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Within the f r amework  o f  a single derivation,  we s tudy the t ransfer  o f  angular  m o m e n t u m  in a disk 
subjected to a linear per turbat ion at Lindblad resonance ,  wheneve r  the phys ics  include friction, 
nonsta t ionar i ty ,  or  self-gravitation, pressure ,  and viscosity.  Each  of  the  above physical  p rocesses  
can be descr ibed by one pa ramete r  which indicates the main physics  at work and the resonance  
width.  We show that  dissipation or waves  are not  formally necessary  for a torque to appear,  bu t  
only for the  problem to remain s tat ionary and/or  linear. In this f ramework,  the torque exer ted at an 
isolated resonance  is independent  of  the particular physics  at work. We consider  applications to 
numerical  s imulat ions ,  the  impulse  approximat ion,  planetesimal  accretion,  and edges and gaps in 
planetary  rings. © 1987 Academic Press, Inc. 

I. I N T R O D U C T I O N  

Resonance effects between a disk and a 
satellite orbiting a massive body can dra- 
matically shape the structure and evolution 
of the disk. Such effects are found in differ- 
ent objects such as galaxies perturbed by a 
central bar, accretion disks in close binary 
systems, planetary rings perturbed by satel- 
lites, or the asteroid belt subjected to Jupi- 
ter's influence. These systems share com- 
mon dynamics, even though their physics 
and spatial scales are very different. 

The aim of this paper is to present in a 
general way the exchange of angular mo- 
mentum (torque) between the "satellite" 
and the disk in a typical case of resonances, 
namely the Lindblad resonances which oc- 
cur when the mean motion of the disk parti- 
cles and that of the satellite are in the ratio 
m/(m  ~ 1), where m is a positive integer. 

Our starting point lies in some previous 
studies of Lindblad resonances for various 
astrophysical objects and in the connection 
of such problems to plasma physics. An in- 
triguing point is that the expression of the 
torque always bears the same form in spite 
of the very different physics at work 
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(Goldreich and Tremaine, 1982). To quote a 
few examples, we can think of galactic dy- 
namics (Lynden-Bell and Kalnajs, 1972), 
accretion disks (Lin and Papaloizou, 1979), 
planetary rings (Goldreich and Tremaine, 
1979), and numerical simulation (Sicardy, 
1985). Also, the sign of this torque is always 
the same, so that the satellite always repels 
the disk. The torque per unit of surface den- 
sity does not depend on the physical param- 
eters of the disk, but only on the mass of 
the satellite, the mass of the central body, 
and the order m of the resonance (cf. Eq. 
(16) of this paper). 

Greenberg (1983) proposed to answer 
that puzzle by assuming that the particles 
are subjected to friction effects which sup- 
press the singularity at exact resonance. As 
the damping decreases, the perturbed mo- 
tion of the particle increases but the width 
of the resonance shrinks, so that the two 
effects compensate and the torque is inde- 
pendent of the damping coefficient. 

However, other mechanisms such as 
density waves (Goldreich and Tremaine, 
1979) can create a torque without explicit or 
implicit dissipation. We show in this paper 
that a wide class of physical processes can 
actually displace the resonance frequency 
in the complex plane, so that the torque 
density function (torque per unit radius) has 
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a complex pole. We will characterize the 
distance of the pole (i.e., the resonance) to 
the real frequency axis by a dimensionless 
coefficient c~. The torque, computed 
through contour integration, is then inde- 
pendent of a, i.e., of the numerical value of 
the physical parameters describing the 
disk. If a is small, i.e., the coupling be- 
tween the particles is weak, then the per- 
turbed motion remains large and the reso- 
nance is narrow. If o~ is large (strong 
coupling), the perturbed motion is reduced 
but the resonance broadens. Thus l /a will 
characterize the perturbed motion of the 
particles and o~ will set the width of the res- 
onance. The sign of the torque is directly 
linked to that of a: we will see that this sign 
is actually a consequence of dissipation of 
energy, or of causality effects when no dis- 
sipation is present. 

Thus, the key point in the resonant per- 
turbation is that the disk is equivalent to a 
continuous network of oscillators, one of 
which is in resonance with the satellite. 
This problem is well known in other con- 
texts (cf. Meyer-Vernet, 1984). A classical 
result in "circuit theory" is that a continu- 
ous network of undamped oscillators ex- 
hibits resistive properties if the excitation 
frequency lies within the continuous range 
of resonant frequencies of the oscillators. 
This is not a paradox, because in the ab- 
sence of explicit losses in the circuit, the 
problem is not stationary: introducing small 
resistances serves only to achieve a station- 
ary problem (by dissipating the energy) but 
does not change the total resistance (cf. 
Buneman, 1961). 

Many similar problems are encountered 
in plasma physics, like the resonant absorp- 
tion in an inhomogeneous plasma (Craw- 
ford and Harker, 1972), or the linear Lan- 
dau damping. As is well known in the latter 
case, the linearized Vlasov-Poisson equa- 
tions yield plasma wave damping, though 
the system is apparently lossless. The clas- 
sical solution to this paradox is the same as 
above. Indeed, when the explicit dissipa- 
tion is insufficient to prevent the system 

from becoming nonlinear, the damping re- 
verses and finally disappears (O'Neil, 
1965). This analogy between the resonant 
transfer of angular momentum in disks and 
Landau damping has been used by Lynden- 
Bell and Kalnajs (1972). 

This paper is organized as follows: in 
Section II, the torque is derived and valid- 
ity conditions are set. In Section III, we 
examine the effect of friction and nonsta- 
tionarity. The general case when pressure, 
viscosity, and self-gravity are present si- 
multaneously is studied in Section IV. 
Some numerical applications are made in 
Section V and the conclusions are drawn in 
Section VI. 

II. DERIVATION OF THE TORQUE 

(1) The Equations o f  the Problem 

We present here a simplified version of 
the torque derivation first studied by Lyn- 
den-Bell and Kalnajs (1972) in the context 
of galactic disks, and subsequently by 
Goldreich and Tremaine (1979) for plane- 
tary rings. We consider the classical infini- 
tesimally thin, pressureless, and inviscid 
fluid disk, whose evolution is described by 
the momentum and continuity equations 

/ a  \ 
[O-~ + U .  V ) U  = -V(~bp + Ss) 

a 
--7 (~) + V • (~;U) = 0 
gO 

(1) 

where U (r, 0, t) is the fluid velocity at point 
(r, 0, 0) and time t, in cylindrical coordi- 
nates (r, 0, z). X(r, 0, t) is the surface den- 
sity of the disk, and ~bv and 0/s, respectively, 
are the potential of the central planet and 
the perturbing satellite. 

The system (1) is linearized around the 
unperturbed quantities (indexed by zero). 
The planet's potential is assumed to be 
spherically symmetric: i.e., ~bp = -GMp/r, 
where G is the gravitational constant and 
Mp the planet's mass. Finally, the satellite's 
orbit is taken as circular, so that 
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O~(r, O, t) = ~ d~m(r ) exp[im(O - to~t)] 
m=--~ 

(2) 

where tos = (MpG/a3) I/2 is the satellite or- 
bital frequency and 

d/re(r) = -(GMJZaOb~)(r /aO.  (3) 

Here, Ms is the satellite's mass, as the satel- 
lite's orbit radius, and t, Cm) ~ integer) is the ui /2  \H~ 
classical Laplace coefficient (see Shu, 1984) 

b~m)(fl ) 2 
71" 

f~ cos(mO)/(l + f12 _ 2fl cos O)vdO. (4) 

Taking into account the oblateness of the 
planet would slightly displace the location 
of the Lindblad resonances studied below 
(Shu, 1984). On the other hand, considering 
an inclined or eccentric satellite orbit would 
create corotation resonances (Goldreich 
and Tremaine, 1982). Although sometimes 
important, these two effects will not be 
considered in this paper in order to en- 
lighten more simply the main physics of the 
problem. 

The linearized system (1) reads 

(_o a ) 
at + l q - ~  ur - 21)uo= - Tr (tO0 

- ~  + ~'~ Uo q- ~ - U r  - -  ( ~ s )  r 00 

0 + ~  e r -  
r 

[0 au,, 1 
~rr(rUr) + 00J (5) 

where Ur, go, and o- are the perturbations of 
the radial velocity, tangential velocity, and 
surface density, respectively. 

In the stationary case, each perturbed 
quantity takes the same form as the forced 
periodic perturbation of the satellite given 
by Eq. (2). Then a/Ot = -imtos and O/O0 = 
im, and Eqs. (5) yield 

im [(fl _ cos ) d 2f~] 0re(r) UrmCr) - -  - ~  r-dTr + 

Uom(r) = ~ llr ~ + 2m2(11 -- COs) Ore(r) 

- ~ o  [ d  (rurm) + imuom ] Crm(r) = i m r ( ~  o2s)] 

(6) 

where D(r) = IF  - m2(~ - tOs) 2, and l)(r) 
= (MuG~r3) 1/2 is the orbital frequency at 
radius r. 

D(r) = 0 defines Lindblad resonance radii 
a,, at which ~'~m = m/(m w- 1)o2s. There, the 
perturbation frequency felt by a fluid ele- 
ment, f~ - tos, is an integer submultiple of 
the natural oscillation frequency fl  of the 
element. The behavior of the disk close to a 
Lindblad resonance is thus similar to the 
forced motion of a harmonic oscillator 
close to resonant condition. 

By symmetry,  only m > 0 needs to be 
considered hereafter, so that f~m = m/(m - 
1)tos (resp., 12,~ = m/(m + 1)tOs) will define, 
respectively, an inner or outer Lindblad 
resonance. For  purposes of conciseness, in 
all the formulas the upper (lower) sign will 
refer to inner (outer) Lindblad resonance. 

The torque exerted by the satellite on the 
disk is F = --ffDisk dZr(r × V0s) E. After 
linearization and from Parseval 's theorem 
this yields, in terms of the Fourier compo- 
nents defined in Eq. (2), F = Y~m=l Fm with 

rm = -47rm Im ( fo drro'mOm ) (7) 

(where Im denotes the imaginary part). 
Close enough to a resonance (the term 

"c lose"  being quantitatively specified be- 
low), the system (6) is degenerate and UOm 
+(i/2)Urm, where 

Urm ~ - i~mA/amD (8) 

and A(r) = 2m0m + a,,~,,, the dot standing 
for the space derivative d/dr. Thus, 

A(r) 
rll~(m)..l 
~ "  1/2 | = - ( G M d 2 a O  2mb]~ ~ +_ fl dfl J~=,.," (9) 
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Equat ions (6) to (8) then yield, after integra- 
tion by parts ,  

d ( ,t,,,, ] 

± - -  u .... . (10) 
2 f~ - oJ,J 

Assuming that L/rm varies sufficiently rap- 
idly near  the resonance  so that the term in 
brackets  can be taken out of  the integral 
with ~ - fire, Eq. (10) yields 

F,, = (4zrm E 0 a / l ~ , , ) R e  ( f  drur,,,). (11) 

Indeed,  we will see that in many  astrophys-  
ical applications,  the main contribution to 
the integral of  Eq. (11) is furnished in a nar- 
row region around the resonance.  

Using for  the momen t  the expression of  
Urm given in Eq. (8), Eq. (I l) yields 

Fm 

= 47rm Eo A- / (am~(a , , , ) ) Im  \ j  }-~- (12) 

Irn (Xc) 

tl- 
- i(:z x=Re (x c) 

' lrn (1 /x  c ) 

0 x=Re (xc)  ~ 

FIG. 1. (Top) A small imaginary part a in the satellite 
frequency displaces the resonance (i.e., the pole of the 
function ur,,(x)) out of the real axis, so that singularity 
is avoided at exact resonance (Re(xc) = 0). (Bottom). 
The torque density, proportional to Im(1/xc) is well 
defined, with a width Ax - a and a height proportional 
to l/a, so that the total area (the torque) is indepen- 
dent of ~. This holds as long as the width and the 
height both remain small enough. See Section II for 
details. 

where  ~ = d D / d r  and x = (r - a m ) / a m  is a 
dimensionless  measure  of  the distance f rom 
a resonance.  

The integral of  Eq. (12) is not defined; 
even avoiding the singular point x = 0 and 
defining the integral as a principal value, 
which is not justified, it would yield Fm = 0. 
This is because  all the streamlines in the 
disk are aligned with the satellite, so that no 
torque is possible  for obvious  reasons of 
symmet ry .  

Indeed f rom Eqs.  (6), the polar  equation 
p(O) for a streamline close to a resonance is 

s inm(0  oJ~t) 
2 

p : am 1 ± am~'~m [Re(urm) 

+ Im(Urm) COS m(O -- oJ,t)]/. (13) 

Thus,  if Urm is purely imaginary (as in Eq. 
(8)), p is in phase  with the perturbing poten- 
tial: 2tOm COS m(O -- oJ,t). 

In order  to eliminate the singularity in 

Eq. (12), let us assume that ~o~ has a small 
imaginary part,  i.e., 6o~= cod l + ia ' ) .  As 
will be shown in the next  sections, this can 
be justified by taking properly into account  
the actual physics  of  the problem. This 
yields in turn an imaginary part  of  D and 
thus a phase  lag between the streamlines 
and the perturbing potential  tks (Eqs. (8) 
and (l 3)). Equivalent ly,  to first order in a = 
( 2 / 3 ) a ' , x  is replaced by xc = x + ia.  Thus 

Im = - x2 + a 2 -  ~-sgn(a).  

(14) 

As shown in Fig. 1, the introduction of  a 
small imaginary part  allows one to avoid 
the singularity at resonance,  and the total 
area  under  the bell-shaped curve Im(1/Xc) is 
independent  of  a.  This yields 

r,,, = --47r2m ~0 A2/[am~(am)]  sgn(a) (15) 
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For  Keplerian disks ~(a,n) = +3m~mC.Os/ 
am, so that 

l-'m = -T-47r 2 Y~o A2/(3~m°as) sgn(a). (16) 

This is identically the formula found by 
Goldreich and Tremaine (1979, Eq. (46)) for 
the torque exerted by a satellite on a spiral 
density wave pattern,  except  that it is de- 
rived more directly and that it includes the 
term sgn(s). We shall see that physical con- 
siderations lead us to choose sgn(s) = + 1, 
so that the torque is always negative (posi- 
tive) at inner (outer) Lindblad resonance.  

(2) Conditions o f  Validity 

Several approximations have been made 
up to now. We will examine them and set 
some limits of  validity for the torque for- 
mula (16). 

Linearization. The 
remain small compared 
values. Equations (6), 
the resonance,  

1 (  m ~,/3 
I ,.I/s0 =  7-7-7/ 

perturbations must 
to the nonperturbed 
(8), (9) yield, near 

[ 2 blj'/'.~ ' + 
-- m - - ~ J  

1 M~ 
x 2 + a 2 M-"-p" (17) 

The term in brackets is of  order  1. Thus 
1o-,,1/£0 peaks at value M J ( M p s  2) at exact  
resonance,  so that the linearity condition 
reads 

(MJMp) 1/2 ~ o~. (18) 

Note  that Urm/aml'~m and Uom/am~'~m remain 
small under  the less restrictive condition 
Ms/Mp <~ s.  

From Eq. (13), it is straightforward to 
show that when s ~ (M~/Mp) 112, the stream- 
lines begin to intersect in a region of  width 
ha - sam around the resonance.  

Tightly wound wave condition. For  the 
term in brackets in Eq. (10) to vary slowly, 
it is necessary to avoid ~ = oJs, i.e., to 
avoid crossing the satellite orbit. As shown 
in Fig. 1, the torque is mainly exerted over  
a width of  a few times Sam. Thus,  to avoid 
f~ = o~ in the relevant part of  the integral, it 

is necessary that Sam be smaller than the 
distance of  the resonance to the satellite or- 
bit -am~m, i.e.: 

1 
s ~ - - .  (19) 

m 

It is easy to show that when this condi- 
tion holds, the variation of  A over  the reso- 
nance width sam is small. This validates the 
expression of  Urn and Uom in Eqs. (10), 
where only D -l is assumed to vary and al- 
lows us to take D - ~x ,  neglecting the 
higher order  terms. We will see in Section 
IV that condition (19) is analogous to a 
tightly wound wave condition when spiral 
waves are propagating in the disk. 

If  s - 1/m, the resonances are spread out 
of  the disk, the inner Lindblad resonances 
m : m  - 1 being "con tamina t ed"  by the 
outer  Lindblad resonances m : m + 1. Since 
the torques are opposite for  the two reso- 
nances,  they cancel each other  out so that 
the total resulting torque will be reduced 
with respect  to the standard formula (16). 

III. E F F E C T S  OF FRICTION AND 
N O N S T A T I O N A R I T Y  

(1) Disks with Friction 

In this section, we consider a disk with a 
friction force acting on the particles, and 
assume that it yields, in the linearized Eqs. 
(5), a force per unit mass - Q u .  Goldreich 
and Tremaine (1981) and Greenberg (1983) 
used a similar simple damping model,  ap- 
plied to the particles '  orbital parameters.  

In the Fourier  equations giving urm and 
Uom, adding - Q u  is strictly equivalent to 
replacing oJs by ~os + iQ/m. Thus,  the coeffi- 
cient s defined in Section II has the value 
aQ = 2Q/(3mcoO. The torque density is pro- 
portional to Re[urm(X)] (Eq. (11)), where 
from Eq. (8) 

SQ 
Re[urm(X)] = Cm sb  + x2 (20) 

w i t h  Cm = -l~,,A/(a2m~); a > 0 is ensured 
by Q > 0 (the energy is dissipated by fric- 
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tion), so that the torque Fm has the correct  
sign. The integration of  (20) shows that 80% 
of  the total standard torque is exerted over  
a region of  width ~x ~ 3a e. 

(2) The N o n s t a t i o n a r y  Prob lem:  
" C r e a t i n g "  the Satel l i te  

The above result shows that dissipation 
removes  the singularity at resonance and 
justifies the displacement of the pole per- 
formed in Section II. But what happens if 
we insist on studying an ideal problem with- 
out dissipation, or waves? Then,  since the 
angular momentum cannot  be transferred 
to the particles through dissipation, it accu- 
mulates at the resonances and the problem 
turns out to be nonstat ionary.  In this case, 
the temporal  variation of the perturbed 
quantities assumed in Section II is incor- 
rect. This explains why the problem in Sec- 
tion I1 was ill defined and singular. 

In this section, we study the following 
problem: at t < 0 the mass of  the satellite is 
zero, and at t = 0 the satellite is " c r e a t e d . "  
The satellite potential (Eq. (2)) thus be- 
comes 

q&(r, O, t) = ~ ~b,,,(r, t) e i''° 

tOm(r, t) = ~b,,(r)H(t) exp(- imo~d) (21) 

where H(t)  is the unit-step function. 
This problem is appropriate to the study 

of the perturbation of an initially unper- 
turbed circular streamline after one or more 
encounters  with the satellite. Another  ap- 
plication is the study of  transitory phenom- 
ena in numerical simulations of disks per- 
turbed by a satellite: in that case, it is most 
often assumed that the satellite is "cre-  
a t ed"  at the start of  the simulation. 

We calculate the actual temporal  varia- 
tion of  the perturbed quantities (a priori dif- 
terent  from exp(- imoJ~t))  by using a cau- 
sality condition, i.e., assuming that they 
are equal to zero for t < 0 since the sat- 
ellite does not exist. Then Laplace trans- 
form is the most appropriate tool for 
solving the problem: 

1 ff'O +i~ - 
f ( t )  = ~ o i~ f(P)ep'dP (22) 

with p0 real and positive; f ( p )  is defined in 
the complex plane for Re(p) > 0; then it is 
easy to show that f ( t )  = 0 for t < 0. 

From Eqs. (21) and (22), we have ~bm(r, 
p) = tOm(r)/(p + imoJs). 

(a) Case  1: There is no fr ic t ion.  Taking 
the Laplace transform of  Eqs. (5) and con- 
sidering the component  of order  m, we ob- 
tain the same equations as in (6), except  
that any quantity f(r,  t) is replaced by f(r, 
p) and that co~ is replaced by ip /m.  This 
yields 

a,,,,(r, p) = 

- i [~2A(r ,  p) /rD(r ,  p)] / (p  + imwO 

D(r, p) = .(2 2 - m2 ( .Q  - ip/m) 2 

[2 - ip /m • 
A(r ,  p) = 2mO,,, +- mr  ~2 0,,," (23) 

From now on, the variation in r of D(p) ,  
A(p), and 12 will be implicit. Performing the 
inverse Laplace transform yields Urm(r, t) 
for t > 0, summing up the residues at the 
poles of  fir,,,(r, p), i.e., p~ = -im~o~ and p+ = 
- imw~l)/12m (solutions of  D(p)  = 0). Since 
D(pO = D (defined in Eq. (6)), one obtains 

_ i~2 [a(_ps_.___)) e_imco~t Urm(r, t) 
r L "  

A(p ~) e .~' .] 
+ ~ (imto~+• p~)(O_~pD)pzJ" (24) 

Let  us calculate this expression close to a 
Lindblad resonance.  We note that the de- 
nominator of the respective terms ¥ in Eq. 
(24) is - a m ~ x  ~ - D  close to the resonance 
radius am, the other  term being m x  smaller. 
The condition (19) ensures that m x  ~ I, 
since we assume x smaller than a few a. 
Developing p-+ near x ~ 0 yields 

ur,,(r, t) ~ iCme-im'°~t(1 -- ei~/"9/x (25) 
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Re lu,mllCml~.)l 

FIG. 2. The  torque densi ty ,  normal ized to r,~/(rraam) 
(Fro is the s tandard  torque,  see Eq. (16)), in the case  of  
t ransi tory phenomena ,  i.e., when  the satellite is "cre-  
a t ed"  at t = 0. The  analytical  express ion  of  the above 
funct ion is given in Table I: sin(x/cO/(x/a) as well as 
the value o f  a = 2/(3mtost). Thus  the resonance  width 
shr inks  as 1/t and the per turbed quanti t ies increase as t 
until nonlineari ty is reached.  

with at = 2/(3mtost). Thus, 

sin(x/at) 
Relurn(r)] = C n -  (26) 

X 

There is no more singularity at resonance 
(Fig. 2). So, a nonstationary evolution of 
the disk allows the satellite to exert a 
torque, exactly as in Section II. The torque 
is rigorously the same in the two cases, 
since the integral of sin(x)/x is zr, and t > 0 
implies at  > 0, which gives the correct sign 
for the torque Fn; this sign is clearly associ- 
ated with causality. 

Conditions (18) and (19) can be rewritten 
in terms of the satellite orbital period Ts: Ts/ 
(3zr) ~ t ~ (Mp/MOI/2TJ(37rm). 

For t <- TJ3~r, the disk response is domi- 
nated by irrelevant transients; then for t > 
Ts/3~r, the perturbations grow linearly with 
t at resonance, e.g., Re[urn(a,,,)] = (3/2) 
moJsCnt, as was noted by Lynden-Bell and 
Kalnajs (1972) for galactic disks, while the 
width amat over which the torque is exerted 
shrinks as I/t. At t ~ T~(Mp/MOJ/2/(37rm), 
the problem is no longer linear. However, 
in practice, the growing of the perturba- 
tions is avoided by dissipation (see below) 
or by carrying away the excess angular mo- 
mentum through waves (Sect. IV). 

(b) Case 2: The nonstationary problem 
with friction. We assume a friction law in 
-Qu ,  as in Section 1. This replaces O/at by 

(O/Ot) + Q in the momentum equation and 
thus p by p + Q in A(p)  and D(p),  while the 
term p + imtos, which stems from film(P), 
remains unchanged. The poles p*, which 
appear in Eq. (24) are changed by - Q  (Fig. 
3). 

Thus, whenever Qt <~ 1, i.e., aQ ':~ at, the 
results of Section III.2.a are not modified. 
On the other hand, if aQ >> at, the factor 
e -ot stemming from e p~-t in Eq. (24) makes 
the term -T- vanishingly small, and the 
results of Section III.1 (stationary problem 
with friction) are retrieved. The torque is 
equal to the standard torque found in Sec- 
tion II (Eq. (15)) for any values of a pro- 
vided they satisfy inequalities (18) and (19). 

The variation of Urn(r, t), and other per- 
turbed quantities, is dominated by the pro- 
cess which has the largest a. In particular, 

-Q 

I 

~ - - i m  w s 

t ) o  t (O  

f~ 
- i m  t0s-A- W 

f~m 
/ 

/ 

t ) o  t(O 

FIG. 3. Paths  of  integration in the Laplace t ransform 
space for d isks  with both transi tory effects and friction 
(Q is the friction coefficient, see Sect.  III.1). For  t < 0, 
no pole is inside the path,  so that all the per turbed 
quanti t ies are zero. For  t > 0, i.e., after the satellite 
has  been created,  the path mus t  be closed on the left 
side where  there are three poles. 
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if t < 1/Q,  the nonstationarity dominates,  
and the per turbed quantities grow as t. 
When t >- 1 /Q,  this growing stops because 
the disk can get rid of  its excess of  angular 
momentum through dissipation. The 
torque acts on a (relative) width given by 
the largest a,  which first decreases at 
1/t ,  and then saturates at the value OLQ 
(Fig. 4). 

IV. W A V E S  IN DISKS:  E F F E C T S  OF 
P R E S S U R E ,  VISCOSITY,  A N D  

S E L F - G R A V I T A T I O N  

(1) B a s i c  E q u a t i o n s  

The tensor  of pressure P (the usual iso- 
tropic pressure being denoted P)  now has 
to be taken into account  in the momentum 
equation. The Poisson equation and an 
equation of state can close the system (1): 

(o ) 
~ + U . V  U =  - - V ( 4 ~ p + % + q J D )  

1 
- - - V . p  

E 

0 
0 t (E )  + V(EU) = 0  

VZ6D = 47rEGS(z) 

dP/dY ,  = c 2. (27) 

Where rOD stands for the disk potential, z 
is the coordinate perpendicular to the disk 
plane, 8 is the Dirac function, and c is the 
usual sound speed, assumed uniform in the 
disk. 

We make the following approximations: 
(i) The problem is stationary. 
(ii) The equations are linearized. Thus, 

the pressure yields a term -c2Vtr/£0 and 
the viscosity yields a term vV2u + (/~ + v/3) 
V(Vu) in the momentum equation, v and/~ 
are the shear and bulk kinematic viscosi- 
ties, respectively;  their logarithmic spatial 
derivatives are assumed to be small with 
respect  to those of  the fluid velocity. 

(iii) The spiral structures are supposed to 
be tightly wound;  in particular, one spiral 
arm generated at a Lindblad resonance 
should not cross the orbit of  the satellite 

torque 

resononce  

width 

~Q 

velocity 
perturbotion 

t I p 
T s 110 Time 

FIG. 4. Basic evolut ion of a disk at a Lindblad reso- 
nance under  effect of  transi tories and friction. For  t -< 
Ts (T~ is the satellit orbital period), the resonance  width 
is larger than the disk, and the torque drops to zero as t 
tends to zero. For  t -> T,, the torque remains  constant  
with time. As t increases ,  the resonance  width shrinks 
and the per turbed quanti t ies increase,  until t ~ 1/Q:  at 
this t ime, a s teady state is reached since the disk can 
get rid of  its excess  of  angular  m o m e n t u m  and energy 
through dissipation. 

when the polar angle 0 varies by about one 
radian. Equivalently,  the higher order  spa- 
tial derivatives of u, ~bD, and o- are assumed 
to be dominant as follows: 

d 2 m d m 2 

dr 2 > r - - ~ r  > - -  r 2 , 

referred to as the tightly wound wave con- 
dition. 

Then,  the momentum equations simplify 
into 

i m ( O  - (.Os)Urm --  2~UOm = --(~/sm -F ~Dm) 

C 2 
~0  (i'm "}- (l.6 Jr" 4v/3)//rm 

11 im 
im(l~  - OJs)Uom + "~ Urm - r (~bsm + tODm) 

im c 2 
r £o Orm q- 1)•Om" (28) 

The continuity equation yields 

~0  firm 
(29) 

O-m - im f l  - ~s 

We use the results of Shu (1970, 1984) to 
solve the Poisson equation in this approxi- 
mation: 
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~iDm = - 2 ¢ r G i e t r , .  (30) 

where e = -+ 1 is chosen in such a way that 
the disk potential ~bDm(r + ie[z[) out of  the 
disk plane tends to zero as z goes to infinity. 

(iv) We seek a solution of  (27) in the vi- 
cinity of  a Lindblad resonance,  i.e., x = (r 

- a~)/a,, "~ 1. Since, as previously,  UOm 

+-(i/2)Urm and D ~ am~x, Eqs. (28)-(30) 
yield 

d 2 d 
--S3v ~ X  2 (Urm) + O~ 2 ~XX (Urm) --  iXUrm = Cm 

(31) 

where Cm is defined in Section III. 1, and 

s 3 = is~ + s 3 

a~ = ~(cZ/t~m)/(3ma2mtOD 

( 7)/ s 3 =  t x + ~ v  (3ma~os) 

s~ = +(27re EoG)/(3ma,.to~f~m). 
(32) 

(2) Solution 

Equation (31) is solved in a standard way 
by Fourier  transform. We assume that Urm 
(x) is square integrable and define 

a~,,(k) ~ dxe-it~Urm(X). (33) 

Fourier  transforming Eq. (3 I) yields 

d 
d"k (arm) + (s3vk 2 -1- ia~k)arm 

= 27rCm~(k). (34) 

This first-order equation is solved with a 
boundary condition allowing a(k) ~ 0 for k 

~, since a(k) is a Fourier  transform. This 
yields the solution 

Urm(k) = 2~CmH(k) exp 
-(a~k3/3 + is~k2/2) (35) 

(H(k) is the unit-step function). 
Thus the solution of  Eq. (31) is 

Urm(X) = Cm fo  dk exp[ikx 

- s3vk3/3 - ia~k2/2]. (36) 

(3) Torque Derivation 

To calculate the integral of  Urm(X ) with 
arm(k)  discontinuous at k = 0, we first trans- 
form Eq. (36) by using an integral represen- 
tation of  H(k) = (i/27r) f+-: du(exp(- iku) /  
(u + iv)), where o is an arbitrary small 
positive number.  Then,  we first integrate 
Eq. (36) in x, which yields 8(k), then in k, 
and finally in u, by residues. Thus 

Re (f+_~ dXUrm(X ) 

= Re(iCmf+_~ - dUTo ) U "~ = 7TC m (37) 

which yields the standard torque (16) with 
the correct  sign. 

(4) Validity Conditions 

(i) Stationarity: we conjecture that the re- 
sponse of  the disk is stationary if the satel- 
lite has existed for a long enough time, such 
that at (Table 1) satisfies S t ' ~  Max(lav[, 

Isoj). 
(ii) Linearity: the most stringent condi- 

tion is again the noncrossing of  the stream- 
lines, i.e., [o-m[/E0 ~ I. However ,  this condi- 
tion is now slightly more complicated than 
in Section II: although Urm remains of  the 
same order  of  magnitude, it oscillates more 
and more rapidly as the wave propagates 
away, so that the streamlines eventually in- 
tersect.  This effect is quantitatively studied 
below in some particular cases. For  the mo- 
ment,  we just  note that around the reso- 
nance (x = 0), the main contribution to the 
integral in Eq. (36) is provided around k = 
0, over  a width Ak ~ 1/SMax, where SMa x ~- 

Max(}spI, Is~l, sol). Thus durm/dx ~ Cm/  
2 SUax, SO that [O'm[/E0 ~ 1 is equivalent to 

SMax "> (Ms/Mp) 1/2, as in Section II. 
(iii) The tightly wound wave condition 

d/dr >> m/r  immediately reads SMax "~ I /m,  
identical to condition (19). 

(iv) The condition [xl ~ I in the region 
relevant in calculating the torque requires 
aM~x "~ 1, which is automatically satisfied if 
SMa x "~ 1/m. 
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(5) S o m e  R e m a r k s  

Equation (31) generalizes particular 
cases studied elsewhere:  

(i) If a~ = aG = 0 (no viscosity, no pres- 
sure, and no self-gravitation), Eq. (31) re- 
duces to Eq. (8), with a singularity at reso- 
nance. 

(ii) If  a~ = 0, it reduces to a case studied 
by Goldreich and Tremaine (1979, their Eq. 
(39), and 1978b, their Eq. (A9)) that they 
explicitly solved for < I ol. The case 
laG[ "~ tavl is equivalent to a classic problem 
in plasma physics (see Crawford and 
Harker ,  1972). 

(iii) if O~G = 0 (no self-gravitation), it re- 
duces to a case studied by Lin and Papa- 
Ioizou (1979) (see their Eq. (B8), with typo- 
graphical errors,  corrected by using their 
Eq. (14), with an opposite sign for ~3v, pre- 
sumably due to another  typographical er- 
ror). 

Allowing for pressure and/or  viscosity 
and/or  self-gravitation (i.e., ~ or o~o :~ 0) 
yields a nonsingular behavior  of the per- 
turbed quantities at resonance:  now the 
ring is able to dissipate and/or  carry away 
its excess of  angular momentum deposited 
at resonance by the satellite. If  one of  the 
is much larger than the other,  it will deter- 
mine the main propert ies of the solution 
and the scale of  its spatial variation. 

The main propert ies of  the solution U~m(X) 
can be derived by simple considerations on 
the integral of  Eq. (36). 

First, we see that the boundaries of the 
integral (0 to + ~  and not 0 to - ~ )  stem 
f rom/x ,  v > 0, which sets the sign of  Urm. 
Thus,  the sign of Fm is directly linked to the 
positiveness of  the viscosity coefficients v 
and/z .  I f  v a nd / z  are rigorously zero, Eq. 
(31) must be solved directly. The sign of F~ 
is then given by boundary conditions: the 
wave must start at the resonance and prop- 
agate away from it. Alternatively, one 
could solve a nonstat ionary problem as in 
Section Ill .2.  

Let  us assume that one physical process 
(self-gravitation or pressure) is dominant 

with respect  to the other.  So Eq. (36) yields 

~xx (Urm) = iCm k exp[i(kx - c~"k"/n) 

- ~3k3/31dk (38) 

with n = 2 or 3 corresponding to c~ = ~G or 
C~p, respectively.  

If Ixlal -> I and ao < [a] Jxla I '/'" ", the 
main contribution to the integral in Eq. (38) 
is provided when the phase of  the oscillat- 
ing factor is stationary, i.e., when 

a"k "-l = x. (39) 

So that 

~x(U~m ) _ C , , , ~ n 2 ~ - [  1 x,4,,ve-,,, ,,~ S.~g 

(40) 

and the local wavenumber is [(n - 1)/(la j 
n)]. Ix/~U °-~. 
Therefore:  

(i) Equation (39) shows that sgn(x) = 
sgn(ot") since k -> 0. Thus, if only one physi- 
cal process is at work, the wave propagates 
on only one side of  the resonance,  given by 
sgn(an). On the other  side, the wave is eva- 
nescent with a damping distance x - ~. 

(ii) Equation (40) shows that for n = 2 or 
3, du~m/dx increases like x and x TM, respec- 
tively. Thus, the streamlines eventually in- 
tersect,  even if they do not intersect close 
to the resonance radius. 

(iii) The damping factor  exp(-a~k3/3) in 
Eq. (38) allows the avoidance of the stream- 
line crossing at x if~v >- lal [x/~l -I/ l ' -u.  If~,, 
> lal, the crossing is avoided for any value 
of  x; i.e., the disk is dominated by viscosity 
and no more waves propagate from the res- 
onance.  

(iv) In the absence of viscosity the wave 
oscillates more and more rapidly as the dis- 
tance to the resonance increases. 

(6) S o m e  Explici t  Solut ions  

(a) The disk is pressure dominated: IO~GI, 
av ~ tapI; therefore,  

Urm(X) = C,, (~ dk exp[i(kx - aak3/3)]. (41) 
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Since a~ = -T-c2/3ma2tOs~m, the acoustic 
waves propagate outside the region delim- 
ited by the inner and outer resonances. The 
velocity Urn can be expressed as a combina- 
tion of Airy-type functions (Abramowitz 
and Stegun, 1968): 

7rCn 
Urn(X) = - - ~  [Ai( +--x/It~p l) 

+-- iGi(+-x/lae[)]. (42) 

R e ( u r n ) ,  which reduces to the first term of  
Eq. (42), is shown in Fig. 5. 

As noted above,  IOrml£O[ increases as Ixl'/4 
for Vx > 0 and is evanescent  for -T-x < 0 on 
a distance Ix[ ~ [ael. The wavenumber  in- 
creases as Ixll/2 for  ~ x  > 0. Numerical  inte- 
gration shows that 85% of  the standard 
torque is exer ted at x = -+3lapI. 

(b) The disk is viscosity dominated: laGI, 
lap I ~ a~: therefore,  

Urn(X) = Cm dk exp[ikx - a3k3/3)l 

_ 7rCm Iti(ix/a~) (43) 
OLv 

with a~ given in Table I. The result de- 
creases exponential ly on both sides of  the 
resonance,  over  a scale x ~ ~ .  Ninety-five 
percent  of  the standard torque is provided 
between -3a~  and 3a~ (see Fig. 6). 

T A B L E I  

TRe lurm liCmlOO~ 

F 

o 5 x / a  I~ 

FIG. 5. The same as in Fig. 2, except  that the disk is 
now pressure dominated.  The torque density function 
is shown here at an inner Lindblad resonance;  i.e.,  the 
satellite is far away on the right. An acoustic wave, 
launched at the resonance propagates away from the 
satellite. The analytical expression of  the above func- 
tion is IrAi(x/lapI) (see Table I). 

RESONANCE WIDTH AND TORQUE DENSITY FOR VARIOUS PHYSICAL PROCESSES 

Physical process  Dimensionless width 
of  the resonance 

Torque density normalized to the 
an, dF  

standard torque: Fm dr 

Transitory effects 
(satellite created 
a t t =  0) 

Friction (Stokes-like 
law in - Qu) 

Viscosity,  pressure,  
and self-gravity 

Viscosity 

Pressure 
Self-gravity 

a t  = 2/(3mtod) 

a 0 = 2Q/(3mtos) 

o? = ia3e + ae~ 

( a 3 

at = ~-(c2/flm)l(3ma~oJs) 
a~ = ---(27r£oG)/ 
(3mam~o~f~m) 

sin(xlaOl(~r,) 

aol~r(a ~ + x 2) 

1 / o  dk exp[i(kx - a~k2/2) - a3k3/3] 

Hi(ix/a~)/a~ 

Aft +- x/l~PI)/l~PI 

Note.  Ai  and Hi are Airy-type functions and g is a Fresnel-type function (Abramowitz and Stegun, 1968). 
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- 5  

Re I Urm Item/co )~ 

x l o :  ~ 

FIG. 6. The  same  as in Fig. 2, except  that  the disk is 
now domina ted  by viscosi ty.  The  analytical expres-  
sion o f  the above  funct ion is zrHi(ixhxO (see Table I). 

total standard torque F~. These functions 
describe the behavior of the disk close to a 
resonance, and their integrals are equal to 
unity. 

In the framework of this general ap- 
proach, we review some astrophysical 
problems linked to disk-satellite interac- 
tion, referring whenever possible to other 
authors for more detailed analysis. 

(1) Isolated and Overlapping Resonances 

The behavior of the torque density func- 
tion is quite different for isolated and over- 
lapping resonances: in the first case it ex- 

(c) The disk is dominated by self-gravita- 
tion, i.e., I PI, < Isol; therefore, 

ur,~(x) = Cm f :  dk exp i(kx a2k2/2)dk 

(44) 

with ac  given in Table 1. 
The condition limz--,=[~bDm(r + imtzl)] = 0 

requires ek > 0, and thus e > 0 since k > 0 
(Eq. (36)). Thus, the density wave propa- 
gates inside the region delimited by the in- 
ner and outer resonances. The quantity Iv-m/ 
X01 increases now as Ixl for +-x > 0, as well 
as the wavenumber.  

Urm can be expressed in terms of tabu- 
lated Fresnel-type integrals (Abramowitz 
and Stegun, 1968): 

X/-~ [ g ( 7  x ) 

 -if - x----L---) ]" (45, 

Re(u~m) is displayed in Fig. 7. Again, it can 
be verified that most of the torque is ex- 
erted at x = -+31~d. 

V. N U M E R I C A L  A P P L I C A T I O N S  

The results of Sections I I - IV are summa- 
rized in Table I. The dominating physical 
process is that with the largest a. The radial 
extent over which the torque is exerted is a 
few times Otam. Also given in Table I are the 
torque densities dFm/dr normalized to the 

1 

Re I UrmJ (Cm I '1[ 

2 

t J 
s o F  

-1 

- 2  

Fro. 7. The  same as in Fig. 2, except  that the disk is 
now dominated  by self-gravity. A densi ty  wave,  
launched at the resonance  propagates  toward the satel- 
lite. The  analytical express ion  of  the above funct ion is 
XF~ g[-x/XT~lc~61 ] (see Table 1). 
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hibits discrete peaks at each of the isolated 
resonances, while in the second case it 
shows a smooth increase as one approaches 
the satellite orbit. The transition between 
the two regimes occurs when the width of 
one resonance, act, is larger than the sepa- 
ration between two resonances, about 2a/ 
3m 2. Thus overlapping occurs when 

m20/- 1. (46) 

An illustration of this effect is provided in 
Fig. 8. 

From Eqs. (4), (9), and (16), giving the 
torque at an isolated resonance, it is easy to 
estimate the torque for the two regimes; 
one finds 

Ir.,l ~ f m  z ~,o 4 2 (Ms]2 (47a) astos \Mp/  

as )4 (47b) 
-- f 'E0 a~tos \ M p /  \ r  - as /  

for isolated and overlapping resonances, 
where f and f '  are of order 10 and unity, 
respectively. For m >> 1, the Laplace coeffi- 
cients can be approximated in terms of Bes- 
sel functions (Goldreich and Tremaine, 
1980), yielding f = (4/3)[2Ko(2/3) + K](2/ 
3)] 2 - 8 .5 , f '  = (2/3)3f - 2.5 (Goldreich and 
Tremaine, 1982). 

We emphasize that overlapping of reso- 
nances (and thus the validity of Eq. (47b)) 
requires that the distance to the satellite or- 
bit satisfy Ir - a~l/a~ ~ 0/1/2 (from Eq. (46) 
since lain - asJ/a~ ~ 1/m, for m >> 1). 

(2) Nonsta t ionar i ty :  N u m e r i c a l  
S imula t ions  and  Impu l se  Approx ima t ion  

In any numerical simulation of colliding 
particles under the perturbing action of a 
satellite, one must remember that transi- 
tory effects produce a torque equal to the 
standard torque. Only when the time t is 
greater than the typical damping time, td, 
may this transitory effect be neglected (see 
Sect. III.2b). 

Another consequence of Section III 2.b 
is the validity of the so-called "impulse ap- 
proximation" sometimes used to describe 

( d F l d r ) / ( d F l d r ) s t .  ~ l 

3:/. 4:5 5:6 . . .  
I I I 

isolated overlapping 
resonances J resonances 

Salel l i '  

0 I R a d i u s  1 
0.8 0.9 1,0 

FIG. 8. The torque density dF/dr normalized to the 
standard torque density (dF/dr)st obtained for overlap- 
ping resonances (Eq. (47b)). We have assumed that the 
disk is friction dominated, so that the torque density is 
given by Eq. (20). We have taken a¢ = 0.05/m, and it 
can be verified that the separation between isolated 
and overlapping resonances occurs when aQm 2 - 1. 
The origin of radius is at the planet center. 

the shepherding mechanism (Lin and Papa- 
loizou, 1979; Dermott, 1984). This approxi- 
mation yields the standard torque (Eq. 
(47b)) (if applied to the satellite and one ring 
particle in circular orbits, and expressed 
per ring mass unit), though the numerical 
coefficient is about three times too small. 
From this approximation three major as- 
sumptions are made: (i) there is a two-body 
encounter between the satellite and the par- 
ticle; (ii) the particle is in circular orbit be- 
fore the encounter; and (iii) there are small 
deflections. As noted by H6non (1984), as- 
sumption (i) is incorrect since the actual en- 
counter duration is a few orbital periods, so 
the potential of the central planet cannot be 
ignored; this assumption is expected to be 
responsible for the incorrect numerical co- 
efficient. Assumption (ii) is equivalent to 
"creating" the satellite as the particles get 
close to it. In the present formulation, this 
means that the system is governed by tran- 
sitory effects with a = 2/(3mtost). Here, the 
time is the encounter duration, i.e., a few 
times 2rr/tos. Thus, a m  2 _> 1, which from 
Eq. (46) corresponds to overlapping reso- 
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nances,  i.e., to the domain of  application of  
Eq. (47b). Finally, it is easy to verify that 
assumption (iii) is equivalent to our lin- 
earity condition. This linearity condition, 
which is given by Eq. (18) for  isolated reso- 
nances,  is more strict for overlapping reso- 
nances since the maximum perturbed mass 
density is I, 1 = ]'~m°'m[ ~ otm2lo'm[ • Using 
Eqs. (17) and (19), this condition reads (Ms/ 
Alp) 1/3 ~ 1 /m ~ Ir - a s l / a s .  This is equivalent 
to assumption (iii) (see, for instance, Eq. 
(15) in H r n o n  (1984) where mj + m2 ~ Ms 
and to 2 = MpG/a~. 

(3) Bod ie s  in a Diss ipa t i ve  M e d i u m  

We now discuss the effect of  gaseous 
friction on planetesimals in the proto-Solar 
System, under  the influence of  Jupiter. 

Goldreich and Ward (1973) have studied 
the formation of  planetesimals in the solar 
nebula. During a very rapid phase (about 
one year),  bodies with size up to R ~ 100 m 
form by gravitational instabilities from the 
disk of  dust. The typical surface density of 
such a disk is 8 g cm -2, so that the coeffi- 
cient a associated with self-gravity is aG 
7 x lO -3 (taking a m  ~ 4.5 × 1013 cm and os 

2 × 10 -8 sec-~). We shall see that the 
coefficient associated with gas friction is OtQ 

3 x 10 -z > a6 (with a gas density pc ~ 8 
× 10 -~0 g cm-3). Thus the disk of  planetesi- 
mals, under  these conditions, is dominated 
by gaseous drag. 

This drag arises for  two reasons: (i) the 
radial pressure gradient induces a differen- 
tial Keplerian motion l~g ~ f~ - c~/(21~a2), 
where 1) (resp., l-lg) is the angular velocity 
of  the planetesimals (resp., the gas) and c is 
the sound speed (Goldreich and Ward, 
1973); (ii) close to resonances with Jupiter,  
the planetesimals have enhanced perturbed 
motions. 

Let  AV be the local difference between 
the planetesimal and gas velocities. The ac- 
celeration due to gas drag is 

• y = - Q A V .  (48) 

Q is independent of AV in the two follow- 
ing cases (Weidenschilling, 1979), depend- 

ing on the particles, radius R: 
(i) R > h (h is the gas molecules '  mean 

free path) and Re = 2 R A V / v g  < 1 (Re is the 
Reynolds number,  Vg the gas kinematic vis- 
cosity); then Q ~ 4.5(pg/Pb)(Vg/R 2) (Pb is the 
planetesimal density). 

(ii) R < h; then Q ~ (pg/Pb)(C/R). 
If the orbits of  the planetesimals do not 

intersect,  the radial and tangential compo- 
nents of  the drag acceleration read 

y,. = -Qu , .  

yo = - Q ( u o  + 62alq/2) (49) 

where 6 = c/(aI l ) .  The terms Ur and Uo are 
due to the perturbat ion by Jupiter and the 
term 82al)/2 stems from the differential 
keplerian motion between the planetesi- 
mals and the gas. The latter term will cause 
a systematic decay of  the planetesimal or- 
bits at a rate 

it = - Qa6 z, (50) 

while the terms in Ur, UO yield 

aQ (Ms]  2 
d m =  w- x2 + a2 Q m2asoJs \Mp!  (51) 

where x is the (dimensionless) distance to 
the m : m  w- 1 resonance and a e = 2Q/  
(3mos) (Sect. III. 1). Thus resonance effects 
coun te rac t  (respectively,  enhance)  the or- 
bital decay at outer  (resp., inner) Lindblad 
resonances.  This result is discussed in more 
detail by Greenberg (1978) and has been nu- 
merically studied by Weidenschilling and 
Davis (1985). According to Eqs. (50) and 
(51), the resonance effect becomes domi- 
nant for 

OIQ ~ (Ms/Mp)ml/Z/& (52) 

Under  this condition, planetesimals will be 
locked at outer  resonances and gaps will be 
opened at inner resonances.  

For  pg - 8 × 10 -x° g cm -3, the mean free 
path of  (hydrogen) molecules h - 10 cm is 
smaller than the size of  the 1- to 100-m 
bodies considered here; therefore,  aQ -- 1.6 
x 104/mR 2 (cm), where we have used v 
hc /6  and c - 7.6 x 103T I/2 cm s -I for hydro- 
gen. The bodies are assumed to be com- 
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posed of  rocky material (Ob -- 3 g cm-3). In 
order  for  the orbits of  the bodies not to in- 
tersect  close to resonance,  one should have 
a e >- ( M d M p )  l/z, which can be rewritten R 
----- 720m -1/2 cm. This means that all the 
newly formed 100-m-sized objects entering 
an isolated resonance suffer collisions, pos- 
sibly leading to fragmentation processes.  
Collisions are avoided for R -- 720m- i/2 cm. 
which may set an upper  limit of  particle size 
around a Lindblad resonance.  The typical 
time to accumulate  mat ter  (at outer  reso- 
nances) or open a gap (at inner resonances) 
is then tm ~ a r a O t Q / ( l m ,  i.e.: 

t m -  - -  (53) 
tos M s /  

For  the biggest particles, R - 720m -1/2 
cm, Eq. (53) yields tm ~ 2000/m 2 years,  and 
the width of  the gap is aQ ~ 3 x 10 -2. We 
now check if Eq. (52) holds. For  a tempera- 
ture of  the solar nebula T ~ 700°K, one 
obtains 8 ~ 0.15, so mV2(Ms/Mp)/8 ~ 10 -2 
X/--ram. Thus accumulation or depletion of  
meter-sized particles around Lindblad reso- 
nances is significant and may occur  in a 
rather  short time. Note that this mechanism 
is more efficient as in increases. This means 
that the smallest particles, which can cross 
low-order resonances (see condition (52) 
where CtQ increases when R decreases) will 
be eventually trapped at outer  resonances,  
or swept away at inner resonances for high 
enough values of  m. 

Obviously,  many questions remain unan- 
swered in the strict f ramework of  this 
model: (i) What is the stability of  the gaps 
when the density of  the gas drops? (ii) What 
is the subsequent  evolution of  the matter  
locked at outer  resonances?  Some discus- 
sions are given in Greenberg (1978) and 
Weidenschilling and Davis (1985). 

It should be kept  in mind that resonance 
and friction effects may have dramatically 
shaped the disk of  newly formed planetesi- 
mals. The swarm of  asteroids may have 
kept  some of  these initial conditions. For  
instance, the width of  the Kirkwood gap 

associated with 2 : 1 resonance with Jupiter 
is of  the same order  of  magnitude as the 
width that we predicted from friction ef- 
fects (a - 3 × 10-2). 

(4) P lane tary  R i n g s  

Extensive efforts have been made to un- 
derstand the dynamics of  rings per turbed 
by a nearby satellite (cf. Goldreich and Tre- 
maine, 1982; Borderies  et  al., 1984; Der- 
mott,  1984; Greenberg,  1983). The shep- 
herding of  rings by satellites was initially 
attributed to self-gravity (Goldreich and 
Tremaine,  1980), and then reexplained in 
terms of  the impulse approximation or pres- 
ence of  dissipation (Greenberg,  1983). We 
shall see that the parameter  a associated 
with self-gravity is actually the largest one 
in planetary rings, so that self-gravity deter- 
mines the particles '  behavior  near a reso- 
nance. 

For  an optical depth of  order  one, the 
kinematic viscosity v is a few times REIL 
where R is the radius of  the biggest parti- 
cles. Measurements  of  the damping of  den- 
sity waves in Saturn 's  tings give v - 150 
cm 2 sec -1 (Cuzzi et  al., 1984; Esposito et  
al. ,  1983), yielding R of  several meters.  Nu- 
merical experiments  (Brahic, 1977) and the- 
oretical considerations (Cuzzi et  al., 1979; 
Goldreich and Tremaine,  1978a) predict a 
velocity dispersion c of  a few times RII, so 
that av and ap given in Table 1 are of  the 
same order  of  magnitude. Using as a con- 
servative upper  limit v <-- 200 cm 2 sec-  1, one 
obtains et~ - Otp -<- 2 × 10-sin 1/3. On the 
other  hand, an estimated surface density 50 
g cm -2 yields OtG -- 10-4m -1/2, so that typical 
regions of  Saturn 's  rings are dominated by 
self-gravity, which justifies the approach of 
Goldreich and Tremaine (1980). 

Nevertheless ,  the difference between ot~ 
(or ap) and OtG is not so overwhelming. In 
particular, low-density rings (E0 -< 2 g cm -z) 
should be dominated by viscosity and pres- 
sure. 

(5) R i n g  E d g e s  

Dissipation and conservat ion of  angular 
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FIG. 9. (Top) Creating an edge at an isolated 
Lindblad resonance. The S-shaped function is the sat- 
ellite torque density integrated over the disk from x/a 
= - ~  to the current value of x/a (assuming a torque 
density as in Eq. (20)). An edge is created when this 
torque balances the flux of angular momentum due to 
viscosity. Note that the satellite exerts a torque of only 
F~ once an edge is created, and that no edge can appear 
when F, > IF,,I because the viscous spreading over- 
comes the resonance effect. (Bottom) Creating a gap 
with overlapping resonances around an embedded 
moonlet. A gap appears when the integrated torque 
density due to the moonlet (Eq. (47b)) balances the 
flux of angular mometum due to viscosity. The gap is 
stable if its width is larger than the moonlet diameter, 
which requires moonlets larger than about 1 km in the 
case of Saturn's rings (see Sect. V.5.b; Hdnon, 1981, 
1984). 

larger than the viscous torque F~. Two dif- 
ferent  situations may arise, depending on 
the isolated or overlapping behavior of  the 
resonances.  

(a) I so la ted  resonances .  For  IVml --> F~, 
i.e., Ms/Mp >- (v/aZ~OJs)l/2/m, the edge of the 
disk can adjust itself so that the satellite 
torque integrated over  the ring exactly 
compensates  for the viscous torque (Fig. 
9). Using as - 5 × 109 cm and Mp - 8.7 × 
1028 g, relevant for Uranus rings, the in- 
equality ]Fm] -> F~ reads 

1.2 × 10 22 ( v ~1/2 
Ms m 100cm 2sec-U g" (55) 

Similar figures are derived for Saturn's  
rings. So, Mimas and 1980 S1, whose re- 
spective masses are 3.7 × 10 22 and 4.4 z 
1021 g, are able to truncate Saturn 's  rings if 
one assumes u -< 200 cm 2 sec -1. For  Mimas, 
the corresponding edge is at the 2 : 1 reso- 
nance (outer edge of  the B ring), and for 
1980 S1, the edge is at the 7 : 6  resonance 
(outer edge of  the A ring). 

(b) Overlapping resonances .  Since for 
Uranus or Saturn rings, ac  ~ lO-4/m 1/2, res- 
onances overlap for m -- 400, i.e., when the 
distance d between the ring and the satellite 
is less than about 80 km. According to Eq. 
(47b), the inequality Irl -> r~ now reads Ms! 
M v >- 3.36(u/(a~cos))l/Z(d/as)3/2; i.e.: 

Ms > 3.7 x 1015 ( 
-- 100 cm 2 sec-U 

~-~/ g, (56) 

momentum lead to the spreading of  an un- 
per turbed disk (Brahic, 1977). The flux of 
angular momentum due to viscosity in a 
Kepler ian disk is 

F, = 32rvX0a212 (54) 

(Lynden-Bell  and Pringle, 1974). Note  that 
this formula is valid as long as the stream- 
lines in the disk are not  severely distorted 
due to the satellite perturbations.  

This disk is t runcated;  i.e., an edge is cre- 
ated when the shepherding torque F,, is 

equivalent to R -> (u/100 cm 2 sec-l)l/6(p/g 
cm-3)-V3(d/km)  1/2 km, where R and p are, 
respectively,  the satellite's radius and den- 
sity. This shows that bodies with radii 
greater than about  one kilometer are able to 
open a gap wider than their own diameter in 
Saturn or Uranus rings. (Hrnon,  1981, 
1984; see Fig. 9). 

(c) Time scales.  If  the satellite is between 
two rings, the torque it exerts on each of 
them can balance so that the whole system 
is stable. If  not, the satellite will be pushed 
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away from the disk at a rate tis = 2F/ 
(astosM0, so that the satellite doubles its 
distance from the edge on a time scale ts 
d/hs. For  isolated resonances,  one obtains 

ts ~ Ms/(97rmv~Zo) (57) 

since only F = -F~  is exer ted by the satel- 
lite on the ring. For  the system to be stable 
over  the age of  the Solar System, i.e.,  4.5 x 
109 years,  one needs Ms -> 4 × 1022m(v/lO0 
cm 2 sec- ' )  (E0/100 g cm -2) g. This shows 
that Mimas is massive enough to confine 
the outer  edge of  the B ring (m = 2) over  4.5 
byr,  but 1980 SI is  not (m = 7), i f  one as- 
sumes v - 100 cm 2 sec -1. A low viscosity (v 
-< 3 cm 2 sec -l)  would allow 1980 S1 to con- 
fine the A ring edge over  4.5 byr. Such a 
value o f  the kinematic viscosity is not ab- 
surdly small in view of  the measurements  
made in Saturn 's  ring through the damping 
of  density waves (Esposito et al., 1983), 
and would imply a local thickness of  the 
rings of  a few meters.  

For  overlapping resonances,  ts reads 

ts - 0.6 Xoa2oj-------~ ~ Ms ~ss ; (58) 

thus, ts -> 4.5 x 109 years requires Ms -< 104 
(100 g cm-2/~,o)(d/km) 4 g. This condition 
would be compatible with inequality (56) 
only for unrealistically low values of  v. 

In conclusion, it appears that ooerlap- 
ping resonances are efficient to create little 
gaps inside the rings, whereas isolated res- 
onances are able to truncate the whole disk. 
Even  so, the stability of  the system over  the 
age of  the Solar System requires values for  
the kinematic viscosity v somewhat  smaller 
(---3 cm 2 sec -~) than that inferred from the 
damping of  density waves in Saturn 's  rings 
( - 1 0 0  cm 2 sec-I).  The  exact  value of  v re- 
mains the weak link as long as the detailed 
description of  collisions in the rings is not 
made. Unfor tunate ly  such a description re- 
quires a precise knowledge of  the size dis- 
tribution, the surface properties,  and the 
shape of  the particles themselves,  which 
are present ly poorly known. 

vI. CONCLUDING REMARKS 

This paper  generalizes and simplifies the 
derivation of  the torque Fm exerted by a 
satellite on a disk at a Lindblad resonance.  
Our main conclusions may be summarized 
as follows: 

Provided that (i) the problem remains lin- 
ear, i.e.,  the surface density perturbations 
of  the disk are small compared  to the unper- 
turbed surface density (there is no stream- 
line crossing), and (ii) the width of  the reso- 
nance is small compared  to the distance of  
the resonance to the satellite, then: 

(1) The torque exerted by the satellite at a 
Lindblad resonance m : m  7 1 appears as 
soon as some interactions between the par- 
ticles allow the disk to avoid the singularity 
at resonance.  Moreover ,  the value of  this 
torque per unit surface density is indepen- 
dent on the parameters  describing these in- 
teractions (viscosity, pressure,  surface den- 
sity, friction coefficient, etc.) and only 
depends on the planet and satellite masses 
and on the order  in of  the resonance (Eq. 
(47a)). In the absence of  any physical pro- 
cess such as dissipation or waves,  the prob- 
lem is nonstat ionary,  which provides the 
same Fm, as long as linearity holds. 

(2) Nevertheless ,  the torque density dF/ 
dr (torque per unit radius) at an isolated 
resonance does depend on the physical pro- 
cess at work in the disk. dF/dr is propor-  
tional to the velocity perturbation Urm(r), 
and the surface density perturbation o r  m is 
proport ional  to the derivative of  that quan- 
tity: dllrm/dF. The dimensionless velocity 
perturbat ion Urm(r)/a,nl) m is character ized 
by a coefficient ot such that O~am is the typi- 
cal width of  the resonance and 1/oz is the 
typical maximum value of  Urm(r)/am~"~m 
reached at resonance.  Some examples of  
functions Urm(r) are given in Figs. 1, 2, 5, 6, 
and 7. The t~ coefficients, which depend on 
the physical propert ies  of  the disk, together 
with analytical expressions of  Urm(r) are in- 
dicated in Table I. The  integral of  dF/dr at 
an isolated resonance is independent  on a,  
see point (1). 
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(3) When one coefficient a is significantly 
larger than the others, the corresponding 
physical process commands the behavior of 
the disk around the resonance. Thus Table 
I provides a convenient way to determine 
the dominant process in many astrophysi- 
cal objects. When several coefficients a are 
of the same order of magnitude, the torque 
density function is more complicated, but 
the total torque remains unchanged. 

(4) The validity conditions (i) and (ii) 
quoted above simply read (Ms/Mp) I/2 ~ ot 

1/m. The first inequality warrants linearity 
and the second one prevents the spreading 
of the resonance over the disk. 

(5) The sign of a is directly linked to the 
sign of the torque. It is positive in all the 
examples that we have considered. Thus, 
the satellite tends to push the disk a w a y  

from its own orbit. The positiveness of a is 
linked either to dissipation of energy or to 
causality effects when no dissipation is 
present (e.g., the satellite is "switched on" 
at a given time for transitory effects to ap- 
pear the waves must start at the reso- 
nance). 

(6) Thus, dissipation is not  necessary for 
the torque to appear. Dissipation or waves 
allow the disk to get rid of its excess, or 
lack, of angular momentum and thus to 
reach a stationary state. However, only dis- 
sipation is able to transfer the angular mo- 
mentum deposited by the satellite at the 
resonance to the particles themselves and 
thus to confine them. 

(7) Several astrophysical disks may be 
described in the framework of the linear 
approach studied in this paper. Among 
others, we have considered planetary rings, 
planetesimals perturbed by Jupiter, and col- 
liding particles in numerical simulation. 
Other objects of interest are the accretion 
disks in binary systems and galactic disks. 
In spite of the very different physics at 
work in each of these systems, the angular 
momentum exchange between the disk and 
the perturber bears essentially the same 
form. 

One of the main results of this paper is 

the determination of the dominant physical 
process in a disk, the typical width of the 
resonances, and the validity conditions of 
the equations through only one dimension- 
less coefficient a which depends simply on 
the physical parameters of the disk. 

Extension of this work may be provided 
by studying corotation resonances and 
other Lindblad resonances which appear 
when the satellite orbit is eccentric and/or 
inclined. 

Another point of interest is of course the 
estimation of the value of the torque once 
the validity conditions (Ms/Mp) 1/2 "~ a ~ 1/ 

m break down. This is far from being an 
academic problem since Saturn's rings, for 
instance, clearly exhibit nonlinear behavior 
at some resonances. Also, the system can 
secularly evolve, so that these validity con- 
ditions may be verified at one time and not 
at the other (e.g., the planetesimal disk in 
the solar nebula as the gas density drops). 
Important insights to nonlinear wave be- 
havior in planetary rings can be found in 
recent papers by Shu et al. (1985) and Bor- 
deries et al. (1986). Although the linear ap- 
proach can serve as a reference point for a 
wide variety of physical processes and as- 
trophysical objects, only in a more general 
study is one able to describe the observed 
phenomena in a satisfactory way. 
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