Looking into the heart of a young outbursting star: First AU-scale observations of V1647 Ori with VLTI/MIDI

László Mosoni

Konkoly Observatory, Budapest

P. Ábrahám, Á. Kóspál, A. Moór (Konkoly Obs.) Th. Henning, Ch. Leinert, S.P. Quanz, Th. Ratzka (MPIA)

Visions for Infrared Astronomy: A tribute to Pierre Léna, Paris March 21, 2006

The outburst of V1647 Ori

January 23 2004: the appearance of a reflection nebula in L1630 was announced (McNeil et al. 2004) - outburst occured in Nov 2003

Popular target

- optical brightening ~ 4 mag
- L ~ 30-90 L_{Sun} , flat SED
- spectrum: accretion, wind
- the source is embedded in an

elongated disk-like structure

of size ~6000 AU, i=60^o (Kun et al. 2004)

- young stellar object (IRAS 05436-0007)

Kun et al. 2004

FUor candidate

(e.g. Briceno et al. 2004, Abraham et al. 2004, Andrews et al. 2004)

McNeil's Nebula

V1647 Ori

Reipurth & Aspin 2004, Gemini-N 8m (g',r',i')

FU Ori type sources (FUors)

- increased accretion ($\sim 10^{-4} M_{Sun}/yr$):
 - triggered by the companion (e.g. Reipurth & Aspin 2004)
 - thermal instability (~ 1AU)

(e.g. Hartmann & Kenyon 1996)

- FUor eruptions are repetitive and recur in T Tau stars after ~ 10000 years (?)
- One class, one model?

FU Ori type sources (FUors)

- increased accretion ($\sim 10^{-4} M_{Sun}/yr$):
 - triggered by the companion (e.g. Reipurth & Aspin 2004)
 - thermal instability (~ 1AU)
 - (e.g. Turner et al. 1997)
- FUor eruptions are repetitive and recur in T Tau stars after ~ 10000 years (?)
- One class, one model?

• Milli-arcsecond scale observations needed

MIDI observations of V1647 Ori

- MID-Infrared interferometric instrument for the VLTI
- Director's Discretionary Time Proposal to ESO (November 2004)
 - investigate the hot inner source structure, compare to models
 - start monitoring the temporal evolution of the inner hot region
 - look for companion (like FU Ori, L1551 IRS5, ...)

MIDI observations of V1647 Ori

- observations from December 2004, successful on March 2, 2005 (UT3-UT4, 56m)
- data reduced with MIA (e.g. Leinert et al. 2004)

MIDI results I. Spectrally resolved visibilities

MIDI results II. Search for companion

- A signature of a companion is the sinusoidal modulation of the spectrally resolved visibilities.
- We determined an upper limit for the brightness of a possible companion, at the measured position angle, with:
 - separation: 50 mas 200 mas
 - flux ratio: $I_2/I_1 < 0.1$

MIDI results III. N-band spectrum

MIDI results III. N-band spectrum

Analysis: model fit

A model of the circumstellar structure (disk, etc.) which fits simultaneously

- the SED,

- the (spectrally resolved) visibilities.

Usually not easy!

Analysis: SED fit

Spitzer: March 2004 (Muzerolle et al. 2004)

- steady accreation disk, rate ~ $10^{-5} M_{Sun}/yr$
- optically thin envelope, infalling rate ~ $10^{-6} M_{Sun}/yr$

* the featureless N-band spectrum * RT calculations - optically thick

Analysis: SED fit

Alternative: a simple (spatially flat, optically thick) disk model

Simultaneous fit of SED and visibilities

Comparison with FUors

- FU Ori (Malbet et al. 2005, NIR): q=-0.71
- V1057 Cyg, V1515 Cyg (Millan-Gabet et al. 2006, NIR): q~-0.45 Z CMa: q=-0.75, ~60% of the flux resolved out
- The inhomogeneous group of young outbursting objects

Monitoring program at Konkoly Observatory

- K-band: LIRIS at William Herschel Telescope (Kun et al., in prep)
- optical light curve: Feb 2004 : Kóspál et al. (2005) + Briceno et al. 2004 (open)

Parsamian 21

Á. Kóspál et al.

OO Ser

Á. Kóspál et al.

Analysis: geometry

- more refined models (radiative transfer)
- compare to Herbig Ae/Be stars (Leinert et al 2004):
- visibilities
- disks

Thank you

Notes

• thermal instability (~ 1AU):

- Hartmann & Kenyon 1996

- triggered by the companion (Reipurth & Aspin 2004)
- flare of a rapidly rotating G supergiant with quasi-permanent winds + absorbing shell (optical spectrum, Herbig et al. 2003)

V1647 Ori was detected in 1966 (Messier Album) and 1995 (Eislöffel & Mundt 1997) but not in 1951, 1964, 1979, 1990 (POSS, Konkoly Archive plates): **EX Lupi type?**

V1647 Ori and OO Ser (Kóspál et al.): a new intermediate class?

Analysis: SED fit

Alternative: a simple (spatially flat, optically thick) disk model

Analysis: Model visibilities

• Fourier transformation

$$I(\alpha,\beta) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \nu(u,v) \exp(2\pi i (\alpha u + \beta u)) du dv$$

• Hankel transformation: simplified Fourier transformation for circularly symmetric source structure (Berger 2002)

$$\nu(r) = 2\pi \int_0^\infty I(\rho) J_0(2\pi\rho r) \rho d\rho$$

tools soon @ http://www.mpia-hd.mpg.de/MIDISOFT

MIDI results I.

- Spectrally resolved visibilities
 - slightly resolved (similar to other obtained YSO data)
 - errors: on this night all other observations were conducted with MACAO - conservative estimation: 10%

- Spectrally resolved visibilities
 - slightly resolved
 - fitted Gaussian sizes: $8\mu m 7.2 mas = 3.3 AU$

SED 204 vs MIDI 2005

- optical fading till 2005 spring is small (Kóspál et al. 2005)
- MIDI sp. ~ Spitzer IRAC (2004 March, Muzerolle et al. 2005)
- Andrews data not considered in our fit
- no "fading factors" overinterpretation

Analysis: SED fit

Simple unphysical model (spatially flat, optically thick disk)

SED

- optical NIR: our data and Reipurth & Aspin 20
- 3.6 70 µm (Spitzer/IRAC): Muzerolle et al. 20(
- submm: Lis et al. (1999), Mitchell et al. (2001), Andrews et al. (2005) March 10, 2004
- mm: Tsukagoshi et al. 2005, Feb-May 2004, Vacca et al. 2004

SED fit

q=-3/4

• spatially flat disk or

• accretion in the disk with Keplerian velocity

q = -1/2

• flared disk or

• accretion in the disk with non-Keplerian velocity or

• Keplerian, but nonviscous: energy transported from inside to outside heating the outer parts and so decreasing the temperature gradient

MIDI results III. Temporal evolution

MIDI results III. Temporal evolution

MIDI results III. Temporal evolution

