
Dynamics of Planetary Rings

Bruno Sicardy1,2

1 Observatoire de Paris, LESIA, 92195 Meudon Cédex, France
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Abstract. Planetary rings are found around all four giant planets of our solar sys-
tem. These collisional and highly flattened disks exhibit a whole wealth of physical
processes involving microscopic dust grains, as well as meter-sized boulders. These
processes, together with ring composition, can help to understand better the for-
mation and evolution of proto-satellite and proto-planetary disks in the early solar
system. The present chapter reviews some fundamental aspects of ring dynamics,
namely their flattening, their stability against proper modes, their particle sizes,
and their responses to resonance forcing by satellites. These concepts will be used
and tested during the forthcoming exploration of the Saturn system by the Cassini
mission.

1 Introduction

Planetary rings consist in thin disks of innumerable colliding particles revolv-
ing around a central planet. They are found around all the four giant planets
of our solar system, Jupiter, Saturn, Uranus and Neptune. Meanwhile, they
exhibit a wide variety of sizes, masses and physical properties. Also, they in-
volve many different physical processes, ranging from large spiral waves akin
to galactic structures, down to microscopic electromagnetic forces on charged
dust grains.

All these effects have a profound influence on the long term evolution of
rings. As such, they can teach us something about the origin of rings, i.e.
whether they are cogenetic to the central planet, or the result of a more
recent breakup of a comet or satellite. These processes are also linked to
disk dynamics in general, either in proto-planetary circumstellar disks or in
galaxies.

A complete review of all these processes remains out of the scope of this
short chapter. Instead, we would like to address here a few basic issues related
to planetary rings, by asking the following questions:

• Why are planetary rings so flat?
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• How thin and dynamically stable are they?
• How do they respond to resonant forcing from satellites?

Answering these questions may help to understand the connection between
rings global properties (mass, optical depth, etc. . . ) and their local character-
istics (particle size and distribution, velocity dispersion, etc. . . ).

Extensive descriptions and studies of the issues presented in this chapter
are available in the literature. Detailed reviews (and related references) on ring
structures, ring dynamics and open issues are presented in [1–6], while ring
origin and evolution are discussed in [7] and [8]. Stability issues are discussed
in classical papers like [9], and in very much details in reference text books
like [10]. Collisional processes are reviewed for instance in [11]. Finally, the
various possible responses of disks to resonances and their applications are
exposed in [1, 12–14].

2 Planetary Rings and the Roche Zone

Generally speaking, planetary rings reside inside a limit loosely referred to as
the ‘Roche zone’ of the central planet. Inside this limit, the tidal stress from
the central body tends to disrupt satellites into smaller bodies. Outside this
limit, accretion tends to sweep dispersed particles into larger lumps.

Reality is not so sharply defined, though. For instance, the tidal disruption
limit for a given body depends not only on the bulk density of that body, which
may differ significantly from one body to the other, but also on the tensile
strength of that body, another parameter which may vary by several orders
of magnitude. Thus, due to these uncertainties, the Roche zone depicted in
Fig. 1 remains rather blurred.

In spite of these difficulties, it is instructive to plot the sizes of, say,
Saturn’s satellites as a function of their distances to the center of the planet
(Fig. 1). Interestingly, one notes that the sizes of the satellites decrease as
one approaches the Roche zone, as expected from a simple modelling of tidal
stress.

Figure 1 also plots the sizes of satellites that could be formed by lumping
together the material of Saturn’s A, B and C rings, as well as of Cassini
Division. This figure supports the general idea that the Roche Limit delineates
the region inside which tides disrupt solid satellites into a fluid-like ring disk.

Note finally that in the Roche zone, rings and satellites can co-exist, as
it is the case for instance for Pan, which orbits inside the Encke Division of
Saturn’s A ring. An interesting question is then to know whether satellites
and rings can influence each other gravitationally, or even if they can be
transformed into each other on long (billions of years) or short (a few years)
time scales.

Although Jupiter’s, Uranus’ and Neptune’s rings are much less massive
that Saturn’s, they exhibit the same general behavior: smaller and smaller
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Fig. 1. The relative sizes of Saturn’s inner satellites as a function of their distance
to the planet center, in units of the planet radius. The “sizes” of the rings have been
calculated by lumping all the material of A, B, C rings and Cassini Division into
single bodies. All the sizes have been plotted so that to respect the relative masses of
the various bodies involved. For comparison, Mimas has a diameter of about 500 km

satellites are encountered as one approches the planet Roche zone, then a
mixture of rings and satellites is observed, and then only rings are found.

3 Flattening of Rings

Planetary rings flatten because of collisions between particles. This process
dissipates mechanical energy, while conserving angular momentum of the en-
semble.

Consider a swarm of particles labelled 1, . . . , i, . . . , with total initial
angular momentum H orbiting a spherical planet centered on O. Let us call the
Oz axis directed along H the “vertical” axis, and the plane Oxy perpendicular
to Oz the “horizontal plane”. The orthogonal unit vectors along Ox, Oy and
Oz will be denoted x̂, ŷ and ẑ, respectively.

Each particle of mass mi, position ri and velocity vi has an angular mo-
mentum Hi = miri × vi, so that:

H =
∑

i

miri × vi =
∑

i

miri × viz +
∑

i

miri × vih ,

where viz and vih are the vertical and horizontal contributions of the ve-
locities, respectively. The vector vih can furthermore be decomposed into a
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tangential component, viθ and a radial one, vir. Projecting H along the unit
vector ẑ along Oz, one gets:

H = H · ẑ =
∑

i

mi(ri × viz) · ẑ +
∑

i

mi(ri × vih) · ẑ =
∑

i

miriviθ .

The equality above holds because the first sum vanishes altogether since viz

and ẑ are parallel, and also because only the tangential velocity survives in
the second sum, due to the presence of ri in the mixed product (ri × vih) · ẑ.

On the other hand, the mechanical energy of the ring is given by:

E =
∑

i

miΦP (ri) +
∑

i

miv
2
iθ/2 +

∑
i

miv
2
ir/2 +

∑
i

miv
2
iz/2 ,

where ΦP (ri) is the planetary potential well per unit mass felt by the particle
i.

Comparing the expressions of H and E, one sees that it is possible to min-
imize the energy E of the ring while conserving the angular momentum H, by
simply zeroing vir and viz. In other words, the collisions, by dissipating energy
while conserving angular momentum, tend to flatten the disk perpendicular
to its total angular momentum, and to circularize the particles orbits.

If the planet is not spherically symmetric, as it is the case for all the
oblate giant planets, then only the projection of H along the planet spin axis
(say, Hspin) is conserved. The same reasoning as above then shows that the
configuration of least energy which conserves Hspin is a flat, but now equatorial
ring.

4 Stability of Flat Disks

The considerations presented above lead to the conclusion that a dissipative
ring will eventually collapse to an infinitely thin disk with perfectly circular
orbits.

In reality, this is not quite true, as some physics is still missing in the des-
crition of the rings. For instance, the differential Keplerian motion, combined
with the finite size of the particles and the mutual gravitational stirring of
the larger particles will maintain a small residual velocity dispersion in the
system (i.e. a pressure).

This dispersion induces a small but non-zero thickness of the disk, and is
actually necessary to ensure the dynamical stability of the disk versus another
destabilizing effect, namely self-gravity.

To quantify this effect, let us describe a planetary ring as a very thin disk
where the surface density, velocity and pressure at a given point r and a given
time t will be denoted respectively Σ, v and p. Furthermore, let ΦD be the
gravitational potential (per unit mass) created by the disk and cs the speed
of sound in the ring, corresponding to the typical velocity dispersion of the
particles.
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A detailed account of the calculations derived below and their physical
interpretations can be found in [10]. In a first step, one can use a toy model
where the disk is in uniform rotation with constant angular velocity vector Ω
directed along the vertical axis Oz. This will highlight the role of rotation in
the stability of the ring, while simplifying the equations of motion. In reality, a
disk around a planet exhibits a roughly Keplerian shear (Ω ∝ r−3/2), but the
conclusions concerning the role of rotation will not be altered in the present,
simplified, approach.

The eulerian equations describing the dynamics of the disk are then, in a
frame rotating at angular velocity Ω:




∂v
∂t

+ (v · ∇)v = −∇p

Σ
−∇(ΦP + ΦD) − 2Ω × v + Ω2r

∂Σ

∂t
+ ∇ · (Σv) = 0

∇2ΦD = 4πGΣδ(z)

p = Σc2
s

(1)

The first line is Euler’s equation, where the acceleration on the fluid is
expressed in terms of the pressure p, the potentials of the planet and the disk,
ΦP and ΦD, respectively, the Coriolis term and the centrifugal acceleration.
The second line the continuity equation, expressing the conservation of mass.
The next line is Poisson’s equation, relating the potential ΦD of an infinitively
thin disk to the surface density Σ, the gravitational constant G and the Dirac
function δ(z), where z is the elevation perpendicular to the ring plane. Finally,
the last line is the simplest equation of state, that of an isothermal disk,
relating the pressure p to the surface density Σ through the speed of sound
cs.

A classical approach is to consider what happens to the disk when small
perturbations are applied. For small enough disturbances, the equations above
can be linearized, assuming that the unperturbed disk has uniform density.
Then the various quantities involved can decomposed into an unperturbed
background value (with index 0) and a small perturbed value (with index 1):
Φ = ΦP + ΦD0 + ΦD1, Σ = Σ0 + Σ1, v = 0 + v1, Σ = Σ0 + Σ1.

This leads, after linearization of (1):



∂Σ1

∂t
+ Σ0 (∇ · v1) = 0

∂v1

∂t
= − c2

s

Σ0
∇Σ1 −∇ΦD1 − 2Ω × v1

∇2ΦD1 = 4πGΣ1δ(z)

(2)
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One can seek how a given disturbance, for instance Σ1 = Σ̄1 exp[i(k · r −
ωt)], propagates in the disk, where Σ̄ is the amplitude, k is the wavevector and
ω is the frequency of the disturbance (with similar notations for the pressure
and velocity). With no loss of generality we can assume that the disturbance
propagates in the disk along the horizontal axis Ox, i.e. k = kx̂.

Partial derivatives with respect to x and t are then equivalent to multipli-
cations by ik and −iω, respectively. Also, Poisson’s equation in the system 2
can be integrated as |k|Φ̄D1 = −2πGΣ̄1. This provides the algebraic system:




ikΣ0v̄1x −iωΣ̄1 = 0

iωv̄1x +2Ωv̄1y +
(

2πG

|k| − c2
s

Σ0

)
ikΣ̄1 = 0

2Ωv̄1x −iωv̄1y = 0

This system has non trivial solutions only if its determinant is non zero,
thus providing the dispersion relation for propagating modes in a uniformly
rotating disk:

ω2 = k2c2
s − 2πGΣ0|k| + 4Ω2 (3)

Modes with ω2 < O will be unstable, so that the dispersion relation tells
us which wavenumbers are unstable in the disk.

It is instructive to vary the values of cs and Ω to see the respective effects
of pressure and rotation on the stability of a thin (i.e. 2-D) disk. Various cases
can be considered:

• Cold and motionless disk: cs = 0 and Ω = 0. Then ω2 = −2πGΣ0|k|, see
Fig. 2(a), and all the modes are unstable, as expected, since nothing can
stop the gravitational collapse of any disturbance. Note that the free fall
collapse time, tcolla ∼ 1/

√
GΣ0|k| depends on the wavenumber k of the

disturbance, the smaller structures collapsing faster than the larger ones.
This contrasts with the 3-D case, where the free fall time scale depends only
upon the unperturbed density ρ0: tcolla ∼ 1/

√
Gρ0.

• Hot and motionless disk: cs 	= 0 and Ω = 0. Now ω2 = k2c2
s − 2πGΣ0|k|, so

that the disk is unstable for disturbances with |k| < kJ , where

kJ = 2πGΣ0/c2
s

is the Jeans wavenumber, see Fig. 2(b). The relation |k| < kJ is actually
the Jeans criterium for a 2-D disk. It can be compared to its 3-D classical
counterpart |k| < kJ =

√
4πGρ0/c2

s. This criterium indicates how small the
wavenumber must be (i.e. how large and massive the disturbance must be)
in order to overcome the pressure associated with cs.

• Cold rotating disk: cs = 0 and Ω 	= 0. This yields ω2 = −2πGΣ0|k| + 4Ω2,
which shows that now the large disturbances (with small k) are stabilized
by rotation, while the small structures (|k| > kR = 2Ω2/πGΣ0) remain
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Fig. 2. Various cases of relation dispersions of free modes in rotating disks (3).
In all panels, the grey intervals denote unstable mode regions. (a): motionless cold
disk, (b): motionless hot disk, (c): rotating cold disk and (d): rotating hot disk. See
text for details

unstable, see Fig. 2(c). This can be understood as large structures have a
differential velocity in the disk due to the angular velocity Ω of the latter.
As a consequence, a large structure which attempts to collapse under its
own gravity will be stopped by the rotational barrier, when the centrifugal
acceleration at its periphery balances its self gravity.

Note in passing that rotation does not stabilize the disk against all
disturbances, as the smallest of them are still subject to gravitational col-
lapses.

• Hot rotating disk: cs 	= 0 and Ω 	= 0. The dispersion relation ω2 = k2c2
s −

2πGΣ0|k| + 4Ω2 shows that ω2 is minimum for |k| = kJ/2 = πGΩ0/c2
s,

and that the minimum value is ω2
min = 4Ω2 − π2G2Σ2

0/c2
s, as illustrated in

Fig. 2(d).

It is convenient to define a dimensionless parameter, called the Toomre
parameter ([9]):

Q =
csΩ

πGΣ0
,

so that ω2
min = (4Ω2/Q2) · [Q2−1/4]. Thus, if Q < 1/2, then ω2

min < 0 and the
disk remains unstable for an interval of wavenumbers (kmin,kmax) centered on
kJ/2, see Fig. 2(d). Large structures (with small |k|) are then stabilized by
rotation, while small structure (with large |k|) are stabilized by pressure. For

Q =
csΩ

πGΣ0
>

1
2

,

the disk is stable to any disturbances. The above condition is called the
Toomre criterium. Note that it is derived for a uniformly rotating disk. A
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differentially rotating disk will also yield a similar criterium, except for the
the numerical coefficient in the right-hand side of the inequality.

Now, if a disk is rotating around a planet with potential ΦP , then the
equations of motion read (in a fixed frame this time):




(
∂

∂t
+ v · ∇

)
v = −∇ (ΦP + ΦD) − ∇ · p

Σ

∂Σ

∂t
+ ∇(Σv) = 0

∇2ΦD = 4πΣGδ(z)

p = Σc2
s

(4)

It is then more convenient to work with the radial and tangential compo-
nents of the velocity, vr and vθ, respectively, instead of vx and vy. The price to
pay is that vr and vθ now depend on θ, and this must be accounted for when
applying the nabla operator ∇. The linearization of the (4) then proceeds as
before, and the new dispersion relation is:

ω2 = k2c2
s − 2πGΣ0|k| + κ2 , (5)

where κ = r−3∂
[
r3∂ΦP /∂r

]
/∂r is the so-called epicyclic frequency, basically

the frequency at which a particle oscillates horizontally around its average
position (note that κ coincides with the mean motion n in the special case of
a Keplerian potential ΦP ∝ −1/r).

Equation (5) shows that the disk is stable against any disturbances if:

Q =
csκ

πGΣ0
> 1 , (6)

which constitutes a more general version of the Toomre criterium. It illustrates
quantitatively how pressure (cs) and rotation (κ) tend to stabilize the disk
against self-gravity (Σ0).

5 Particle Size and Ring Thickness

In planetary rings, inelastic collisions tend to reduce the velocity dispersion
cs. This in turn decreases the value of Q below unity, leading to gravitational
instabilities at some point, according to (6), and see Fig. 3. This causes the
ring to collapse into small lumps. At that point, the finite mass and size of
the lumps will maintain a small but non-zero velocity dispersion, of the order
of the escape velocity at the surface of the largest particles,

cs ∼
√

Gmmax/Rmax ,
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Fig. 3. Various cases of rotating hot disks: unstable (Q < 1), marginally stable
(Q = 1) and stable for all modes (Q > 1). The arrows indicate that collisions and
accretion tend to put the disk in the marginally stable state, see text

where mmax and Rmax are the mass and radius of the largest lumps that
dominate the dynamics of the ring. This allows the latter to maintain a Q
value just above unity.

Conversely, if the lumps become too large, then the velocity dispersion
increases and Q > 1, leading to an increase of dissipation and also to the
disruption of the lumps. This will eventually decreases again the value of Q
back to unity.

Thus, an equilibrium is reached, where a marginal statibilty is maintained
(Q ∼ 1), as illustrated in Fig. 3. This, combined with (6) and (5), leads to:

Rmax >∼
(

a

RP

)3/2(
Σ0

100 g cm−2

)(
ρ

g cm−3

)1/2

meters ,

where a is the distance to the planet center and ρ is the bulk density of the
largest particles.

As an example, if we take typical values of Σ0 ∼ 20 g cm−2 corresponding
to Saturn’s A ring, ρ <∼ 1 g cm−3 for icy particles and a ∼ 2RP , this yields
Rmax >∼ of a few meters, in accordance with radio Voyager observations.

More generally, the thickness h of the ring is given by h ∼ cs/Ω, where
the orbital angular velocity Ω ∼ κ ∼

√
GMP /a3 in a Keplerian disk. Also, a

homogeneous ring of radius a has a mass of mr ∼ πΣ0a
2. Combining these

relations with the expression of Q yields:

h

a
∼ Q × mr

MP
. (7)

Thus, we see that the thickness of a marginally stable ring is eventually
imposed by the ratio of the ring mass to the planet mass: the extreme thinness
of planetary rings comes from their extremely small mass when compared to
the planet. For Saturn’s A ring, with mr/MP ∼ 10−7, we obtain h ∼ a few
meters, in agreement again with (indirect) measurements of h, see Sect. 7.
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Note for closing this section that the first marginally unstable modes,
appearing when Q ∼ 1, corresponds to the minimal value of ω2 in (5). They
have wavenumbers kunst ∼ kJ/2 ∼ Ω/cs, i.e. wavelengths:

λunst ∼ 2πh ,

or a few tens of meters. These marginal instabilities are probably the expla-
nation for the quadrant asymmetries observed in Saturn’s A ring.

6 Resonances in Planetary Rings

So far, we have been considering free modes propagating in rings. We now
turn to the case where modes are forced by a satellite near a resonance.

Considering the very small masses of the satellites relative to the giant
planets, these forced modes are in general “microscopic”, in the sense that
they induce deviations of a few meters on the particles orbits. However, near
resonances, a satellite can excite macroscopic responses in the disk, which
exhibit large collective disturbances over tens of kilometers, i.e. on scales ob-
servable by spacecraft imagers.

As explained later, this collective response allows an secular exchange of
angular momentum and energy between the ring and the satellite, very much
like tides allow secular exchanges between a planet and its satellites.

The equations of motion are the same as in (4), except that the first
equation (Euler’s) must now accounts for the forcing of the satellite through
its disturbing potential ΦS :




(
∂

∂t
+ v · ∇

)
v = −∇ (ΦP + ΦD + ΦS) − ∇ · P

Σ

∂Σ

∂t
+ ∇(Σv) = 0

∇2ΦD = 4πΣGδ(z)

p = Σc2
s ,

(8)

Note in passing that we have replaced the (scalar) isotropic pressure p by a
pressure tensor, P. This allows us to take into account in a general way more
complicated effects like viscosity or non-isotropic pressure terms.

The simplest case we can think of is the forcing of a homogeneous disk by
a small satellite of mass ms � MP with a circular orbit of radius as and mean
motion nS around a point-like planet with potential ΦP (r) = −GMP /r. This
is the Keplerian approximation. In reality, the oblateness of the planet intro-
duces extra terms causing a slow precession of the apse and node of the orbit.
These subtleties will not be taken into account here since they obscure our
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main point (the study of a simple isolated resonance) without changing our
main conclusions. These effects would become important, however, if the or-
bital eccentricity and inclination of the satellite were to come into play.

With these assumptions, the satellite potential is periodic in θ − nSt, so
that it can be Fourier expanded as:

ΦS(r, θ, t) =
+∞∑

m=−∞
ΦSm(r) · exp [im (θ − nSt)] , (9)

where m is an integer, ΦSm(r) = −(GmS/2aS) · bm
1/2(r/aS) and bm

1/2 is the
classical Laplace coefficient (see [12] for a review of the properties of these
coefficients). We note that Φm(r) = Φ−m(r), since Φs is real.

Equations (8) are then linearized, and we assume that the free modes
of the disk are damped by collisions, or are at least negligible with respect
to the forced modes, especially near the resonances. Then all the perturbed
quantities, for instance the radial velocity vr, take the same form as the forcing
(9), i.e. vr(r, θ, t) =

∑
vrm(r) · exp[jm(θ − nSt)], etc. . .

Each term ΦSm(r) · exp[jm(θ − nSt)] of the satellite potential then forces
a mode in the ring, and if equations (8) remain linear, then it is enough
to study the reaction of the disk to each mode separately. As already noted
before, this replaces the differential operators by mere multiplications, namely
∂/∂t = −jmns and ∂/∂θ = jm.

This approach is especially useful near resonances, where one mode dom-
inates over all the other ones, and can thus be “clipped off” from the rest.
Consider a particle with mean motion n, so that it longitude writes θ = nt
(plus an arbitrary constant). This particle thus feels a forcing potential
ΦSm(r) ·exp[jm(θ−nSt)] = ΦSm exp[jm(n−nS)t], i.e. a term with frequency
m(n − nS).

A so-called (“Excentric Lindblad Resonance”) (ELR) occurs when this
frequency matches the horizontal epicyclic frequency κ of the particle, i.e.
when:

κ = ±m(n − nS) . (10)

In this case, and for small horizontal displacements of the particle, the lat-
ter behaves very much like a harmonic oscillator (i.e. a linear system) near a
classical resonance. This simple model predicts that the horizontal displace-
ment of the particle increases as it approaches the resonance, and becomes
singular at exact resonance1. In reality, non-linear terms come into play in
the disk and eventually prevent the singularity. In counterpart, this compli-
cates significantly the equations of motion, and renders the system 8 rather
untractable.

Fortunately, for sufficiently dense planetary rings perturbed by very small
satellites, collisions, pressure and self-gravity prevent a wild behavior for

1This horizontal displacement is proportional to the orbital eccentricity of the
particle, hence the nomenclature “Excentric Lindblad Resonance”
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nearby streamlines, thus keeping the perturbed motion small, and eventually
ensuring that the system 8 remains linear.

Note that for a Keplerian disk κ = n, so that the condition κ = ±m(n−nS)
is equivalent to

n =
m

m ∓ 1
· nS , (11)

corresponding to mean motion resonances 2:1, 3:2, 4:3, etc. . . , also called
first order resonances. Other resonances, e.g. second order resonances 3:1, 4:2,
5:3 (i.e. of the form m : m − 2) can also come into play when the smaller
second order terms in the particle orbital eccentricity are considered. Still
other resonances (referred to as “corotation resonances”) can also arise when
the satellite orbital eccentricity is accounted for. These kinds of resonances
fall outside the main topic of this chapter and will not be considered here.

Another important simplification comes from the fact that in planetary
rings, the perturbed quantities vary much more rapidly radially than az-
imuthally. Physically, this means that the spiral structures resonantly forced
are tightly wound, like the grooves of a music disk. More precisely, the lower
order radial derivatives can be neglected with respect to higher orders:

m2

r2
� m

r
· d

dr
� d2

dr2
. (12)

This is the WKB approximation2, which greatly simplifies the system 8, lead-
ing to (see [13]):




jm(n − ns)vrm − 2nvθm = −Φ̇Sm − Φ̇Dm − c2
sσ̇m

Σ0
+
(

µ +
4ν

3

)
v̈rm

n

2
vrm + jm(n − ns)vθm = −jm

ΦSm + ΦDm

r
− jm

c2
sσm

rΣ0
+ νv̈θm

σm = − Σ0v̇rm

jm(n − ns)

Φ̇Dm = −2πGjsσm

pm = c2
sσm .

(13)
The quantities µ and ν are the bulk and shear kinematic viscosities, respec-
tively, coming from the pressure tensor P. The dot stands for the space (not
time) derivative d/dr. The Poisson equation has been solved using the results
of [12], where s = ±1 is chosen in such a way that the disk potential out of
the disk plane tends to zero:

ΦDm(r + is|z|) → 0 , (14)
2Developed by Wentzel-Kramer-Brilloin in the field of quantum mechanics.
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as |z| goes to infinity. We will see that boundary conditions actually impose
s = +1.

If we forget for the moment the terms ΦDm, σm, µ and ν, i.e. if we consider
a test disk with no self-gravity, no pressure nor viscosity, then we get:




vrm(r) = −jm

[
(n − ns)r

d

dr
+ 2n

]
· ΦSm(r)

1
rD

vθm(r) =
[
nr

d

dr
+ 2m2(n − ns)

]
· ΦSm(r)

1
2rD

,

(15)

where D(r) = n2 − m2(n − ns)2 is a measure of the distance to exact res-
onance. The velocity is singular when D= 0, i.e. when n = m/(m ∓ 1)ns,
corresponding to the condition (11). Thus the dependence in 1/D is just the
expected response of a linear oscillator near a resonance.

The result obtained above does not strike by its simplicity: complicated
equations and tedious calculations have just shown that a harmonic oscillator
behaves as derived in basic text books. However, we have gained with these
equations some important insights into more subtle effects associated with
viscosity, pressure and self-gravity. More generally, these equations show how
collective effects modify the simple harmonic oscillator paradigm into more
complicated behaviors.

Near the resonance, D = 0, the system 13 is almost degenerate, and (15)
yield uθm ∼ ±(j/2)urm. To solve for urm, one uses this degeneracy, plus the
tightly wound wave condition (12). We note x the relative distance to the
resonance radius am, x = (a−am)/am, and we expand (13) near x = 0, which
yields:

− α3
v

d2

dx2
(urm) + α2

G

d

dx
(urm) − jxurm = Cm , (16)

where: 


α3
v = jα3

P + α3
ν

α3
P = ∓ c2

s/n

3ma2
mns

α3
ν =

µ + 7ν/3
3ma2

mns

α2
G = ± 2πsGΣ0

3mamnns
,

(17)

and Cm is a factor which weakly depends on m ([13]). For purposes of numeri-
cal applications, Cm ∼ ±0.27an(ms/M) as m tends to infinity. The coefficient
Cm ∝ ms in (16) is the forcing term due to the satellite. The coefficients αP ,
αν and αG encapsulate the effects of pressure, viscosity and self-gravitation,
respectively. In the absence of all the α’s, the response of the disk is indeed
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singular at the resonance x=0: urm ∝ 1/x, as expected in a test disk in the
linear regime. The extra terms with the α’s in (16) prevent such an outcome,
and forces the solution to remain finite at x = 0. If oscillations are present in
the solution, then waves are launched.

Equation (16) can be solved by defining the Fourier transform of urm:

ũrm(k) =
∫ +∞

−∞
exp(−jkx)urm(x)dx ,

assuming that urm(x) is square integrable. Then we take the Fourier transform
of (16):

d

dk
(ũrm) + (α3

vk2 + jα2
Gk)ũrm = 2πCmδ(k) , (18)

where δ is the Dirac function. This first-order equation is solved with the
boundary condition ũrm → 0 as k → ∞, since ũrm is a Fourier transform.
Then:

ũrm(k) = 2πCmH(k) exp[−(α3
vk3/3 + jα2

Gk2/2)] ,

where H is the unit-step function (=0 for k < 0 and =1 for k > 0). This
eventually provides the solution we are looking for:

urm(x) = Cm

∫ +∞

0

exp[j(kx − α2
Gk2/2 − α3

P k3/3) − α3
νk3/3]dk . (19)

Note that the boundary condition (14) also requires urm(x+ is|z|) → 0 as
|z| → +∞, i.e. s = +1 since k > 0 in the integral above.

The qualitative behavior of urm(x) can be estimated from the behavior of
the argument in the exponential, j(kx − α2

Gk2/2 − α3
P k3/3) − α3

νk3/3. This
argument has an imaginary part, j(kx− α2

Gk2/2− α3
P k3/3), which causes an

oscillation of the function in the integral, and a real part, −α3
νk3/3, which

causes a damping of that function.
The integral in (19) is significant only when the phase kx − α2

Gk2/2 −
α3

P k3/3 is stationary, i.e. near the wave number kstat such that:

α2
Gkstat + α3

P k2
stat = x (20)

somewhere in the domain of integration (k > 0).
For instance, if the disk is dominated by self-gravity, i.e. α2

G � α3
P , then

the condition (20) reduces to x = α2
Gkstat. Thus, the integral in (19) is signifi-

cant only on that side of the resonance where x and α2
G have the same sign. In

that case, the solution of 19 oscillates near x with a local radial wave number
kstat ≈ x/α2

G. The local radial wavelength of the wave is thus ∝ 1/x. Conse-
quently, the wave oscillates more and more and more rapidly as it propagates
away from the resonance, see Fig. 4(a). On the other side of the resonance
(where x and α2

G have opposite signs), the argument of the exponential in
(19) is never stationary, and the integral damps to zero. This means that the
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Fig. 4. Various responses of a disk near an inner Lindblad resonance (located at
x = 0). The term α which appears in the definition of the abcissa and ordinate units
represents any of the coefficients defined in (17), depending on the case considered.
(a) A disk dominated by self-gravity. The wave is launched at x = 0 and propagates
to the right of the resonance, while remaining evanescent on the left side. (b) A
self-gravity wave damped by viscosity. (c) A wave in a disk dominated by pressure.
The propagating and evanescent sides are inverted with respect to the self-gravity
case. (d) Response in a disk dominated by viscosity. The wave is now evanescent on
both sides of the resonance

wave is evanescent, with a typical damping distance of ∼|αG| in the forbidden
region, see again Fig. 4(a).

The same reasoning shows that when the disk is dominated by pressure
(α3

P � α2
G), then the wave propagates on the side of the resonance where x and

α3
P have the same sign. The local radial wave number is now kstat ≈

√
x/α3

P ,
and the local radial wavelength is ∝ 1/

√
x. Again the wave oscillates more

and more rapidly as it goes away from the resonance, but not so drastically
as for a wave supported by self-gravity, see Fig. 4(c). When x and α3

P have
opposite signs, the wave is evanescent over a damping distance of ∼|αP |.

The effect of viscosity is illustrated in Figs. 4(b) and 4(d). In case (b), vis-
cosity remains weak enough to allow for a few self-gravity waves to propagate
in the disk. In case (d), viscosity completely dominates the disk response, and
no wave can be launched from the resonance.
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7 Waves as Probes of the Rings

It is interesting to compare the numerical values of the coefficients αG and αP

for planetary rings. The larger of the two coefficients tells us which process
(self-gravity or pressure) dominates in the wave propagation. According to
the expressions given in (17), using the definition of Toomre’s parameter,
Q = csn/πGΣ0, and remembering that the thickness of the ring is given by
h ∼ cs/n, we obtain:

∣∣∣∣αP

αG

∣∣∣∣ ∼
√

2Q

(
3m

h

a

)1/6

.

As we saw before, h/a ∼ 10−7 is very small and Q ∼ 1, while m is typically
a few times unity. Thus, the ratio αP /αG ∼ 0.1 − 0.2 is small, but not by an
overwhelming margin, because of the exponent 1/6 in the expression above.

The same is true with the ratio αν/αG since αν ∼ αP . This is because
the kinematic viscosities µ and ν are both of the order of c2

s/n is moderately
thick planetary rings ([2]).

Consequently, self-gravity is the dominant process governing the propa-
gation of density waves in planetary rings, but viscosity is efficient enough
to damp the wave after a few wavelengths, see for instance the panel (b) in
Fig. 4.

Note that self-gravity waves are macroscopic features which can be used as
a probe to determine microscopic parameters such as the local surface density
Σ0 of the ring, or its kinematic viscosities µ or ν. This method has been used
with bending waves in Saturn’s A ring and is the only way so far to derive Σ0

or ν in these regions ([5]).
The determination of ν has an important consequence, namely the esti-

mation of the local thickness h of the ring, since ν ∼ c2
s/n. Typical values

obtained for Saturn’s A ring indicate that h ∼ 10−50 meters, a value already
consistent with stability considerations, see for instance the discussion after
Eq. (7).

8 Torque at Resonances

A remarkable property of the function urm(x) defined in (19) is that the real
part of its integral, �[

∫ +∞
−∞ urm(x)dx], is independent of the values of the coeffi-

cients α’s. For instance, all the areas under the curves of Fig. 4 (i.e. the shaded
regions) are equal, including in the cases (c) and (d), where dissipation plays
an important role.

This can be shown by using an integral representation of the step function
([13]),

H(k) = (j/2π)
∫ +∞

−∞
[exp(−jku)/(u + jε)]
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in (19), where ε is an arbitrarily small number. Equation (19) may then be
then integrated in x, which yields δ(k), then in k, and finally in u:

�
(∫ +∞

−∞
urmdx

)
= �

(
jCm

∫ +∞

−∞

du

u + jε

)
= πCm . (21)

Now, the complex number urm(x) describes how the disk responds to
the resonant excitation of the satellite at the distance x from the resonance.
More precisely, the modulus |urm(x)| is a measure of the amplitude of the
perturbation at x, and is thus directly proportional to the eccentricity of the
streamlines around x. The argument φ = arg[urm(x)] is on the other hand
directly connected to the phase lag Ψ of the perturbation with respect to the
satellite potential. It can be shown easily that φ = Ψ ∓ π/2, see [13].

Consequently, the satellite torque acting on a given streamline is pro-
portional to its eccentricity ∝ |urm(x)| and to sin(Ψ) ± cos(φ), a classical
properties of linear oscillators. Consequently the total torque exerted at the
resonance is proportional to �[

∫ +∞
−∞ urm(x)dx].

More precisely, the torque exerted by the satellite on the disk is by def-
inition Γ =

∫ ∫
(r × ∇ΦS)Σd2r, where ΦS and Σ may be Fourier expanded

according to (9) when the stationary regime is reached. After linearization,
one gets the torque exerted at the resonance:

Γm = ∓12πm2Σ0a
2
sCm�

(∫ +∞

−∞
urm(x)dx

)
, (22)

where the upper (resp. lower) sign applies to a resonance inside (resp. outside)
the satellite orbit.

This is the so-called “standard torque” ([1]), originally derived for a self-
gravity wave launched at an isolated resonance. The calculations made above
show that this torque is actually independent of the physical process at work
in the disk, as long as the response of the latter remains linear. In particular,
dissipative processes such as viscous friction do not modify the torque value.

This torque allows a secular exchange of angular momentum between the
disk and the satellite. Note that the sign of this exchange is such that the
torque always tends to push the satellite away from the disk.

This torque have a wide range of applications that we will not review
here. We will just note here that it may lead to the confinement of a ring
when two satellites lie on each side of the latter (the so-called “shepherding
mechanism”). This could explain for instance the confinement of some of the
narrow Uranus’ rings.

Another consequence of such a torque is that Saturn’s rings and the inner
satellites are constinuously pushed away from each other. The time scales
associated with such interactions (of the order of 108 years) tend to be shorter
than the age of the solar system ([2]). This suggests that planetary rings are
either rather young, or, if primordial, have continuously evolved and lived
several cycles since their formation.
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9 Concluding Remarks

We have considered in this chapter some fundamental concepts associated
with rings: their flattening, their thickness and their resonant interactions with
satellites. Note that these processes are mainly linked to the larger particles
of the rings. Furthermore, they make a useful bridge between the microscopic
and macroscopic properties of circumplanetary disks.

Meanwhile, many other processes have not been discussed here, such as
the effect of electromagnetic forces on dust particles, the detailed nature of
collisions between the larger particles, the accretion and tidal disruption of
loose aggregates of particles, the origin of sharp edges in some rings, their
normal modes of oscillation, etc. . .

These issues, and others, are addressed in some of the references given
in the bibliography below. All the processes involved clearly show that rings
are by no means the simple and everlasting objects they seem to be when
observed from far away.
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