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The evolution of micrometer-sized circumstellar grains orbiting
B Pictoris is studied, taking into account the combined effects of
first order resonances due to a hypothetical planet and the dissipa-
tive effect due to Poynting—Robertson drag. We first derive the
averaged equations of motion of the grain near a resonance, and
we describe qualitatively and quantitatively the capture into the
resonance (mechanism of entrance, time scales for capture, etc.).

It appears that the probability of capture cannot be derived
analytically, because of the nonadiabaticity of the motion at the
enirance into the resonance, at least for micrometer-sized particles
and planet masses smaller than about one saturnian mass.

We show that the capture of a grain into a resonance critically
depends (i) on the orbital eccentricity and (ii} on the value of
the critical argument of resonance just at the entrance into the
resonance. Maps of capture/noncapture regions vs these two pa-
rameters are derived numerically for the 1:2, 2:3, and 3:4 reso-
nances. They show the complexity of the capture regions, and
indicate that uranian or larger planets are able to trap most of the
grains into the 1: 2 resonance, while ~5 Earth masses are sufficient
to trap grains into the 3:4 resonance for any grain with initial
eccentricities smaller than a few percent. These results underline
the dynamical importance of small planetary objects embedded in

circumstellar dust disks. © 1994 Academic Press, Inc.
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1. INTRODUCTION

Dissipative effects, when combined with resonance
phenomena, may lead to complex dynamics, whose im-
portance for the evolution of small bodies of the Solar
System was recognized long ago. Among this class of
phenomena, one can note the tidal evolution of satellites
(sce the review by Peale 1986) and the energy and angular
momentum exchange between a collisional ring and a
satellite (see the reviews by Goldreich and Tremaine 1982,
Borderies ef al. 1984, and Meyer-Vernet and Sicardy
1987). Another mechanism, more relevant to the early
Solar System dynamics, 1s the trapping and eccentricity
pumping of planetesimals, under the simultaneous influ-
ence of gas drag and resonances with a jovian planet
(Greenberg 1978, Weidenschilling and Davis 1985, Pat-
terson 1987, Beaugé and Ferraz-Mecllo 1993, and Kary ez
al. 1993, and see the review by Malhotra 1993).

In the same class of problems, one can think of the
decay of small particles (a few to several micrometers in
size) due to radiation forces, and more specifically to
Poynting—Robertson (PR) drag. This decay may be fol-
lowed by a capture into a resonance with a planet. The
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latter problem, although it bears some formal resemblance
to the gas drag problem, has some specifications of its
own that we would like to study in this paper.

One of the main differences between PR drag and gas
dragis that the [atter is proportional to the relative velocity
(or its square, depending on the regime) of the body with
respect to the gas, while the PR drag is proportional to
the absolute velocity of the particle in an intertial frame
(see Eq. (5)). Since the gas is roughly moving at a Kepler-
ian rate, the gas drag will tend to rapidly damp the parti-
cle’s orbital eccentricity, while keeping the semimajor
axis roughly constant during this damping. In contrast the
PR drag damps at about the same rate the eccentricity
and the semimajor axis (Burns er af. 1979). A second
difference involves the time scale for each damping. In
the case of gas drag, significant orbital damping for meter-
sized particles in the primordial solar nebula can occur
in times as short as ~100 years (Weidenschilling 1977).
In the case of PR drag, the lifetime of micrometer-sized
particles at the level of the giant planets may be as large
as amillion years (see Eq. (32)). As a consequence, eccen-
tricities can be pumped up to large values in the case of PR
drag with resonant forcing, leading to the deep crossing of
the planet orbit, and ejection from the resonance through
close encounter with the planet (Sicardy er al. 1993,
Weidenschilling and Jackson 1993). In contrast, gas drag
can lead to equilibrium orbits with moderate eccentrici-
ties, near a mean motion resonance (Weidenschilling and
Davis 1983, Patterson 1987). Finally, the usual expansions
in (small} eccentricity used for studying resonant effects
near circular motion with gas drag are no longer valid for
PR drag. Thus numerical integration becomes necessary.

Another important point is the universality of radiation
forces. In view of the robustness of their intensity against
variation in the particle properties, this study can be ap-
plied to a wide variety of problems. One of them is the
continuous influx of asteroidal and cometary grains into
resonance regions with planets through Poynting—Robert-
son drag. Pioneering work in this field has been performed
by Gonezi et al. (1982), Jackson and Zook (1989), and
more recently, by Jackson and Zook (1992) and Dermott
et al. (1992). Interestingly enough, IRAS observations
now indicate that asteroidal dust may be trapped in reso-
nances with the Earth (see Dermott et al. 1993a, 1993b).

Another situation of interest is the presence of grains
in circumstellar disks. More observational data are likely
to be available quite soon on these obijects. It is thus
important to better understand the dynamics of these
disks, since they can represent various stages of protopla-
netary systems. Of course, the full problem, including
accretion, collisions, mutual gravitational of planetesi-
mals, gas drag, etc., is very complex.

In this paper, we focus instead on one particular prob-
lem, namely the decay of circurmnstellar grains due to Poyn-
ting-Robertson drag and their possible capture into mean

motion resonances with a hypothetical planet orbiting the
star. For this approach to be valid, we assume that the
gas from the protosolar nebula has been cleared, so that
the associated drag can be discarded. Also, we have to
assume that the optical thickness of the disk is small
enough so that mutual collisions do not play an important
role. A previous paper by Scholl et al. 1993, and a compan-
ion paper by Roques et al. 1994 (hereafter referred to as
Paper 1) presents numerical results on the orbital evolu-
tion of noninteracting grains around the star 8 Pictoris.
The parallel architecture of the computer (a Connection
Machine) makes it possible to integrate the exact equa-
tions of motion of more than 8,000 particles at a time, thus
making visible collective patterns driven by the alleged
planet.

To understand these structures more easily, we have
to simplify the problem as much as possible in this paper,
keeping, however, the relevant physics at work. To do
so, we study the system formed by the central star, a
planet orbiting it, and a dust grain of negligible mass,
maving in the planetary orbital plane (planar problem).
We neglect the interactions between the grains them-
selves, in particular the collisions. Even so, the problem
is rich enough to deserve some careful attention. The
questions that we would like to answer are then the fol-
lowing:

+ What is the minimum planetary mass necessary 1o
trap (even temporarily) a grain into a resonance?

+ Are there equilibrium orbits in which a grain could
be trapped permanently?

* Even if the trapping is not permanent, it is long
enough to explain a statistical accumulation of dust mate-
rial at the resonances?

+ For some initial distribution of orbital elements, what
is the probability of capture of a grain into a resonance?

COur approach is semianalytical in the sense that we first
derive the averaged equations of motion, keeping only
the resonant terms in the perturbing function. We then
integrate the resulting set of differential equations numeri-
cally. The advantages of such an approach are twofold.
First, it is much faster, from a computational point of
view, than the integration of the exact equations of mo-
tion, since short period terms have been averaged out.
Second, from a more physical point of view, the averaged
equations keep only the dynamically relevant terms of
the perturbing function, allowing one to better disentangle
local, unimportant behavior from global trends which will
have statistical effects on the disk structure.,

The price to pay is that the perturbing function has to
be truncated at some order in eccentricity, which invali-
dates its usc at high eccentricity. Thus our aim here is
restricted to better understanding the entrance into the
resonances, when the orbital eccentricity of the grain is
still small. Numerical simulations such:as those presented
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in Paper 1 can then give some support to analytical results,
or on the other hand suggest new directions of research.

In the next section, we derive analytically the averaged
equations of motion. Section 3 is devoted to a more quali-
tative and physical understanding of the resonance vs
dissipation dynamics. Numerical integrations, using the
parameters of grains around the star 8 Pictoris, are de-
scribed in Section 4. The mechanism of entrance into the
resonance, together with the probability of capture, is
investigated in Section 5. A brief discussion and some
conclusions are given in Section 6. An appendix gives a
list of the symbols used in this paper, as well as in Paper 1.

2. ANALYTICAL APPROACH

2.1. The Poynting—Robertson Drag

The radiation force, due to the stellar photons hitting
a grain, is given by (see, e.g., the extensive discussion
by Burns et af. 1979)

_ (8¢ YA T
Frad_(c)QI:(] C) u, C:I! (1)

where § is the energy flux at the grain, o is its cross
section, ¢ is the speed of light, ( is the radiation pressure
efficiency, # and v are the radial and total velocity of the
grain, respectively, u, is the unit vector in the direction
of the incident radiation, and r is the distance to the star. In
the above expression, the constant radial term is usually
referred to as the radiation pressure, while the velocity-
dependent part is the Poynting-Robertson (PR) drag. Be-
cause § varies as 1/72, one can define the coefficient 8 as
the constant ratio between the radiation pressure and the
gravitational force,

g= SG'Q/‘QMr;,mg! 2)

¢

where % is the gravitational constant and m, and M, are
the masses of the grain and the star, respectively. The
origin of the reference frame is considered to be at the
star’s center. The radiation force is therefore given by

Foa = (@:—z@)[(l —i) u, —X]. 3)

C C

The net effect of the radiation pressure is to modify,
by a factor of 1 — 8, the mass of the central body as
perceived by the grain. Thus, the larger the coefficient 8,
the smaller the apparent mass of the central body felt by
the grain.

Three approximations are made to derive the equations

of motion given in the next Section. A first approximation
is to consider that the dissipation coefficient

GM. B

2
F c

(4)

- o=

is constant along the orbit, and is calculated by replacing
r by the semimajor axis a, of the grain orbit. This is valid
as long the orbital eccentricity of the grain remains small.

A second approximaltion is then to consider the PR drag
force as given by

Fpp = —mgav, (5)
i.e., to drop the term —(f/cu, in Eq. (3). This is a reason-
able assumption if we admit again a small orbital eccen-
tricity for the grain, since — {7 /c)u, averages to zero during
one orbital period, at first order in eccentricity.

Finally, one can note that Eq. (3) neglects the stellar
wind drag, which would require a multiplicative factor
1 + sw in front of the term —v/c in the above ¢quation,
where sw is the ratio of stellar wind drag to PR drag
(Jackson and Zook 1992). This ratio is 0.3 in the case of
the solar wind drag. In the general case, however, or even
in the more specific case of 8 Pictoris studied here, we
have no information on this ratio. Its value may actually be
absorbed into the dissipation coefficient « defined above.
These approximations and their consequences are ad-
dressed in more detail further on.

2.2. The Canonical Equations of Motion

In all the rest of this paper, we consider the planar
problem;i.e., we assume that the grain and the planet orbit
in the same plane. The gravitational forces are classically
derived from the conservative potential of the system.
Therefore, the motion of the dust grain is described by

4=y X0, ©

an;

where %,, 1, are the grain Cartesian coordinates in the

plané of the planetary orbit, U is the negative of the

potential energy, and X,({) takes into account the noncon-

servative effect of the PR drag, as given by (5).
Introducing the associate momenta,

&L= (7)
we can write the canonical system,

. F
{;= g_m + XJ‘(C)
_aF

g’

@)

U

1;
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the Hamiltonian being
l 2
F=—32(-Ul)
2_',':1

U= GM, + m,) + Gm, (J_ I -3rp) .
g Fap Fp

In this expression, as throughout the present paper, the
subscript “‘g’’ refers to the dust grain, while “‘p’” refers
to the planet. The vector r defines the position of a point
from the star center, and r,, stands for the modulus of
¥, — r,, while m represents a mass.

As we are interested in the combined effects of first
order resonances and Poynting—Robertson drag, we fol-
low the procedure introduced by Ferraz-Mello (1992} and
canonically transform the above system to more suitable
variables. A lemma from Brouwer and Hori (1961) for
systems with a dissipative term ensures the canonicity of
the transformations. Considering the planar problem we
perform three variable transformations,

M1, M2, 4, G)
Delaunay variables (L, G, Ag» @)
Extended phase space (L, G, A, Ag, @g, 1)

Resonance variables (J,, J,, J;, 8,, 6,, 65),

where a,, e,, A,, @, are the classical orbital elements,
i.e., the semimajor axis, eccentricity, mean fongitude, and
longitude of the pericenter, respectively. The Delaunay
variables are defined by

L=Vupa, G=LVI-él

g

with w = 4(m, + M,). The variable A is the conjugate
of the time r and the resonance variables are defined as

L=L-G 8= (g + DA, ~ gh, — o,
nG+ A
Jz=—L—_ 6, =g+ DA, — g\, — @,
n, = fo
G+ A
f3=(q+1)L+qIL_ 0= Ay — A,
n, =~ fy

where n, and f; are the planetary mean motion and the
precession of the pericenter, respectively, considered as
constants. Finally, g is an integer defining the first order
resonance (g + 1):gq; i.e., we investigate the motion of
the grain for

(g + Dn, — gn, ~ 0.

In our problem, the planetary orbit is interior to that of
the dust grain, so that g will always be negative.

We will not enter in the details of these transformations,
since they are analogous to those given by Ferraz-Mello
(1992) and Beaugé and Ferraz-Mello (1993). It must just
be noted here that the Hamiltonian is considered in the
form

2
F=—%—A+R, (9

(3]

where R is the perturbing function in which we keep oniy
the constant, secular, and resonant terms. We adopt for
R the classical expansion in the Laplace coefficients and
in powers of the eccentricities,

Em 1
R=—7F [Agg + 3 Bileh + €
—% eye B, cos(0, ~ 8,) — D e cosdy  (10)
a
+ Miye, cos 6, — 254 cos el] :
P
with
1 dbq-H
D = —{(2 F B — g M
T 4q in ¢ di
1 db?
T = s 2aghd — 1/2
MPE ag{ qblfz § d«f }
1 (1)
AY=— b(I)Q
Pe ag
_¢
ng a_gbgfz’

b4(£) being the classical Laplace coefficients with ¢ =
ayla,. The 39 in the last term of Eq. (10) stands for

_[n
S h

This term comes from the indirect part of the perturbing
function. In Eq. (10), secular terms are expanded up to
e?, while periodic terms are expanded up to e. This is a
classical result of celestial mechanics, which stems from
the fact their effects on the motion are of the same order.

As we shall see, the coefficient DZ! will always appear
as a multiplicative factor together with the mass m, of

ifg=-2;
otherwise.
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the planet. This factor actually scales the strength of the
forcing term acting on the orbital eccentricity of the grain.
For order of magnitude calculations, it will be useful to
express DZ! in the form

g

(12}

This defines the function f, which is usually of order unity,
and which depends weakly on g. Near a resonance, (g +
Dn, — gny ~ 0, so that Kepler’s third law yields & ~ (1 -
8)""[(qg + 1)/g]*>. The term in 1 — B takes into account
the reduction of the mass of the central star as perceived
by the grain. The value of D! is then calculated by
introducting the value of ¢ in the first Eq. (11}, and by
using the usual expansions of the Laplace coefficients.
For B = 0, the factor fis ~1.69 ... for |g| = 2 (1:2
resonance), and tends to 1.60 ... as |g| tends to infinity.
When £ is nonzero, the situation is more complicated
because a resonant radius will coincide with the planet
orbital radius, leading to the divergence of f. This does
not occur in our present study because we use only small
values of |g| (typically 2 to 5) and 8 (0.3 at most). For
instance, with 8 = 0.3, f varies from 2.14 ... for |g| = 2
to 6.71 ... for |g| = 5. Consequently, in this paper, the
value of f will always be in the range ~2-6.

It must be noted that the equations hereafter derived
are valid only for small eccentricities, We could have
used an expansion which would account also for greater
eccentricities, such as the asymmetric expansion given by
Ferraz-Mello (1987), but we have noted in our integrations
that the crossing of a resonance (without capture) always
occurs below an eccentricity e of about 0.07. If the grain
remains in the resonance beyond this value, then it re-
mains there for a long time, and escapes only when its
orbital eccentricity is so high that it can have a close
encounter with the planei (see Paper 1). Note that in the
remainder of this paper, we reserve the term ‘‘escape’”
for the latter phenomenon, while the term ‘‘noncapture’
or ““crossing of the resonance™ refers to the passage
through the resonance, even though a short time may be
spent in that resonance.

Since we are essentially interested here in the mecha-
nism of capture into a resonance, i.c., in the casc ¢ =
0.07, we will use the perturbing function R as defined by
Eq. (10} in our calculations. Comparison with the integra-
tion of the exact equations of motion shows that this
approach is actually valid (see Section 4.3 and Fig. 3).

The equations obtained are then averaged over the short
period terms, #;. Introducing the nonsingular variables

H=V2Isinf, K=V2u cosb, (13)

we finally obtain

H=AK - BR,— %H[l +4LCBY

K=—-AH+ BR, - %K[] + 4LCB?]

6'2 = Sl _fp
i __% . (14)
Jy= __;ne [(Mgg - %BKB?,g) e,sin 6,
1 oL —J)
+ EBHBf,gep cos 62] _—1——yl
h=-72 Sla+1-9QC—DL-yglil = 4LCBY),
where
’y:&
nP
KR, + HR
= +—__K H
A=S5, 4BL?
aB  2qL
S, =g+ Dn, — qn,] — (KRx + HRp) :—+ Mt g
aJZ ,.L
Gm_ 1 1 a
Ry = —92 {EBLl’gBK - Dgg'l - Engep cos 8, ~ Ef’z)-ﬁq}
_ My L
Ry= 3 {BL.BH — B},e,sin 0}
_ 15
B=1 2
L 2
C=1z= J,)
_9R
® da,

The above equations describe the planar motion of a
dust grain near a (g + 1): ¢ mean motion resonance. This
system has two degrees of freedom, associated with two
different kinds of resonances.

One degree of freedom is associated with (6,, J)), or
equivalently, with (K, H). For small eccentricities, we
note that K ~ (ua,)'*e, cos(8)) and H ~ (nay)'e, sin(8,).
Since a, is nearly constant once the grain is trapped into
the resonance, this means that the vector defined by (K,
H) has a modulus proportional to e, and a position angle
given by the critical argument 8,. For short, we will refer
to (K, Ff) as the “‘eccentricity vector’” (although a rigorous
definition would require that the modulus of (K, H) be
equal to e,). Finally, the resonance associated with this



64 LAZZARO ET AL.

degree of freedom is referred to as a “‘Lindblad’’ reso-
nance.

The other degree of freedom is associated with (8,, J,).
The variations of the action J, are driven by the planet
orbital eccentricity e,. The corresponding resonance is
referred to as a “‘corotation’” resonance. We refer the
reader to Lissauer (1985), Goldreich ef af. (1986), and
Sicardy (1991) for a discussion of the physical differences
between these two Kinds of resonances. Briefly speaking,
a Lindblad resonance can force large excursions of the
grain’s orbital eccentricity, while a corotation resonance
is able to trap 6, in finite libration motion, causing the
grain to librate also in finite intervals of longitude, but
keeping the eccentricity e, essentially unchanged. The
confinement of material in longitude (or arcs) due to coro-
tation resonances is illustrated in Paper | and in Patterson
(1987).

In this paper, we are mainly interested in better under-
standing the simpler problem of a grain perturbed by PR
drag and by a planet in a circular orbit (e, = 0) with
no precession (y = 0). In the absence of any further
information on possible planets associated with circum-
stellar disks, this is a reasonable first step. The full system
(14) can nevertheless be used in general problems with
dissipation, in which the grain is perturbed by a body in
an eccentric orbit. The dissipation term (5) is sufficiently
general so that a variety of problems relevant to the solar
system can be treated.

With e, = 0 and ¥ = 0, the system (14) reduces to

H=AK - BRy — %H[l + 4LCBY

K=—AH + BR, — %K[l +4LCB] (15)

J,=—all - I))
Ji=—alg+ DQ2C - 1L.

3. BEHAVIOR OF THE SOLUTION NEAR
A FIRST ORDER RESONANCE

3.1. Simplified Equations of Motion

In this paper, the system (15) is numerically integrated
to study the capture of a grain into a resonance. During
this integration, the variations of all the terms depending
on the particle semimajor axis are taken into account. An
intuitive behavior of the solution is then difficult to derive.
However, when the particle’s orbital eccentricity is still
small, several simplifications are possible, and the qualita-
tive behavior of the grain orbit may be more clearly under-
stood.

Thus, assuming that e, < 1 and ¢, = 0, we have

A~S§

S ~(g+ Dn,—gqn,=An
R, ~0

_ Gm, Dyl (16)
K 2
1
Y/
C~1

The quantity An defined above is a measure of the
“distance” from the particle to the exact resonance,
where An = (g + 1)n, — gn, = 0. Near a resonance, and
for small eccentricity, the quantity Arn depends only on
a,. The variation of A# with time is derived from Kepler’s
third law, ajn} = constant, thus An = 3gnd,/(2a). From
L = —qg(J, + J,) + J; and the approximations (16}, one
finally gets the simplified equations of motion

H=AnK + eD' — }aH
K =—-AnH —$aK

. 3 . R .
An=2(~q(}, + ;) + 1) (17
g
jz - _QL
Ji=—alg + 1)L,

where D' = (aZnd?De/2 = anlf(g)g/2 is a constant

factor and
e=my/My <1

is the (small) mass of the planet refative to the mass of
the star. Note that because of the definition of f(Eq. (12)),
D’ is of order an?.

In the system (17), the quantities a, and », are fixed to
their values at the resonance, but of course not Axn. Since
2J, = H* + K%, this system is closed. We first study the
conservative case; i.e., we make a@ = 0. Then we are left
with three differential equations involving H, K, and An.
This describes a two-degree-of-freedom motion. In princi-
ple, there should be a fourth equation, i.e., 8, = §, ~ An,
but since 8, decouples from the other equations, it is not
considered here.

Far away from the resonance (|A n| large}, the eccentric-
ity vector (K, H) follows a circle centered on the forced
eccentricity (—eD'/An, 0), with an angular velocity An.
Close to the resonance (Ar ~ (), there is a strong coupling
between the variations of H and K and the variations of
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An. This may change the sign of A and cause a libration
motion of (K, H).

The system (17) is integrable, since it admits two inte-
grals of motion

2 ., 44l
C,=2H +K)+§?An
- (18)
C,=(H+K»-C(H*+K) -« 37 EK.

The motion of (K, H) can be visualized by defining a 3D
space, composed of a “‘horizontal’” plane OKH where the
eccentricity vector evolves, and a ‘“‘vertical’’ axis OZ
(Fig. 1a). The following discussion is derived from the
analysis of Ferraz-Mello (1985), who gives a thorough
morphogenetic analysis of the motion of the eccentricity
vector at a first order resonance. The conservation of €|
and C, implies that the trajectory of (X, H) is the projec-
tion onto the horizontal plane of two surfaces in the 3D
space OKHZ. One surface, M, is defined by Z = (H? +
K3 — C((H* + K?) and is vertically axisymmetric. If
C, =0, this suiface has only one minimum, at H = K =
0. If ¢, = 0, it has one maximum (K = H = 0), and
reaches a minimum value along the circle H? + K2 =
C,/2. The surface M is then referred to as a ““MeXican
hat’” surface (Figs. la and 1b).

The other surface, P, is defined by Z = C, + &8D’alf
3¢*K; it is thus a plane parallel to the H axis. It has a
(small) slope £8D'a2/3¢* with respect to the horizontal
plane OKH. This plane is shown in dashed lines in Fig.

la. The intersections of the two surfaces M and P with
the OKZ plane are drawn in Fig. 1b. If C, is positive,
the trajectory of (K, H) can be in three different zones,
depending on the value of C,. For large eccentricities,
only external circulations are possible. Near the origin
O, we have inner circulations, while in the intermediate
region, (K, H) is trapped in a libration motion around L.
Each kind of trajectory, projected onto the OKH plane,
is sketched in Fig. 2a.

3.2. Effect of Dissipation

We now analyze the dissipative problem (o > (). We
calculate the derivatives of C; and C, by introducing their
expressions {18) in the system (17). Then

e o= daain
= -t
g

¢,= —40“;;"5 (H? + K?).

(19

it is easy to show that the minimum value of Z on the
Mexican hat surface is Z,;, = —Cj/4 (Fig. 1b). Conse-
quently, the dissipation causes a variation of Z_;_ at the
rate Zg, = —C,Cf2 = 2aC,aln,/q. Note that because
q =0, Z;, is steadily decreasing. Finally, near the libra-
tion point L, we have H*> + K? ~ (,/2, and thus, from

the second Eq. (19),

Z.mirl -~ CZ'

(20)

(a)

FIG. 1, (2} A 3D view of the ““Mexican hat” surface A and the intersecting plane P (dashed line). Points have been scattered randomly on
the Mexican hat surface for a better visualization of the 3D surface. The solid, bean-shaped curve is the intersection of the two surfaces. It
represents the trajectory followed by the eccentricity vector in the conservative case. See the text for details. (b) Lateral view of Fig. (a), with
the projection of various Mexican hat surfaces onto the OKZ plane. The tilted straight line is the projection of the plane P defined in (a). Before
the entrance into the resonance (C; < 0), M has only one minimum, at O. At the entrance into the resonance (CC; = 0), the surface flattens.
After a while (C, > 0, see the solid line), two minima have appeared. Their ordinates Z; decrease at the same rate as €, (Eq. (20)).
Later on, the minima are more pronounced (dashed-dotted line); the forced eccentricity —V' (/2 continues to shift to the left.
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FIG. 2.

{a) Various intersections, projected onto the OKH plane, of the surface M shown in Fig. 1a with different planes P. Two circulating

(internal and external) trajectories are drawn. The librating, bean-shaped libration trajectory is the same as the one shown in Fig. la. The
dashed—dotted line is the separatrix between the various regimes. (b} Evolution of the eccentricity vector (H, K) for high eccentricities, obtained
by integrating the system (i5) near a 3:4 resonance, with 8 = 0.3. The latter corresponds to a particle radius of ~2.7 um (in the geometrical
approximation) orbiting 8 Pictoris. Note the asymmetrical libration near 180° caused by dissipation. The escape from the resonance occurs near
the equilibrium eccentricity defined by Eq. (28). Units are arbitrary in both panels.

This equality has an important consequence, since it en-
sures that the minimum value on the Mexican hat surface,
and the intersecting plane P moves downward at the same
rate,

The general scenario of capture into a resonance may
be then understood as follows: (i) Suppose that a particle
is well outside the resonance, on a circular orbit (K =
H = 0); then An < 0 and also C, < 0. The first Eq.
(19) shows that, because of dissipation, C, increases at a
constant rate —4aajn,/qg, since q is negative. During this
time, C, remains constant because K = H = 0, according
to the second Eq. (19); thus the intersecting plane P does
not move. (ii) When the resonance is reached, C, becomes
positive. Two shallow minima appear on the curve Z =
K* — C,K* (Fig. 1b, curve labeled €, = 0). Simultane-
ously, the intersecting plane starts moving downward at
the same rate as Z;,,, provided that the eccentricity vector
remains close to the libration point L. {iii) This synchroni-
zation derived in Eq. (20) makes the capture into the
resonance possible, since (K, H) remains in the libration
region near L. (iv) The eccentricity corresponding to libra-
tion point L is ey, = VC,/2/{a,nl'?). Because C, is a linear

g
function of time (Eq. 19), we have :

ey =V (2allg|)t, 2n
where the time ¢ is counted from the entrance into the
resonance. (v) Since L corresponds to H? + K? = C,/2,
it also corresponds to An = 0, according to Eq. (18).
Thus, the semimajor axis of the particle remains fixed
at the resonant radius. This scenario explains the main

features observed during the numerical integrations: in a
first stage, the semimajor axis of the grain decreases,
while the eccentricity remain close to zero. When the
resonance is reached, the semimajor axis is locked at a
fixed value, corresponding to An ~ 0, while the eccentric-
ity increases like V?.

It is interesting to note, from Eq. (21), that the typical
time scale for increasing significantly the eccentricity is
~|g|/e. On the other hand, Eq. (5) shows that the time
scale for orbital decay due to PR drag is of order 1/a.
This means that, when effective, the trapping occurs on
time intervals long enough to statistically accumulate the
particle semimajor axes at the resonance radii.

3.3. Nonadiabaticity of the Motion

A difficulty arises at that point. Our analysis does not
take into account the phase 8, of the eccentricity vector
(K, H). Rather, we assume that the dissipation is small
enough so that C, and C, vary very slowly, and an adia-
batic invariant analysis can be applied. Namely, we con-
sider that the changes of the phase space topology induced
by the changes of C, and C, are small enough to preserve
the area enclosed inside the trajectory of (K, H). We shall
see that this is not the case, or only marginally, for typical
circumstellar grains around a star such as 8 Pictoris. In
this case, and especially when the two minima shown in
Fig. 1b are still very shallow (entrance into the resonance),
the phase 6, may be such that the vector (K, H) crosses
the separatrix and escapes the resonance (see the example
of Fig. 11). The nonadiabaticity of the motion makes the
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estimate of the probability of capture a rather difficult
task, so that we have to turn to numerical integration.
This nonadiabaticity may be quantified as follows. Ac-
cording to (21), the eccentricity e, corresponding to the
stable libration point L (Fig. 2a) changes at the rate

. o
bip = —— 22
i~ e (22)

Considering that the slope of the oblique straight line P
in Fig. 1b is small, one easily shows that the width w,
in eccentricity, of the libration zone is (see Fig. 2a)

=) () )

The topology of the phase space will have suffered a
significant change when the bean-shaped libration zone
has moved by its own width. The typical time scale of
significant evolution for the phase space is thus 7,,, ~
Wil €gip; 1€,

(23)

(24)

On the other hand, the typical libration peried T, of the
eccentricity vector around L is obtained by linearizing
the system {17) near L. This yields

AT BaEné’Z
127 3la] \ T6eewlDT @

where T, is the orbital period of the grain. The evolution
of the (K, H) vector is thus adiabatic if Ty, <€ T, i.€.,

if
Tl‘b (aTorb)( 1 )
—0 | = — ] ],
Teva 2f] |q |2 E€3p

The value of T,/T.,q will be estimated in Section 4 for
typical grains around a star such as 8 Pictoris.

(26)

3.4. Stationary Solution

The numerical integration is also useful at the other end
of the particle evolution, i.e., when the orbital eccentricity
e, is too high for the system (17) to be valid. Then we
have to turn back to the system (15), where all the coeffi-
cients other than « and g vary at the same time, making
an analytical study of this system difficult. Nevertheless,
the question of the fixed points of this system can still be
investigated. We use for that the more physical quantities

€y, 0y, and L = Vpua, instead of H, K, J;, and J,. Then
the system (15) turns into

L= ~ qD‘f“eeg sin @, + aL (1 - -Ei)

€, = -—ap(q + 1~ gp)D% " sin 6, — 2ae,
# ep(g + 1~ gp) @7

91=An_4L e

g

X [e,By, — 2D cos 6] + %Ra,

where we write for short p = V1 — e}. Note that the
system above is no longer canonical.

The physical interpretation of the first two equations
is the following. The dissipation damps the semimajor
axis and the eccentricity of the grain, since the two terms
containing « ar¢ negative. On the other hand, the reso-
nance can provide energy through the terms containing
sin 6,. Because g and D¢} ! have the same sign, the first
equation shows that energy can be provided to the grain
only if sin ¥, < 0. The second equation then shows that
the eccentricity is increased by outer Lindblad resonances
(D% < 0) and damped by inner Lindblad resonances
(D‘?+1 > (). Thus only outer Lindblad resonances are able
to counteract the dissipative effect of PR drag, i.e., are
able to yield é, = 0.

This result is a particular case of a more general phe-
nomenon, the ‘‘shepherding mechanism,’” which tends to
push the particle away from the planetary orbit as soon
as some collective or irreversible effects are introduced
in the system (see the reviews by Goldreich and Tremaine
1982 and by Meyer-Vernet and Sicardy 1987).

The equilibrium orbit is obtained by setting all the time
derivatives to zero. Some simple algebra using the first
two equations yields

(g + 1)1+ e2) = q(1 - e2)*?

oo (a6
MO T\quDg et —ed\e/”

The equilibrium value e, can be extracted numerically
from the first equation; the second equation then yields
sin #,. Finally, A# is derived from the last equation in
(27). For this equilibrium orbit, the energy dissipated by
the PR drag is exactly compensated for by the energy
provided by the planet. The following conclusions can be
driven from the last two sets of equations:

» Only external Lindblad resonances allow the exis-
tence of equilibrium orbits, according to the first Eq. (28)
{(which requires that g = 0).
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» The second Eq. (28) requires that sin 8, =0, i.e., 7 =
0, = 2. Equivalently, the particle must have a conjunc-
tion with the planet after it has passed its apoapse, but
before it has reached its periapse. This is a very general
result, which ensures that the satellite provides energy to
the particle to counteract the effect of dissipation (see
the discussions by Peale 1976, Weidenschilling and Davis
1985, Jackson and Zook 1989, and Sicardy et al. 1993).
This also has an important consequence for the orientation
of the particle orbits in a frame corotating with the planet;
see Paper 1.

» For large {g|’s, an approximate value of ¢, at equilib-
rium is

1
€eq Visa

One notes that this equilibrium eccentricity is independent
of the damping coefficient. The above value is the same
as the equilibrium eccentricity derived by Weidenschilling
and Jackson (1993) and discussed by Sicardy et al. (1993)
in the case of PR drag. A similar expression was derived
by Weidenschilling and Davis (1985) and by Beaugé and
Ferraz-Mello (1993) in the case of gas drag. In this case,
however, the value of e., depends also on AV/Vy, the
relative deviation of the gas velocity from Keplerian mo-
tion. This difference arises from the fact that the friction
against the gas is proportional to the relative velocity
between the body and the gas, whose orbital velocity is
itself close to the Keplerian velocity. In contrast, the PR
drag is directly proportional to the orbital velocity of the
body, as seen in Eq, (5).

+ Substituting the equilibrium value obtained in (29)
into (28), one obtains

2V2.5L )[(2.5|q| + 1)] (2) . (30)

sind, = —
: (Iql”zfu-Dg;‘ (2.5l - D\e

(29)

Thus, the equilibrium requires thal the ratio a/e be smaller
that a limiting value imposed by the condition [sin 8| =
1. Physically, this means that if the dissipation is too
strong, or if the planetary mass is too small, not enough
energy is provided to the grain, even for 6, = —#/2. We
shall estimate the typical limiting value of &, once some
typical values of a relevant to circumstellar disks have
been fixed. We shall see that this limiting value falls into
the range of usual planetary masses.

The stability of the equilibrium orbit is a much more
difficult matter. The analysis of the eigenfrequencies of
the system (17) near the fixed point shows that the latter
is stable (Beaugé and Ferraz-Mello 1993, Sicardy et al.
1993). However, in the more correct system (15), all the
coefficients depending on a, vary, and the linear stability

of the equilibrium is no longer warranted. Again, a numeri-
cal integration is most useful for investigating this point.

In typical runs, the eccentricity does reach a maximum
value corresponding to the value given by Eq. (29). At
that point, the value of e, remains almost constant with
time, while the eccentricity vector exhibits a libration
motion with larger and larger amplitude (Fig. 2b). Eventu-
ally, the separatrix is crossed, and the particle suddenly
escapes the resonance region. This behavior is common
to all the integrations that we have performed, either aver-
aged as in system (15), or exact as in Paper 1. Actually,
none of the orbits integrated on the Connection Machine
in Paper 1 reaches a permanent equilibrium., This suggests
that either the equilibrium orbits are not stable, or at
least they are not attractors, for a wide range of initial
conditions.

It is at present difficult to understand better the dynam-
ics involved near equilibrium, since the system (15) is no
longer valid at those eccentricities. Fig. 2b, however,
suggests that the libration motion oceurs in a more and
more narrow region. This is expected also from Eq. (23),
since it shows that w,, decreases as ey, increases. From
Eq. (26), one can also conclude that the motion is more
and more adiabatic as ey, increases. This circumstances
suggest that the conservation of the area enclosed in the
librating trajectory forces the amplitude of the libration
to increases as the width of the libration region shrinks.
Direct integrations of the full problem could help solve
this problem, which at present remains open (see also
Paper 1 and Section 5.4).

4. NUMERICAL INTEGRATIONS

4.1. Choice of the Parameters

The system (15) is numerically integrated, using param-
eters and initial conditions compatible with the observa-
tions of the 8 Pictoris circumstellar disk (Smith and Terrile
1984, Artymowicz et al. 1989, and Paper 1)}. The particle
radius s lies in the micrometer-sized range, the stellar
mass M, is estimated to 1.5 solar masses (M), and the
stellar luminosity L, is ~6 solar juminosity (L), We
consider a planet orbiting at a, = 20 AU, this distance
corresponding to the estimated radius of the inner clearing
zone of the disk. We also assume that the planet and the
particle are moving in the same plane, the particle being
launched at 30 AU.

The numerical integration of the system (15) is per-
formed with a variable step size integrator, based on the
Bulirsch—Stoer scheme (Bulirsch and Stoer 1966). The
values of the coefficients « and 8 defined in Egs. (2) and
(4) are derived according to the work of Burns er al.
(1979},
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where s, and a,y are the particle radius in micrometers
and the semimajor axis in AU, respectively. These estima-
tions assume that the density of the particle is 3 g cm™,
and that we are in the regime of geometrical optics (Q =
1). For particles around B-Pictoris, we thus have

€2))

0.8
B~
e
o LEX10 (32)
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The quantity « provides a rough estimate of the decay
time of a particle due to PR drag: ty.,, ~ 1/ ~ 1400s,,,a%;
years. Therefore, at 20 AU, this decay time is of the order
of 1 million years for micrometer-sized particles.

4.2, Trapping into a Resonance

An important restriction of the system (15) is that it is
valid only near a first order resonance. However, as the
grain crosses a resonance, and continues its decay to-
wards the star, it is under the simultaneous influence of
the resonance it has just crossed and the next resonance,
not to mention higher order resonances. In the present
paper, we are actually interested in the mechanisms of
entrance into a first order resonance.” Thus, we use only
one resonant perturbing function R at a time (Eq. 10).
Every time the particle goes out of the zone of influence
of a resonance, and enters into the zone of influence of
the next resonance, the value of R is changed accordingly.
This abruptly modifies the coefficients in the system (15).
More specifically, the change from the (g + 1): g reso-
nance to the adjacent (g + 2):(g + 1) resonance is per-
formed every time the relation

lg + 2, — (g + Dng <|(g+ Dn,—gn  (33)
is satisfied.

We could have used a smoother change of the parame-
ters, but we know that the influence of a resonance be-
comes important only when the distance to it, An, ap-
proaches zero. Therefore, if we are interested only in the
mechanism of capture into a given resonance, the above
procedure is quite accurate. It must be kept in mind,
however, that this procedure does not reproduce com-
pletely the integration of the exact equations of motion,
since the orbital phase of a particle is an important param-

eter for its capture into a resonance. The integration of
the exact equations of motion (Paper 1) also shows that
particles can be trapped into higher order resonances, an
effect not taken into account here,

We use the following nomenclature to describe the evo-
lution of the grain near a resonance. The exact integrations
of Paper 1 show that if the grain orbital eccentricity
reaches the value of ~0.07, then it continues to increase
toward the equilibrium value given by Eq. (29). In this
case, we say that the grain is trapped into the resonance.
This dees not mean that this trapping is permanent, but
rather that it occurs on time scales comparable to or larger
than the decay time 74, toward the star in the absence
of the perturbing planet.

For eccentricities smaller than ~0.07, the particle may
cross the separatrix enclosing the libration region shown
in Fig. 2a, and then continue its decay toward the star. In
this case, we say that the particle crosses the resonance.

The numerical integration is stopped in two cases: (i)
when the semimajor axis of the grain reaches 21 AU, we
consider that the grain has a close approach with the
planet and is ejected from that region, or falls onto the
star; {ii} when the eccentricity of the grain reaches 0.1,
we consider that the grain is captured into the resonance
and remains there for a long period. Also, the integration
is not pursued because the system (15) is no longer valid
for large eccentricities.

4.3. Comparison with the Exact Equations of Motion

In order to check whether the averaged system (15)
adequately reproduces the mechanism of capture, we
have integrated the exact equations of motion, all the
physical parameters of the problem being equal. We recall
here the main approximations made to obtain the averaged
system (15);

» The dissipation coefficient « defined in Eq. (4) is as-
sumed to depend only on a,, while it actually depends on
the averaged value of =2, and thus also on e,. In other
words, to calculate «, we consider that the eccentricity
is zero, and we use r = a,.

* The dissipative force associated to the radial term in
Eq. (3) has been dropped. This assumes again that the
orbit of the grain is circular.

To test the first assumption, we have integrated the
system (15) with o constant, together with the exact equa-
tions of motion with o variable, but still dropping the
radial term —(#/c)u, in Eq. (3). In Figs. 3a and b, the
resulting eccentricity is plotted against the semimajor axis
for each integration, respectively, with a planetary mass
of 107* M, and a value of 8 = 0.3, corresponding to a
particle size of s = 2.7 um (Eq. (32)). Otherwise, the
initial orbital elements of the particle are the same. One



70 LAZZARO ET AL.

T T T

averaged exact

(b) |

v
° (a) °
@ < L
S 2 ]
at £ ] 2l ]
S £ o EH
2 * o) 2% ol
B = 8 F K]
t oo S 1 = ol # ] £
-
I & & u
3t 1 & : ‘
=1 :
S
3t - g :
. | o )
af H ] =13 H p
o H S H
Q L . ;._— of . k—..—.-n—n——-q
27 28 29 30 27 28 29 30
Semi—maojor oxis (AU.) Semi—mojor axis {A.U.)
T v T v
:
LEI{'I!
[} d ot g
St (c) ° (d) !é;
s
(]
FAN P=-R opprox. ] &t if’g; P-R exact ]
& X S £
2z ~
i 3
o % ] g's
,-? ol E‘: E 3_'. Sk E - %
J o [T] T
£ e 5 = £
- z : : i
- o
8 2l & ] 82 o ] &8
[T o w g o ]
g g
9 9 '
sf b 1 St ) ]
al 4 a8l J
o : g :
oF k—_-—---—mh [=] 3 k—-—-—u—w“-
27 28 29 30 27 28 29 30
Semi—-major oxis {A.U.) Semi—mojor axis (A.U.)

FIG. 3. The eccentricity vs the semimajor axis for a grain trapped in the outer 1:2 mean motion resonance. The planet is on a circular orbit
around the star 8 Pictoris at a distance of 20 AU, its mass is 107 M, (M, = mass of the star), or ~30 Earth masses, ~0.5 Saturn masses. The
grain is initially released at 30 AU on a circular orbit. The coefficient 8 is 0.3. The points are plotted at intervals of 10 planetary revolutions, and
the complete integration spans almost 1,000 planetary revolutions (a planetary revolution is about 73 years). (a) Result obtained by integrating
the system {(15), which assumes that the coefficient of dissipation « is constant along the orbit. (b) Integration of the exact equation of motion,
taking into account the instantaneous value of & at each point of the orbit. (¢) and (d) Comparison of the numerical integration of the exact

equations of motion considering the tangent Poynting—Robertson (PR) drag only (c) and the total PR drag (d); see Eq. (3). Otherwise, the
parameters used are the same as in (a) and (b). See the text for details.

can note the good agreement between the two integra- stopped. The integration of the averaged system (15) is
tions. Figures 3a and 3b show that the small oscillations about 20 times faster than the integration of the exact
in eccentricity start to be out of phase above ¢, ~ 0.1, equations of motion.

i.e., the value at which the numerical experiment is To test the second assumption, we have integrated the
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exact equations of motion, with the truncated dissipative
force (Eq. 5), and then with the complete force given by
Eq. (3). The results are plotted in Figs. 3¢ and 3d. We
can see that the neglected terms are important only for
high eccentricities, well above the limit of validity of our
equations.

5. THE CAPTURE INTO A RESONANCE

5.1. Influence of the Planetary Mass

The masses chosen for the planets range from 5 x 107¢
to 107 stellar masses, M, , or equivalently, from ~2.5
Earth masses to ~0.5 Saturn masses.

A first question is the existence of equilibrium orbits,
as defined by Egs. (28). The first equation in this system
yields the equilibrium value e.,, which we will take equal
to the value given in Eq. (29). Strictly speaking, this latter
expression is valid for large |g|'s only, but this is good
enough for the estimates that we make here. The second
equation in (28) requires that [sin 8| =< 1. Using the values
of D‘F','é+ 'and « as defined in Eqgs. (12) and (32), one gets
the minimum mass necessary for equilibriam:

3.86><104)(2.5|q;+1)( B )
o~ . (34
con~ A Jasa-i\va) ©Y

Choosing a typical value of 8 = 0.3, one gets values of
Emin IN the range ~4 X 107%to 4 x 1077 for |g| in the range
2 to 5 (corresponding to ~2 to 0.2 Earth masses). This
shows that the planets that we use in our integrations
are in principle able to trap grains in equilibrium orbits.,
However, one should note here that the minimum mass
defined by Eq. (34} is an absolute lower limit, since it
assumes that the eccentricity has the equilibrium (maxi-
mum) value given by Eq. (29). As we shall see in Section
5.3, the very condition of capture at the entrance into the
resonance, when the eccentricity is still small, is more
complex than mere inequality & = g,;,, and will require
in general a larger mass than e, for the planet.

Figure 4 shows the evolution of a grain under the influ-
ence of planets with various masses and circular orbits
{e, = 0, @, = 20 AU). The particle is initially released at
30 AU, also on a circular orbit, At time ¢ = 0, the particle
and the planet have the same longitude. The value of 3
is fixed to 0.3 in all these simulations. With this value,
the resonances 1:2, 2:3, and 3:4 are located at 28.19,
23.27, and 21.51 AU, respectively. As the planet mass
gets smaller, the grain crosses the first resonances, and
is trapped in higher |g| resonances. For a mass of about
5 X 1075 M, there exists no trapping at all. In Figs. 5a
and 5b we show again the effect of the planetary mass,
but now the particle is initially given a nonzero orbital
eccentricity. We give here two examples, with initial ec-

Mp=1e—4 o

0.08

Eccentricity

.04
T

0.02
T

20 22 24 26 28 30

Semi—major oxis {AU.)

FIG. 4. Eccentricity of a grain vs its semimajor axis for different
perturbing planetary masses. The system {15) is integrated using g =
0.3and e, = g, = &, = @ = &, = Ay = 0” initially. The grain is released
at 30 AU. The resonances 1:2,2: 3, and 3 4 are logated at 28.19, 23.27,
and 21.51 AU, respectively.

centricities of 107* and 1072 (5a and 5b, respectively).
Even though the details of the evolution can be quite
different, the main features of the capture/noncapture
mechanism do not change. See, for example, the evolution
through the 2:3 resonance for a planetary mass of 107°
M, . For small initial eccentricities (5a) we note an in-
crease of eccentricity at the crossing of the resonance,
while we have a decrease of eccentricity for larger initial
eccentricities (5b). This point is discussed further in Sec-
tion 5.4.

5.2, Influence of the Dissipation Rate

Changing «, or equivalently 8, has two consequences.
One is to change the time scale of evolution /e, larger
particles evolving more slowly. A second consequence is
to change the location of the resonance, since the radiation
pressure modifies, by a factor of 1 — 8, the apparent mass
of the star as perceived by the grain. Kepler’s third law
then implies that the resonance radius is multiplied by
(1 _ B)lﬂl

The influence of 8 is illustrated in Figs. 5¢ and 5d. In
3¢, the value of B 1s fixed to 0.2 (particle radius ~4 pm),
while the planetary mass is varied. One can note the great
similarity of the particle behavior to that of Fig. 4. All
our integrations actually show that the grain behavior, as
far as the captured/noncapture mechanism is concerned,
does not change for values of 8 between 0.1 and 0.3
(particle radius between 2.7 and 8 um), confirming the
results of Scholl et al. 1993, and of Paper 1. Figure 5d
shows the effect of 3, the mass of the planet being fixed
to 5 x 107% M,. One can note the shift in radius of the
2:3 resonance location due to an increase of 3.
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FIG. 5. The same as in Fig. 4, but with nonzere initial eccentricities for the grain: (a) initial eccentricity e, = 0.001; (b) initial eccentricity
eg = 0.01; (c) the same as in Fig. 4, but with 8 = 0.2; (d) the planetary mass is 5 x 107° M, (~25 Earth masses), and the value of 2 is changed

from 0.1 to 0.3.

5.3. Entrance into the Resonance

QOur analysis of the eccentricity vector behavior near
a first order resonance {Section 3) provides the general
scheme of the trapping mechanism. It fails, however, to
give the probability of capture for particles whose orbital
elements are randomly distributed. The main difficulty
stems from the fact that the crossing of the resonance is
nonadiabatic for typical particles under study.

Equation (26) gives the condition of adiabaticity of the
motion. Using the parameters of 3 Pictoris, this equation

reads
Tio ~(3.83 X 10-4)( B )(___1_)
Tevol fqz VaAU aelib '

The typical value of e is 107°-107°, while a ~ 25 AU,
|gi = 2 to 4, and 8 ~ 0.3. The value around which the
eccentricity vector tries to oscillate at the entrance into

(35)

the resonance is ~0.1 (see Fig. 11). Thus, Eq. (35) shows
that the condition T,/ T, <€ [ is only marginally satisfied
in most of our runs. Only for large, Jupiter-like planets
(e = 107% and/or large grains (radius =10 um) does the
evolution become adiabatic. Examples of nonadiabatic
evolutions are readily visible in Figs. 11 and 12: the eccen-
tricity vector has no time to complete one libration cycle,
while the libration point has moved significantly.

In fact, an important result derived from many integra-
tions is that the resonance capture critically depends both
on the eccentricity ¢, of the grain at the entrance into the
resonance, and on the resonant phase 6, at that moment.

For instance, we can fix the initial eccentricity and
investigate the influence of 8,. In practice, we change the
initial longitude of the pericenter of the grain @,, every-
thing else being equal. We show in Fig. 6 an example with
an initial eccentricity of 0.005. We note that the grain
crosses the 1: 2 resonance in all cases, and is trapped into
the 2 : 3 resonance in three cases. Analyzing the eccentric-
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FIG. 6. The grain’s eccentricity plotted against its semimajor axis (in AU). Each panel corresponds to a different initial argument of pericenter
@, (in degrees), as indicated in the figure. The planetary mass is 2 X 107° M, (~10 Earth masses), 8 = 0.3, and the initial eccentricity of the

grain is 0.005.

ity variations as the grain crosses the 1:2 resonance,
however, we note that it may have completely different
behavior. We may observe an increase of eccentricity, a
decrease, or no net change, even though there have been
large variations during the crossing. This feature has been
observed in all the tests performed.

A more compact form in which to present this study is
to perform many integrations and plot the result of the
resonance effect (capture or noncapture) in a grid, with
the initial value of @, (corresponding to a value of 6,) on
one axis, and the initial value of e, on the other axis. Such
maps allow one to have a clearer idea of the probability
of capture of the grain into a given resonance for a given
planetary mass and a given value of 8.

Examples of such a maps are shown in Figs. 7, 8, and
9, where the points (or the vertical bars) indicate a cap-
ture, as defined in Section 2.2. In the remaining regions,
the particles cross the resonance. A quantity of interest
is then the net jump in orbital eccentricity suffered by the
grain, i.e., the eccentricity just after the crossing from
the resonance minus the eccentricity just before the en-
trance into the resonance. The level curves link the points
corresponding to a constant increase (solid lines) or a
constant decrease (dashed lines) of the initial eccentricity
after the crossing of the resonance.

Figures 7, 8, 9 correspond to the 1:2, 2:3, and 3:4
resonances, each panel showing the effect of a different
planetary mass, keeping 8 = 0.3. In ¢ach resonance, the
scenario is the same: a narrow tilted valley first appears
when the planetary mass is increased, and this valley
widens for small eccentricities, while the noncapture re-
gion shifts to the right. Note that the critical planet mass,
for which the capture valiey widens, is different from one
resonance to the other: 7 x 1073 M, {~35 Earth masses)
for the 1:2 resonance, 2 X 10° M, (~10 Earth masses)
for the 2:3 resonance, 107> M, (~5 Earth masses) for
the 3:4 resonance.

One can note the smooth boundaries between the cap-
ture and noncapture regions, but also the absence of obvi-
ous symmetries or regularities in the shapes of these re-

gions. We thus suspect that the shapes of these regions
cannot be derived analytically, The main conclusions
drawn from these maps may be summarized as follows:

+ The trapping becomes more efficient as |g| is in-
creased. This can be expected from Eq. (28), since sin
6, = 1/(gD%") = 1/g%. Thus the condition [sin 8| = 1 is
more and more easily satisfied as |g} is increased. Physi-
cally, this means that the strength of the resonance in-
creases with |g|, everything else being equal.

» Roughly speaking, for planets with masses larger than
~1-5 x 107 M,, and micrometer-sized particles, there
are large regions of capture in the eccentricity-phase dia-
grams, provided the initial eccentricity of the grain is
smaller than a few percent. This critical mass decreases
as the g of the resonances is increased, from ~35 Earth
masses for the 1:2 resonance to ~5 Earth masses for the
3:4resonance. As expected, these masses are larger than
the absolute minimum masses derived from Eq. (34),
which yielded values ranging from ~2 Earth masses for
the 1:2 resonance and ~0.2 Earth masses for the 3:4
resonance.

» More quantitatively, the maps yield the probability
of capture in each case of interest, once an initial distribu-
tion of eccentricities and periapses has been specified.

« Ananalytical expression for the probability of capture
may be difficult or impossible to obtain, in view of the
complexity of the maps structures.

We note that a minimum orbital eccentricity is actually
necessary for capture when the planetary mass is just
below the critical value 1-5 x 107> M, (see the upper
panels of Figs. 7 and 8). This is in agreement with the
results of Weidenschilling and Jackson {1993), which can
also be derived from Eq. (28): for a given value of the
planetary mass, the condition [sin ;| = 1 requires that ¢,
be larger than a given value ¢_;,,. We have checked that
the values of e;, derived by Weidenschiiling and Jackson
and from Eq. (28) agree within 10-20%, once the same
stellar and planetary masses are used. As the planetary
mass is increased, however, alff the particles with initial
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FIG.7. Maps showing the regions of capture for the 1: 2 resonance.
The abscissa is the initial orbital eccentricity of the grain, and the ordi-
nate is its initial longitude of periapse. The grain is released at 22.2
AU, and 8 = 0.3. The dotted regions correspond to capture into the
resonance. In the rest of the map, the solid level curves link points
corresponding to the same net increase of eccentricity, The dashed level
curves show points corresponding to the same decrease of eccentricity,
From top to bottom, the planetary masses are respectively 5 x 1075
M,, 7 x 107 M,, and 107 M,, ie., 25, 35, and 50 Earth masses,
respectively.
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bottom, the planetary masses are respectively 1075 M, , 2 x 1075 M,
and § X 107° M,, i.e., 5, 10, and 25 Earth masses, respectively. For
clarity, the dots (capture into the resonance) have been replaced by
vertical lines in the upper panel.
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FIG. 5. Same as Fig. 7 for the 3: 4 resonance. From top to bottom,

the planetary masses are respectively 9 x 1075 M, 107° M, and 2 x
1073 My, i.e., 4.5, 5, and 10 Earth masses, respectively.

eccentricities smaller than a given value are captured (see
the lower panels of Figs. 7, 8, and 9). This paradox stems
from the fact that for a sufficiently massive planet (several

times 107° M, ~ 5 Earth masses), the eccentricity €,
in Eq. {28) cannot be considered as constant. For such
massive planets, the resonance itself is able to pump up
the eccentricity of the particles above e, so that a self-
consistent approach must be used. This point is now ex-
amined in more details.

5.4. Osculating Phase Space

In order to clarify the importance of the phase 8, at the

_entrance into the resonance, we examine here two kinds

of cases, one corresponding to noncapture, and one cotre-
sponding to capture. This point is illustrated in Fig. 10,
where the evolution of (e, cos(8,), ¢, sin{#,)) is shown for
two integrations, with various initial eccentricities and
argument of pericenter for the grain. The planetary mass
is 2 X 1075 M. The plots on the right are for an initial
eccentricity of 0.007 and an initial longitude of the pericen-
ter of 180°, while those on the left are for e, = 0.005 and
@, = 0°.

The upper panels show the crossing, without capture,
through the 1 : 2 resonance. The critical angle §, first circu-
lates in the clockwise direction. Due to the dissipation,
the circulation orbit constantly shifts to the left while the
grain approaches the resonance. At the entrance into the
resonance, the eccentricity increases (upper left panel) or
decreases (upper right panel), depending on the initial
phase. The grain then crosses the resonance, while the
critical angle starts a new circulation, now in the counter-
clockwise direction. The net increase (or decrease) of
eccentricity can be understood by remembering that the
eccentricity is pumped up by the resonance in the lower
half of the plane, sin §; = 0, and is damped in the upper
half; see the discussion after Egs. (27).

The plots in the lower panels show the capture into the
2:3 resonance. In this case, the critical angle begins in
circulation and ends up librating near 8, = 180°, with an
average value of sin 8, which is negative. This is normal,
since energy must be provided to the grain. The critical
moment occurs when @ , changes its sign for the first time.
We refer to the corresponding point as the ‘‘inversion
point.”” Remember that all during the process, the in-
stantaneous zones of libration surrounding L, i.e., the
bean shaped curves shown in Fig. 2a, are constantly shift-
ing toward the left due to the steady increase of C, (Eq.
(19)). Note that the speed of this shift depends only on
the dissipative term « and on geometrical factors. In par-
ticular, it is independent of the planet mass and of the
phase 6,.

If the inversion point occurs in the upper half of the
plane, then the eccentricity is damped by the resonance
at that point, while the bean-shaped libration curves go
away to the left of the plane. Thus, the particle *‘falls”
rapidly into the inner circulation zone and crosses the
resonance. This case is illustrated in the upper right panel
of Fig. 10.
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FIG. 10. The evolution of the resonance variables e, sin(6,}, ¢, cos(d,) for two integrations with different values of the initial eccentricity
(0.005 and 0.007) and the initial argument of pericenter (0° and 180%). The plots at the top show the crossing of the 1:2 resonance, and the plots
at the bottom show the trapping into the 2:3 resonance. The points labelled i and f are the initial and final points, respectively. The arrows

indicate the direction of evolution.

If the inversion point occurs in the lower half of the
plane, then the eccentricity increases at that point due to
the resonance. Again, the bean-shaped libration curves
move to the left. Thus the capture into resonance depends
upon the swiftness of the point in following up the evolu-
tion of the libration curves. In the example shown in Fig.
10 {upper left panel), the grain has no time to follow up
this evolution. This point is detailed in Fig. 11.

In this figure, the “‘osculating phase space” is shown.
Specifically, for each panel, several curves corresponding
to the instantancous value of C, of the particle are drawn,
for various values of the quantity C,. In other words, in
a given diagram, the Mexican hat surface is fixed, and

each curve corresponds to a different intersecting plane
P (see Fig. 1a). In the present case, we see that the point
representing the grain is not fast enough to go around the
lower tip of one of the bean-shaped curves, so that it is
enclosed in the inner circulating zone, while the libration
curves move rapidly to the left. In Fig. 11, the inversion
point occurs at the time labelled T0 + 29AT, and the
entrance into the inner circulation zone occurs between
the times 70 + 34AT and T0 + 38AT.

If the inversion point occurs closer to 180°, the libration
zones are smaller, and the libration period is also smaller.
This gives time for the point to catch up to the motion of
the libration curves (lower panels of Fig. 10). Details on
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four revolutions of the planet. The dot is the actual position of ¢, sin(8,), ¢, cos(d)). See the text for details.

the trajectory corresponding to the left panels of Fig. 10
are given in Fig. 12. For each position of the point, we
calculate the osculating trajectory. The latter corresponds
to the trajectory that would follow the point in the conser-
vative case, with the instantaneous values of C, and C,
of the particle. In the first case, we see how the particle

is trapped into an inner circulation (Fig. 12a). In the sec-
ond case, we see that the point has time to go around the
lower tip of the libration curve; thenitis “‘pushed” toward
the left by the bean shaped curve, until the inversion point
Is reached again near 180°, and the process is resumed
(Fig. 12b).
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(a) Osculating phase curves for each point shown in Fig. 11. Each of these solid curves would be the trajectory followed by the dot

if the PR drag were suddenly removed. {b) The same in a case of capture, corresponding to the lower left panel of Fig, 10.

6. CONCLUSIONS

We have derived the averaged equations of motion of
a circumstellar grain near a first order resonance with a
planet, in the presence of PR drag. The integration of
these equations has allowed us to answer a certain number
of questions concerning the mechanism of capture into a
resonance of a micrometer-sized grain orbiting a star such
as 3 Pictoris.

We give a topological interpretation of the resonance
effect, in which two surfaces steadily evolve in the phase
space, under the effect of dissipation (Fig. 1). This yields
the main features of the capture. In particular, we show
why the capture must occur at an outer mean motion
resonance only, and why the eccentricity should increase
like V1, right after the capture, where ¢ is the time.

The question of escape from the resconance at high ec-
centricity is still an open problem, since our equations
are no longer valid for eccentricities larger than ~0.1, and
since we use only averaged equations. However, we show
that the trapping time in a given resonance is comparable
to the decay time to the star due to PR drag alone. In
that sense, the resonances can accumulate material just
outside the planetary orbit.

The problem of capture probability is also a difficult
one, because of the nonadiabaticity of the motion at the
entrance into the resonance, at least with the parameters
used in our models (micrometer-sized particles, planetary
mass smaller than about one half of Saturn’s mass). Only
for jovian planets and/or particles larger than ~10 pm

does the evolution of the grains in the phase space become
adiabatic (Eq. (35)).

We show that the capture of a grain into a resonance
critically depends on the orbital eccentricity and on the
value of the critical argument of rersonance just at the
entrance into the resonance. Maps of capture/noncapture
regions vs these two parameters are derived numerically
for the 1:2, 2:3, and 3:4 resonances (Figs. 7-9). They
show the complexity of the capture regions, an indication
that an analytical derivation of these regions is likely to be
difficult. Interestingly enough, however, these diagrams
show that a uranian or larger planet is able to trap most
of the grains into the 1:2 resonance, while ~5 Earth
masses are sufficient to trap grains into the 3 ; 4 resonance,
if the grains have initial eccentricities smaller than a few
percent.

Consequently, reasonably small planetary objects or-
biting a star may have important dynamical effects on
the circumstellar dust disk. As shown in Paper 1, future
observations at higher angular resolution could provide
impottant constraints on the presence of planets through
the observation of the associated disk.

APPENDIX A. LIST OF SYMBOLS

ag, a,  Orbital semimajor axis of the grain, of the planet.
A combination of various coefficients; see the definitions
following Eqs. (14).
A, Combination of Laplace coefficients; see Eqs. (11).
A combination of various coefficients; see the definitions
following Eqs. (14).
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Laplace coefficient.
Combination of Laplace coefficients; see Eqgs. (11).
Velocity of light.
A combination of various coefficients; see the definitions
following Eqs. (14).
Integrals of motion near a Lindblad resonance; see Eqgs.
(18).
A combination of various coefficients; see Eqgs. (17) and
following.
Combination of Laplace coefficients; see Eqs. (11).
Equilibrium eccentricity reached under the combined ef-
fects of resonance and Poynting-Robertson drag; see Eq.
(28).
Orbital eccentricity of the grain, of the planet.
Eccentricity corresponding to the stable libration point
L; see Fig. 2.
Factor of order unity depending weakly on ¢; see Eq.
(12).
Total Hamiltonian acting on the grain.
Precession rate of the planet orbit pericenter.
Gravitational force due to the star.
Poynting—Robertson drag force.
Total radiation force.
Delaunay variable associated with angular momentum.
Gravitational constant.
\/2_11 sin #,, one component of the eccentricity vector
(see Eq. (13)).
(\S/cygj_ugate moments of the angles 8,, 8, 4;.

2J, cos 8, one component of the eccentricity vector
(see Eq. (13)).
Delaunay variable associated to energy.
Luminosity of the star.
Luminosity of the Sun.
Mass of the grain, of the planet.
Mass of the star, of the Sun.
Combination of Laplace coefficients; see Egs. {11).
Mean motion of the grain, of the planet.
Intersecting plane; see Fig. 1.
Integer defining a (g + 1): ¢ mean motion resonance ((g +
l)np = qng).
Radiation pressure efficiency.
Perturbing function due to the planet.
Position vector from the star to the current point,
Position vector from the star to the grain, to the planet.
Distance from the grain to the planet.
Combinations of various coefficients; see the definitions
following Eqgs. (14).
Radius of the grain.
Energy flux at the grain.
A combination of various coefficients; see the definitions
following Eqs. (14).
Ratio of stellar wind drag to Poynting—Robertson drag.
Time scale for evolution of the resonance phase space;
see Eq. (24),
Libration period near the stable libration point L; see Eq.
(25).
Orbital period of the grain.
Negative of potential energy.
Unit vector in the direction of incident radiation.
Velocity of the grain.
Width of the libration zone: see Fig. 2.
Components of the Poynting—Robertson drag (j =1, 2 in
the planar case).
Third dimension in the OHKZ space; see Fig. 1.
Minimum ordinate on the Mexican hat surface; see Fig. 1.

a Dissipation coefficient parameterizing the Polynting—Rob-
ertson drag (Eq. (4)).
B Ratio Fi,4/F,, of the radiation to the gravitational forces
(Eq. (2)).
¥ A combination of varigus coefficients; see the definitions
following Eqs. (14).
87 Kronecker symbol: | if g = —2, 0 otherwise.
An (g + Dn, — gn,, the distance to exact resenance.
& The ratio m,/M, of the planetary mass to the stellar mass.
{; Components of the grain velocity (f = I, 2 in the planar
case).
1; Cartesian coordinates of the grain (j = 1, 2, in the planar
case).
8; Critical argument of the Lindblad resonance, (g + 1)k, —
qhg — Gy,
g, Critical argument of the corotation resonance, {g+ [\, —
ghg = @y
0 A — A,
A, Mean longitude of the grain, of the planet.
A Conjugate moment of the time.
i Glmy + M)
£ Ratio ay/a, of the planetary orbital semimajor axis to the
grain's orbital semimajor axis.
p Vi- eé.
a Geometrical cross-section of the grain.
» Longitude of pericenter of the grain’s orbit, of the plane-
tary orbit.
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