procedure. 

2. Solut ion by Invers ion:  Effects of Noise 

Since real occul tat ion light curves are 
subject  to noise, its effect on the ref rac t iv i ty  
profile solutions obta ined by  the inversion 
method must  be considered. Each  incre- 
ment  in 0, A0i, depends only on the 
corresponding flux at  t ha t  level : 

2O, = --(v,~t/D)(1 ¢,/¢*) 

"rod 

0,, = ~ AOi, 
1 

so tha t  for values of c}i/¢* close to unity,  
the percentage error in AO i is much larger 
than  the corresponding percentage error in 
¢i/¢*.  Tha t  is, the values of  AO i closest to 
the top of the occultat ion curve (those at  
the beginning of the integration) are the 
most  susceptible to noise fluctuations. 
Therefore  the effects of noise should be most  
pronounced on the upper  portions of 
inferred ref rac t iv i ty  profiles. They  will 
t end  to damp out lower down because 

J 
uj ~ ~ (r k -- rj)(Ok+ 1 - -  O k _ l )  

k - I  

and Ok+ l - O k _  ~ = AO k + AO~_~, SO tha t  
large errors in the first few values of  AO i 
are summed into all later  values ofvj. Their  
relat ive significance will decrease rapidly,  
as we go deeper and deeper  into the 
atmosphere,  since the refract ivi ty,  v, is 
increasing exponential ly.  

The effects of noise are difficult to s tudy  
with any  generali ty,  and we restr ict  our- 



~.gP 

p~-~- 

~.~. 

=.~ 

~-~- 

~'~ 

g};- © 

°e~ 
~..~0 

¢-v o 

® 
0 

~'-~ ~. 

0 

Intensity. (curve o) 

0 o o o o ,0 . 0 0 0 0 

/ I I I I I I I I I I I 
~_ Ref ro(~tivity O, 

.... i ° ........ i ~' Q 

I I I I 
0 .o o .o 
0 -- i,0 

I I I I 
9 o o .o 

Intensity, (curve b ) 

I I I I 
0 0 ~ -- 

~ SXA~:[IIO .LHDI'I L~LOILLVdTI£LOL}O 



334 W A S S E R M A N  A N D  V E V E ~ K A  

selves to a few specific examples to get a 
feeling for the si tuation : 

A. A constant  gradient  atmosphere,  
G = 0.1, H 0 ~ 25kin, v = 7.5km/sec. 
No noise. 

B. Same as (A), but  with 3% random 
noise. 

C. An isothermal atmosphere,  H = 20.02 
km and v = 7.5kin/see. No noise. 

D. Same as (C), but  with 3% random 
noise. 

The light curves are shown in Figs. 10 and 
l l .  The isothermal a tmosphere  chosen is 
tha t  whose light curve provides the best 
fit to the constant  gradient  a tmosphere  (A) 
with the constraint  tha t  for both  curves 
t = 0 at  ¢*/¢ = 2, i.e., t o = 0. This fit differs 
from tha t  in Fig. 5 because the constraints 
are different. 

The refract ivi ty profiles, obtained by  the 
inversion technique described in Section 
I I - 1 ,  are compared with the true profiles 
in Figs. 12 and 13. R e p r e s e n t a t i v e  values 
are tabula ted  in Tables IV and V. The 
actual values of v shown are obtained from 
the equation : 

1' - ~  -1 
: ~0 1 + t t 0  (r - to)  ( i s )  

I . ,r • ] T 

O~ 

where : 

PO 
Ho 2 

J/z 1 ++) 
(18) 

Here, B is the Beta  Funct ion.  I n  our case 
1 / G  = 10, and B = 0.5284. The value of D 
used was tha t  corresponding to the distance 
of Jup i te r  on May 13, 1971 (6.538 × l0 s 
kin). For  G - 0 equation (I8) reduces to 

v = Vo e-(~-ro) /H (19) 

v o = ( g / D ) ( g / 2 r r R p ) ~ / 2 ,  

and H is the isothermal scale height. 
I n  both  eases in the absence of noise the 

calculated values of  ~ approach the true 
refract ivi ty  profile from below since we are 
neglecting contributions from the upper- 
most  layers of the atmosphere.  The effect 
of 3% noise for the isothermal ease appears 
as an addit ive factor  of  about  7 × 10 -13 in 
the refract ivi ty at  the beginning of the 
integration. Al though this effect quickly 
becomes negligible, it does significantly 
affect the slope of the refract ivi ty  profile 
for about  the first 100km. The noise is 
somewhat  smaller in the linear gradient  
case and damps out  faster, a l though it is 

• L T 1 I ~  

i 

~,°+ I 
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04L + 
0.2 

OI I 

-20 __i _~ 1 ~ .  -! 5 -15 - I0 
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0 5 I0 15 20 25 
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F~G. 10. Tile light curves for a constant gradient atmosphere G = 0.1, H o = 25krn, with no noise 
(dashed) and with 3% random noise (solid). A vMue of v = 7.5kin/see is assumed, typical for a 
Jovian occultation. 
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FIG. 11. The curves for an isothermal atmosphere H = 20.02km, with no noise added (dashed), 
and with 3% random noise (solid). The value of v is tha t  used in Fig. 10. 

i m p o r t a n t  to  n o t e  t h a t  t h e  specif ic  effects  
o f  no i se  a re  o n l y  i l l u s t r a t i v e  s ince  we  a re  
e x a m i n i n g  o n l y  one  o f  an  in f in i t e  n u m b e r  
o f  poss ib i l i t i e s .  

T h e  conc lus ion  to  be  d r a w n  f r o m  th i s  
exe rc i se  is t h a t  i f  t h e  f i rs t  t h r e e  scale  
h e i g h t s  o f  t h e  r e f r a c t i v i t y  prof i le  a re  
i g n o r e d  (as s u g g e s t e d  in  S e c t i o n  I I -  1), t h e n ,  
even  in  t h e  p r e s e n c e  o f  r e a s o n a b l e  a m o u n t s  
o f  noise ,  f a i t h f u l  r e f r a c t i v i t y  prof i les  can  

be  o b t a i n e d  b y  t h e  i n v e r s i o n  m e t h o d .  H i g h  
q u a l i t y  o b s e r v e d  l i g h t  cu rves  s h o u l d  h a v e  
less t h a n  3 %  noise .  

I t  s h o u l d  be  n o t e d  f r o m  F igs .  12 a n d  13 
t h a t ,  e v e n  in  t h e  p r e s e n c e  o f  3 %  noise ,  t h e  
l i nea r  t e m p e r a t u r e  g r a d i e n t  a t m o s p h e r e  
c a n  be  d i s t i n g u i s h e d  f rom t h e  i s o t h e r m a l  
one.  I n  t h e  f o r m e r  case,  a t  t h e  d e e p e s t  
levels ,  t h e  r e f r a c t i v i t y  prof i le  is n o n l i n e a r  
a n d  c o n c a v e  u p w a r d s ;  in  t h e  s e c o n d  case  

TABLE IV 

SELECTED ]~EFI~ACTIVITY VALUES FRO.ME FIGURE 12 a 

inversion v 

Actual  v 
r (km) ¢/¢* (Eq. 18) No noise 3% Noise 

30.1 0.985 6.17 (--12) 2.35 (--12) 2.84 (-12) 
50.0 0.975 1.18 (--11) 7.32 (-12) 7.25 ( 1 2 )  
75.3 0.91 2 . 8 3 ( 1 1 )  2.33(--11) 2.47(--11) 

100.1 0.79 7.24 (--11) 6.75 (-11) 7.20 (--11) 
129.1 0.50 2.42 (--10) 2.40 (--10) 2.53 (-11) 
150.1 0.25 6.37 (-10) 6.44 (--10) 6.65 ( 1 0 )  
165.2 0.10 1.35 (--9) 1.37 (--9) - -  

" In  the last three columns each number is to be multiplied by the power of ten 
indicated within the brackets.  
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T A B L E  V 

S E L E C T E D  I ~ E F I ~ A C T I V I T ¥  V A L U E S  FROM ] ~ I G U R E  13 a 

Ac tua l  
r (kin) ¢ / ¢ *  (Eq.  19) 

25.3 0.99 1.07 ( -12)  
50.2 0.98 3.72 ( -12)  
75.1 0.94 1.29 ( -11)  

100.4 0.81 4.56 ( -11)  
130.6 0.50 2.07 ( -10)  
150.2 0.27 5.48 ( -10)  
168.2 0.10 1.35 ( 9 )  

I nve r s ion  v 

No noise 3% noise 

4.64 (--13) 1.34 (--12) 
2.84 (--12) 4.77 (--12) 
1.19 (--11) 1.57 (--1l) 
4.50 (--11) 4.96 ( - - l l )  
2.10 (--10) 2.15 (--10) 
5.59 (--10) 5.73 (--10) 
1.38 (--9) 

" I n  t he  las t  t h r ee  co lumns  each n u m b e r  is to be mul t ip l i ed  by  tile power  of  t en  
ind ica ted  wi th in  the  brackets .  

the  profile is l inear at  these levels. This is 
significant since the isothermal a tmosphere  
was chosen to have a light curve as close 
as possible to tha t  of  the linear gradient  
a tmosphere  with the constraint  t ha t  they  
both  pass through t = 0 at  ¢/¢* 0.5. As 
pointed out  previously, this gives a slightly 
different  fit than  tha t  in Fig. 5, where we 
have not  imposed any  constraints  on the 
fit. 

PART I I I .  TEMPERATURE PROFILES 

1. Deriving Temperature Profiles from 
Refractivity Profiles 

To generate t empera tu re  profiles from 
ref rac t iv i ty  profiles, refractivit ies must  
first be conver ted into densities. Assuming 
a constant  mean molecular weight : 

o(r) = (m/,'s) .(r) (20) 

16 II 

1 ~ - - [  F ~  I I i I I I I F I i I 

.... , , /  
/ J 

o ,b 2b 3b 4b so 60 ~b sb-gb ,& ,'~ ,5o ,~  40 ,~o J;o 
Deplh (km) 

l 

180 

FIG. 12. R e f r a c t i v i t y  profiles ob t a ined  b y  i n v e r t i n g  t he  l ight  curves  shown in Fig. 10 c o m p a r e d  
wi th  t he  t r ue  r e f r ac t i v i t y  profile (solid). The  i n v e r t e d  profiles cor respond  to t he  eases of no  r a n d o m  
noise a d d e d  (dashed),  a n d  to 3% r a n d o m  noise a d d e d  (dot ted) .  (See Fig. 10.) 
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Fro. 13. Refractivity profiles obtained by inverting the light curves shown in Fig. 11 compared 
with the true refractivity profile (solid). The inverted profiles correspond to the cases of no random 
noise added (dashed), and to 3% random noise added (dotted). (See Fig. 11.) 

where the  subscr ip t  s refers to STP  con- 
di t ions and : 

Ps : I~mH L (21) 
where m u = mass  of  a hydrogen  a t o m  
and  L = L o s c h m i d t ' s  number .  

To proceed we m u s t  specify the  composi-  
t ion of  the  a tmosphere .  Since mos t  recent  
occul ta t ions  have  involved the  outer  
planets ,  we shall couch our  discussion in 
t e rms  of  hyd rogen -he l i um a tmospheres .  

Fo r  such a tmospheres ,  the  re f rac t iv i ty  
a t  S T P  is given b y  

Vs =fHe(Vs)He -}-f.2(Vs)H2, 

where r u e -  hel ium frac t ion  b y  n u m b e r  
~ / 2 -  1 and  fH2 = hydrogen  f rac t ion  by  
n u m b e r =  1 - f H ~ .  The refract ivi t ies  of  
hydrogen  and  hel ium a t  S T P  can be 
represen ted  wi th  sufficient accuracy  for 
present  purposes  b y  

( (v~)H¢=AH~ 1+ A2 ] ,  

and  

where the  wave leng th  A is in mic romete r s  
and  the  dispersion cons tan ts  according to 

Allen (1963) are AH¢ = 3.48 × 10 -5, Bne = 
2.3 × 10 -3, AH2 ~ 13.58 × 10 -5, and  BH2 = 
7.52 × 10 -3. 

Once file or f~2 is specified, the refrac-  
t i v i ty  profile can be conver ted  into a 
dens i ty  profile using the formulas  above.  

2. Algorithm for Deriving Temperature 
Profiles 

The t e m p e r a t u r e  profile can be der ived 
f rom the dens i ty  profile using the  perfect  
gas law and the  equa t ion  of  hydros ta t i c  
equil ibrium. Divide the  a tmosphe re  into 
N plane parallel  layers,  n u m b e r e d  down- 
ward  1 to N.  Choose P l  to be small,  bu t  
a rb i t ra ry .  The va lues  of  Pl, P2 . . . .  PN are 
known f rom above,  and  the  t e m p e r a t u r e  
s t ruc ture  can be found f rom : 

fii = (Pi + Pi+l)/2, 
dPi = --f i i  gAr, 

i (22)  
Pi+l = ~ dPi + PI, 

1 

Ti + 1 = ~mH Pi +, . 
]Cpi + l 

I t  is clear t h a t  in the  u p p e r m o s t  layers  
the  t e m p e r a t u r e  der ived will depend  
significantly on the b o u n d a r y  condit ion:  
P I .  However ,  for P ,  >> PI  this influence 
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should become negligible. This is i l lustrated 
in the following section where the converg- 
ence propert ies  of the algori thm in the 
case of a linear t empera tu re  gradient  
a tmosphere  are studied. 

3. Convergence of the Temperature Algor- 
ithm in the Npecial Case of a Linear 
Temperature Gradient Atmosphere 

For  a linear t empera tu re  gradient  atmos- 
phere (Goldsmith, 1963) 

P = P o  l + g o ( r - r o )  (23) 

where the subscript  zero refers to the level 
at  which 6" /6  = 2, H = Ho; also y - 1/G. 
The pressure as a funct ion of height is 
given by  

j-, 
- -  pg dr P(r) = Pl rl 

where P~ is the assumed pressure at  the 
boundary  r=r~ .  Subst i tut ing (23) and 
integrat ing : 

(I G (r - ro) P(r) = Pl  + poHog , l + Ho 

- 1 + H o  (r~ - ro) (2a)  

which, using the perfect  gas law, gives 

T(r) t*mu P1 + Po gHo Ixrnu 
bp ~p 

([ ] [ ]-') G -~ G ( r l - t o )  × l+H0( r - ro )  - l + H o  
(25) 

and eliminating p by  using (23), we finally 
have : 

T(r) gH° I~mH 
k 

G r0)]"' +.o  .o(r 
~.m~_P 1 gH o m .  l +~ t  o ( r ~ - r o )  

× ~ kpo 
(26)  

Recall  t ha t  P~ represents the assumed 
boundary  value of the pressure, and say 
tha t  the t rue  value is P1 *, so tha t  

P~ = A- PI  t (27) 

w h e r e  A is a cons tant .  S ince:  

p / -  Po[1 + (e/Ho)(rl  - ro)]-~ , 

To gHo t~mu/k, 
d T / d r -  To(G/Ho) gG~mlflk , 

and Po-(Po/ t*mH)kTo,  Eq. (26) m a y ' b e  
rewri t ten  in the form : 

T(r) = T O 

d T  ( r _ r o ) + l  I G ]'~J 
+ ~ + Ho (" - 1"o) 

I1 G -'; 
× + H o ( r , - r o )  ] ( A -  1 )T  O 

(28) 
which gives the t empera tu re  profile in- 
ferred in terms of the error factor  A 
[Eq. (27)]. When A l, Eq. (28) reduces, 
as it should, to : 

T(r) -- T O + (dT/dr)(r - ro) (29) 

Equa t ion  (28) can now be used to s tudy  
the effects of the pressure boundary  con- 
dition at  r~ on the inferred t empera tu re  
profile. The problem cannot  be pursue(] 
in to ta l  general i ty  and we consider only 
two i l lustrat ive examples for the case 
A - 0. This choice for A is reasonable since 
the usual assumption is tha t  t ) L -  0 at  
r = r  I . 

Table VI shows the results of these 
calculations tbr a tmospheres  having T o 
150°K and G = +0.1 and -0 .1  respectively.  
Note tha t  in this case, r - r 0 is related to ¢ 
(the light curve flux) by:  

(r -- ro)/tt  = y [(¢*/¢ -- 1) -'/(v+5/:, -- 1]. 

(3o) 
I f i n p r a e t i e e r  r~ i s t aken toco r r e spond  

to the ¢ = 0.98¢* level, then for G = +0.1, 
r I - - r  o = 3 . 7  H o. F o r  G - 0 . 1 ,  t h e  v a l u e  

is 4.1 H o. l~ecall t, ha*~ r o i:~ the level for 
which ¢ = 0.506*. 

I t  is clear from Table VI tha t  the 
t empera tu re  profile does not  begin to 
converge to the correct  value until  af ter  
three scale heights from the upper  bound- 
ary. Below to, convergence is rapid in bo th  
c a s e s .  

For  an isothermal a tmosphere  (G = 0) 
Eq. (28) becomes 

T(r) = Toil  + (A - -  1 ) e  ( r - r l ) / H ]  (31) 



O C C U L T A T I O N  L I G H T  C U R V E S  

TABLE VI 

CONVERGENCE OF T E M P E R A T U R E  A L G O R I T t t M  FOR Two LINEAI~ T E M P E R A T U R E  

G R A D I E N T  M O D E L  ATMOSPI~ERES a 

339 

G = +0.1 G = - 0 . 1  

r - r o T (true) T (Eq. 28) % error T (true) T (Eq. 28) % error 

4Ho - -  - -  - -  90 13.5 85 
3Ho 195 79.5 59.2 105 85.5 18.6 
2Ho 180 132.0 26.7 120 114.3 4.8 
Ho 165 147.0 10.9 135 133.0 1.5 
0 150 143.5 4.3 150 149.2 0.5 
- H o  135 133.0 1.5 165 164.7 0.2 

2H o 120 119.4 0.5 180 179.9 0.06 

" See text  for details. 

a n d  (30) r e d u c e s  t o :  

(r  - r o ) / H  = - I n  ( ¢ * / ¢  - l )  

a n d  ¢ = 0 .98¢* c o r r e s p o n d s  to  (r I - r 0 ) =  
3.9 H ,  so t h a t :  

T(r) T0[1 + (A - 1)e-3"9 e(r-ro)/H]. (32) 

T h e  c o n v e r g e n c e  p r o p e r t i e s  for  T O = 
150 ° a n d  A = 0 a re  s h o w n  in T a b l e  V I I .  
A g a i n ,  for  a b o u t  t h r e e  scale  h e i g h t s  f r o m  
t h e  t o p  c o n v e r g e n c e  is poor ,  b u t  b e c o m e s  
s a t i s f a c t o r y  b e l o w  r - r 0. 

W e  wish  to  s t r ess  t h a t  t h e  a b o v e  
e x a m p l e s  s h o u l d  o n l y  be  c o n s i d e r e d  as  
i l l u s t r a t i v e .  T h e  c o n v e r g e n c e  p r o p e r t i e s  
d e p e n d  on  t h e  specif ic  choice  o f  A ,  G a n d  
on  t h e  i n i t i a l  ¢ v a l u e  (i.e., r I ). F o r  i n s t a n c e ,  
we h a v e  n o t  p r o v e n  t h a t  t h e  t r e n d  e v i d e n t  

TABLE VII  

CONVERGENCE OF T E M P E R A T U R E  ALGORITI tM FOR 

AN ISOTHERMAL M O D E L  ATMOSPt tE I tE  a 

r - ro T (true) T (Eq. 32) % error 

3H 150 88.5 41 
2H 150 127.5 15 

H 150 141.8 5.5 
0 150 147.0 2.0 

- H  150 148.9 0.73 
- 2 H  150 149.6 0.27 

" See text  for details. 

in t h e  a b o v e  e x a m p l e s ,  t h a t  G < 0 con- 
ve rges  f a s t e r  t h a n  G = 0, w h i c h  in t u r n  
c o n v e r g e s  f a s t e r  t h a n  G > 0, is a l w a y s  
t rue .  N o t e ,  h o w e v e r ,  t h a t  ou r  r e su l t s  a re  
i n d e p e n d e n t  o f  t h e  scale  h e i g h t  H ,  a n d  
t h a t  t h e  p e r c e n t  e r r o r  in  T g i v e n  in 
T a b l e s  V I  a n d  V I I  m u s t  be  i n d e p e n d e n t  o f  
T o s ince  i t  can  be  f a c t o r e d  o u t  o f  Eq .  (28) 
a n d  (31). 

4. Practical Applications of the Tempera- 
ture Algorithm 

T h e  a l g o r i t h m  d i s cus sed  in  t h e  two  
p r e c e d i n g  sec t ions  can  be  m o d i f i e d  s l i g h t l y  
in p r a c t i c e .  T h e  i n i t i a l  b o u n d a r y  c o n d i t i o n  
P ~ = 0  a t  r r~ imp l i e s  T 1 - 0  w h i c h  is 
c e r t a i n l y  n o t  co r rec t .  B y  f i t t i ng  a s t r a i g h t  
l ine  to  t h e  q u a s i - l i n e a r  p o r t i o n  o f  r e f rac -  
t i v i t y  prof i les  (such as  t h o s e  s h o w n  in 
F igs .  12 a n d  13) an  a p p r o x i m a t e  scale  
h e i g h t / 1  can  be  o b t a i n e d .  

A f t e r  one  i t e r a t i o n ,  i f  t h e  i n f e r r e d  
p r e s s u r e  a t  leve l  AT is PN (us ing  P l  = 0), t h e  
n e x t  i t e r a t i o n  can  b e g i n  w i t h  

Pl = P N  e-(rrrN)/N 

or  a l t e r n a t e l y ,  / t  can  be  u sed  to  e s t i m a t e  
t h e  i n i t i a l  t e m p e r a t u r e  T 1. T h u s  succes-  
s ive  i t e r a t i o n s  a re  poss ib l e ,  w i t h  a n e w  P~ 
b e i n g  d e t e r m i n e d  each  t i m e  u s i n g / t .  Th i s  
p roc e s s  c o n v e r g e s  r a p i d l y .  W e  re fe r  to  t h i s  
m e t h o d  as  M e t h o d  A in w h a t  fol lows.  

A r e l a t e d  p r o c e d u r e  for  d e t e r m i n i n g  
T(r) was  s u g g e s t e d  b y  H u b b a r d  et al. 
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(1972). F rom the perfect  gas law: 

d P =  (k/~mH)( T dp + pdT) 

which, when combined with the equat ion 
of  hydros ta t ic  equilibrium, gives 

H [ l d p  1 dT'i 
+ = - 1  (33) 

Defining a densi ty scale height H ,  by  the 
eq u at, ion, 

1 1 dp 
H ,  - p di:' 

Eq. (33) becomes 

dH H 
dr + 9 ,  = (34) 

Assuming constant  composition, we have 

1 --1 dp --1 dv 

H,  p dr v dr 

and the ref rac t iv i ty  profile gives H,(r). 
Given an initial assumption for H l (as 
discussed above), E( I. (34) can be inte- 
grated numerical ly to give H(r), and 
hence T(r), if  a value of/x is assumed. This 
procedure we call Method B. I t  should be 
clear that. Methods A and B are conceptu- 
ally equivalent.  They  both  depend on 
est imating the scale height at the beginning 
of the occultat ion curve a most  un- 
certain enterprise. 

The methods discussed above can now be 

tested by  invert ing the ref rac t iv i ty  profiles 
shown in Figs. 12 and 13. In  each case we 
need to est imate the quasiscale he igh t /4 ,  
obta ined by  fitting straight  lines to the 
quasilinear portions of the ref rac t iv i ty  
profiles i nF igs .  12 and 13. The resulting 
values of H are given in Table VIII .  Note  
tha t  / I  departs  from H in the third case, 
even though the noise level is zero, because 
the re f rac t iv i ty  profile generated is not  
exact ly  isothermal  at  the beginning of the 
integration.  This difficulty, discussed in 
Section I I - I ,  is related to the assumption 
tha t  no light ray  bending occurs above the 
first point of integration.  

The t empera tu re  profiles generated by 
Methods A and B are compared with the 
true tempera ture  s t ructures  for no noise in 
Figs. 14 and 15; the resulting profiles in 
the presence of 3% noise are shown in 
Figs. 16 and 17. The tbllowing impor tan t  
l)oints emerge: 

1. For about  the first four scale heights 
(depths < 100kin) nei ther  method gives 
reliable results. 

2. More than  four scale heights below 
the start ing point  (depths > 100km) both  
methods  give reasonable and quite com- 
parable results. 

3. The integrat ion was stopi)ed at a 
level corresponding to ¢ = 0.1¢*. At tha t  
point  nei ther  method  had converged to 
precisely the correct  t empera tu re  profile. 

T A B L E  V I I I  

VALUES OF THE QUASISCALE ]-IEIGHT /~ OBTAINED FROM FI~URES 12 AND 13" 

Case Figure 

G = 0.1, H o = 25kin Fig. 12 
(no noise) (dashed line) 

G = 0.1, Ho = 25kin Fig. 12 
(3 % noise) (dotted line) 

G 0, H = 20.02km Fig. 13 
(no noise) (dashed line) 

G = 0, H = 20.02kin Fig. 13 
(3% noise) (dotted line) 

Quasiscale 
Range fitted height 

(kin) / t  (kin) 

60-180 23.4 

60 180 19.3 

80 180 23.0 

80-180 21.9 

" See text for details. 
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F~G. 14.  T e m p e r a t u r e  profi les c a l c u l a t e d  b y  M e t h o d s  A a n d  B from t i le  r e f rac t iv i ty  profi le  in 
F i g .  12 (no  noise) .  S h o w n  left  to  r ight  are three  cases  correspond ing  to c o m p o s i t i o n s  o f  (1) 1 0 0 %  H e ,  

0 %  H e .  (2) 5 0 %  H~,  5 0 %  H e ,  a n d  (3) 2 0 %  H 2 ,  8 0 %  H e .  I n  each  case,  t h e  true  a t m o s p h e r i c  t e m p e r a -  
tare  profi le  has  been  s k e t c h e d  in.  

4. Moderate amounts of noise (3% in 
this case) do not have a significant effect 
on the results. 

The difference between the calculated 
and true temperature profiles can be 
attributed to three major factors: 

1. Errors in the refractivity profile 
introduced during the light curve inversion. 
These are especially important near the top 

of the refractivity profile (Section H-I) .  
2. Errors in estimating/~. 
3. Errors due to random noise. 

Note that either Method A or Method B 
would give exactly accurate temperature 
profiles everywhere if applied to an 
exactly isothermal refractivity profile. In 
that case/1 would equal H. This does not 
occur in the case of the "no noise" refrac- 

2 0 i  [ m r -  I - -  ' I I - - T - -  I J ] - - - -  

t 40 ( ........ i ..... ( ..................... • ...................... 

\ ~ ",, ( ' , . ,  ( 
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~ IOC 

~12C 

14C 

18C 

~ , L , , I , J , J , 
I00 140 180 220  260  3 0 0  3 4 0  

Temperature 

F I G .  15.  S a m e  as  F i g .  14  b u t  for t h e  d a s h e d  r e f r a c t i v i t y  profi le  in F i g .  13 (no noise) .  
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Te m p e r a t u r e  

ref rac t iv i ty  profile in Fig. 12 (3% noise). 

t ivity profile shown in Fig. 13 used to 
generate the temperature profiles in Fig. 15, 
since that  profile is not truly isothermal due 
to inversion errors as explained above. 

Even in the case of an exact linear 
gradient refractivity profile, neither 
Method A nor Method B would give 
exactly accurate temperature profiles near 

the begimdng of the integration, since, in 
this ease, H would be approximate. 

In practice, the procedure is subject to 
the three errors enumerated above, and 
inferred temperature profiles cannot be 
trusted for at least four scale heights from 
the beginning of the integration. This point 
is well illustrated in Figs. 15 and 17, where 

4C 

6C 

8C 
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FIG. 17. Same as Fig. 14 bu~ for the  do t t ed  re f rac t iv i ty  profile in Fig. 13 (3% noise). 
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it  is seen t ha t  the effect of  noise on the iso- 
thermal  case is to change the  direct ion 
f rom which the solutions converge to the 
t rue  t empera tu re  profile. In  nei ther  case, 
"no  noise" and " 3 %  noise," would it be 
correct  to infer a t empera tu re  gradient  in 
the region between 100 and 170kin 
(Figs. 15 and 17). 

In  Figs. 14 and 16, the solutions suggest 
a quasi-isothermal region between 100 and 
130km, which, of course, is not  real. How- 
ever, by  the t ime t ha t  the 100kin level is 
reached, the t empera tu re  algori thms have 
correct ly  converged to the re f rac t iv i ty  
profiles being used (Fig. 12). Unfor tu-  
nately,  these re f rac t iv i ty  profiles are not  
exac t ly  those of  a constant  t empera tu re  
gradient  a tmosphere,  and this error in the 
re f rac t iv i ty  profiles is p ropaga ted  into the 
t empera tu re  profiles. Specifically, for the 
G = 0.1 atmosphere,  the t rue  re f rac t iv i ty  
profile must  be concave upwards  every-  
where, on a plot such as t ha t  shown in 
Fig. 12. However ,  s tar t ing the inversion 
at  a finite level makes the beginning par t  
of  the re f rac t iv i ty  profile concave down- 
ward. There  must  then  be a quasilinear 
t ransi t ion region which will appear  in the 
t empera tu re  profile as a quasi isothermal 
port ion.  

The conclusion of  this section is t ha t  no 
ma t t e r  how clever an algori thm is used to 
derive t empera tu res  from ref rac t iv i ty  pro- 
flies, errors in the re f rac t iv i ty  profiles will 
propagate  into the t empera tu re  calcula- 
tions. I t  was shown in Section I I - I  t ha t  
calculated re f rac t iv i ty  profiles do not  
converge to the real values for about  three 
scale heights from the beginning level of  
the calculation. The s i tuat ion will there- 
fore be even worse for the t empera tu re  
profiles. One must  be especially cautious of 
large t empera tu re  gradients  and fluctua- 
t ions indicated in the initial port ions of  
t empera tu re  profiles (Figs. 14 and 17). 
However ,  it  appears  t ha t  more t han  the 
three  to four scale heights below the 
beginning of the  in tegrat ion reasonably  
accurate  t empera tu re  profiles can be 
inferred from occul ta t ion light curves. 

A note  of  caut ion is required at  this 
point.  Even  though spikes t rans la te  into 
small f luctuat ions in the re f rac t iv i ty  

profiles, t hey  produce significant fluctua- 
t ions in the t empera tu re  profiles. I f  ray  
crossing is severe, the bumps in the tem- 
pera ture  profile corresponding to spikes 
will not  only appear  at  the wrong level bu t  
will be wrong in magnitude.  All t h a t  can 
be said is tha t ,  if  most  spikes in a light 
curve do not  involve severe r ay  crossing, 
the fine s t ruc ture  of  the t empera tu re  profile 
will be essentially correct.  Otherwise, it  
will not.  As stressed previously,  f rom a 
single in tens i ty  record of an occul ta t ion it 
is impossible to determine whether  or not  
ray  crossing occurred. 

PART IV. CASES OF VARIABLE ~IOLECUI,AR 
~¥EIGHT 

So far we have assumed tha t  the mean 
molecular weight of the a tmosphere  is 
constant  in the region sampled by  the 
occul ta t ion curve. However ,  in practice,  
the occul ta t ion curve m ay  s ta r t  in the 
region above the turbopause  where t~ is 
controlled by  diffusive separat ion and 
te rmina te  in the layer  below" the turbo-  
pause w h e r e / ,  is constant  and the atmos- 
phere is well-mixed. Unfor tuna te ly ,  there  
appears  to be no way of  telling from the 
shape of an occul tat ion light curve whether  
the region being sampled is above, below, 
or straddling the turbopause.  We wish to 
prove this assertion with one specific 
example.  

Consider the following idealized ease, of 
an occul ta t ion by  a planet  like Jupi ter .  
Assume tha t  the turbopause  occurs at  a 
number  densi ty  of n = 3 × 1013em-3, and 
t ha t  the hydrogen-he l ium a tmosphere  is 
isothermal  a t  T = 100°K below the turbo-  
pause and t* = 3. Above the turbopause ,  
the t empera tu re  increases l inearly a t  
1.88°K/km, and /~ is de termined  by  
diffusive separation. 

The result ing occul ta t ion curve is shown 
in Fig. 18. The corresponding physieM 
parameters  of the a tmosphere  at  various 
levels are given in Table IX.  In  tha t  table,  
H* is the ins tantaneous  scale height at  a 
given level de termined  b y  the equat ion 
H*(r)  = kT(r) / ( t , ( r )g(r )mH).  Also shown in 
Fig. 18 is the best  isothermal  fit (H i = 
10.03km) assuming constant  tL. Even  in 
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FI¢~. 18. Occultation curve for an atmosphere in which tile mean molecular weight varies with 
height (see text  and Table IX  for details). Also shown is the best isothermal fit assuming a constant 
molecular weight. Shown in the insert is a comparison of the true model temperature profile with 
that  given by the best isothermal (constant F) fit. 

t he  a b s e n c e  o f  noise  i t  is a l m o s t  i m p o s s i b l e  
to  te l l  t h a t  t h e  t u r b o p a u s e  is c rossed  a t  t h e  
¢ / ¢ *  0.5 level ,  a n d  t h a t  t h e  a t m o s p h e r e  
is n o t  close to  i s o t h e r m a l !  

A m e t h o d  o f  d e t e r m i n i n g  t h e  m e a n  
m o l e c u l a r  we igh t ,  F, d i r e c t l y  f rom t h e  
a r r i v a l  t i m e s  o f  sp ikes  a t  s eve r a l  w a v e -  
l e n g t h s  has  been  s u g g e s t e d  b y  B r i n k m a n n  
( B r i n k m a n n ,  1971 ; W a s s e r m a n  a n d  
V e v e r k a ,  1973). I f  a l a rge  n u m b e r  o f  sp ikes  
were  o b s e r v e d  in a l i gh t  cu rve  s imul -  

t a n e o u s l y  a t  s e ve r a l  w a v e l e n g t h s  w i t h  a 
t i m e  r e s o l u t i o n  of  a b o u t  0 .01see,  t h e  
c o n s t a n t  F h y p o t h e s i s  cou ld  be  t e s t e d .  

I n  t he  m e a n t i m e ,  i t  s eems  b e s t  to  a d o p t  
an  i n d i r e c t  a p p r o a c h .  F r o m  t h e  o c c u l t a t i o n  
l i gh t  c u r v e  t h e  n u m b e r  d e n s i t y  a t  t h e  
v a r i o u s  ¢ leve ls  can  be e s t i m a t e d .  A t m o s -  
p h e r i e  m o d e l s  can  t h e n  be  u sed  to  p r e d i c t  
t h e  t u r b o p a u s e  level .  I f  t h e  p r e d i c t i o n s  
i n d i c a t e  t h a t  m o s t  o f  t h e  l i gh t  cu rve  
c o r r e s p o n d s  to  leve ls  b e l o w  t h e  t u r b o p a u s e ,  

TABLE IX 

ATMOSPHERIC MODEL CORRESPONDING TO FIGURE 18 a 

¢ / ¢ *  ( r  - r t )  (kin) tL T (°K) H* (km) 

<0.45 <0 3 100 10.6 
0.73 10 2.65 119 14.0 
0.88 20 2.46 138 17.8 
0.94 30 2.33 157 21.4 
0.97 40 2.25 176 24.9 
0.98 50 2.19 195 28.4 
0.99 60 2.14 214 31.8 

The turbopause level is denoted by r t .  
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the constant t~ assumption is justified. 
Otherwise, the problem becomes intract- 
able, barring the input of additional 
information. 
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