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Abstract. The  braking of the Earth’s  rotation by solid- 
body tides raised by the Moon,  and the concomitant 
recession of the Moon  are estimated by a very elementary 
method. 

1. Introduction 

In a  recent paper,  Sonnet et a1 (1988) extracted  infor- 
mation  from  terrestrial  sediments  about  the  variation 
of the  Moon’s  orbit  over geological periods of  time: 
they inferred  that  the  Moon  has been  receding from 
the  Earth over the  last 7 x 10’ years  at  an  average  rate 
of just  over  two  centimetres per year. 

This recession is customarily explained through  the 
dissipation of the  Earth’s  tidal energy: the  tidal bulge 
raised on  the  Earth by the  Moon  has a  small phase 
difference  with  respect to  the  instantaneous  direction 
of the  Moon,  producing a  decelerative torque  on  the 
Earth’s  rotation  and  an  opposite  torque  transferring 
energy to  the  Moon, which therefore recedes. 

Until recently, it  has been assumed  that  tidal energy 
is dissipated in the solid Earth; it is now  more  usual  to 
attribute a substantial  part of the loss to  frictional 
dissipation in  shallow  seas (Hansen 1982), although 
direct  calculations of shallow-sea dissipation do  not 
entirely account  for  the observed  slowing down of the 
Earth’s  rotation. 

The  purpose of this  paper is to present  a very simple 
analysis of the  braking of the  Earth’s  rotation 
through  tidal  forcing of the  entire  planet;  the  analysis 
is based on the  same  approach  that I used  (Celnikier 
1983) to highlight the essential  physics  which under- 
lies the  prediction of volcanic  activity on Io, and 
shows  that,  just  as in the case  of Io, the  terrestrial 
problem is basically  a function of two  parameters, 
neither of which is well known,  but  one of which is 
particularly  uncertain. 

2. A simple  cubic  model of the  Earth 

Consider  as in  Celnikier (1983) a homogeneous cubic 

RbumC. Une  methode tres elementaire est utilisee pour 
calculer le ralentissement de la rotation  de la Terre dO aux 
marees lunaires agissant sur la matiere solide de la 
planete, ainsi que l’eloignement de la Lune  elle-mime. 

body of  side L ,  density p and  mass M = L 3 p .  This will 
be taken  as  an  adequate  approximation  to  calculate 
the  tidal  forcing of the real planet by the  Moon; it will 
in  fact be convenient  to  think of  it as  two halves, each 
of mass M / 2 ,  whose  barycentres  are  separated by L / 2 .  

Suppose first that this  cubic object were orientated 
permanently with one face perpendicular  to  the  radius 
vector of the  Moon.  The  Earth would  then be distorted 
by a  differential gravitational  force AF acting  on  two 
points  separated by L / 2 :  

AF N A(GMm/2R2) 

= GMmL/2R3 (1) 
where m is the  mass of the  Moon  and R its  geocentric 
distance. 

We  can  think of the  cube  as  acted  upon by two 
opposing  forces AF/2 with respect to  the overall 
barycentre, so that  the  total  work W done  to  stretch 
the  cube is given by: 

ALAF ALAF  LAF2 w=2”=” ” 

2 2  2 4SY 
if the  material satisfies Hook’s law  of  elasticity; Y is 
Young’s  modulus,  and S is the surface area of one 
face. 

Now,  for  most  ordinary solid materals: 
Y E  3p 

where p is the  bulk  modulus of  elasticity, so that using 
equation ( I )  

3. Tidal braking of a  rotating Earth 

The  Earth  rotates with  respect to  the  Earth-Moon 
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line, and so a tidal  deformation is created in one 
particular  direction; different parts of the  Earth  pass 
through  this region and so are successively ‘stretched’ 
and ‘relaxed’. This  situation  can be modelled for our 
‘cubic’ planet by thinking of each  pair of  faces as 
being stretched,  and  then released over  one  quarter of 
a rotation  period:  the solid body of the  planet is in this 
sense set into a forced oscillation. During  such a 
process,  a fraction of the oscillation  energy is dis- 
sipated;  the inverse  of this  quantity is the  ‘Q-factor’  or 
‘dissipation  function’. 

Therefore, a t  each  complete  rotation of the (cubic) 
Earth,  an  amount of  energy E, is lost to  the  mechani- 
cal  motion: 

E, = 4 W/Q (3) 

- “ G2M2m2 L. 
12pR6Q 

The  Earth’s  rotational kinetic energy E, must 
diminish  to ‘pay’ for  this  dissipation: 

E, = 0.5Z(dO/dt)2 

where dO/dt is the planet’s  axial angular velocity and 
I its  moment of inertia;  for a cube  of side L: 

I = ML2/6 

so that: 

E, = tML2(dO/dt)2. 

E,/E, gives the  fractional  change  of  rotational 
energy, AE,/E, per planetary  rotation; since: 

AE,/E, = 2AP/P 

where P is the  rotation  period,  one  has immediately: 

AP/P = 
G 2  Mm2 

2pQR6 L(dO/dt), per day’ ( 5 )  

It is interesting  to  note  that  this result  is  relatively 
insensitive to  the  shape of the  planet.  On  the  one 
hand, we can assess a rough  correction to  the  tidal 
energy loss (equation (4)) by noting  that it applies  to 
the  volume of the  body; since the  volume  of a sphere 
of diameter L is roughly  one half of  the  volume  of a 
cube  of side L,  one  would expect the  tidal loss for a 
spherical  planet  to be about  one half  of that given by 
equation (4). On  the  other  hand,  the  moment of inertia 
of a sphere of diameter L is also  about  one half  of that 
of a cube of  side L:  consequently,  the  ratio EJE, is 
hardly  changed. 

One  can see immediately the essential difficulty in 
obtaining a theoretical  estimate of tidal  braking: p 
and Q are  not well known  for  bulk  planetary  material. 
This  was discussed  in some  detail in  Celnikier (1983) 
and  the  reader is referred to  that  paper  for  details  and 
references; essentially, p can  be  taken  as 10” Nrn-,, 
with  a probable  uncertainty of one significant  figure 
(it is amusing  to  note  that  this is just  the ‘universal’ 
value one  deduces ab initio using the simple argument 

of  Weisskopf (1975)), while Q can be taken  as 100 
with an  uncertainty  of  an  order of magnitude  either 
way. These values are  consistent  with  the  tidal activity 
of Io; whether  this is relevant is not  clear. 

Substituting these numbers  into  equation ( 9 ,  one 
obtains: 

AP/P N 10”’ per year. 

Astrometric  measurements  spread  over  the  last 
couple of centuries  have yielded a fractional  change in 
the  length of the  day of about 2 x 10”’per year 
(Glass  et ai 1977); on  the  other  hand,  the  paleon- 
tological  evidence  of Sonnett et al(l988) suggests an 
average  fractional  change  over  the last 7 x lo8  years 
of about  per  year. 

We can  obtain  an expression for  the  time  taken  to 
change  the  period by a  significant amount by writing 
equation (5) in the  form: 

AP/P = 
G2  Mm2 

2pQR6L(2n/P), 
A t  

and  integrating: 

1 1  G2 Mm2 
”” 

2# 2 6  - 2pQR6 L(27~)~ 

where T is the time taken (in units of  present days)  for 
the  rotation  period  to increase from P, to P, 
(measured in seconds). 

4. Lunar recession 

The  Earth is not  only losing  energy through tidal 
braking,  but  also  angular  momentum;  the  angular 
momentum  of  the  Moon increases, and so it recedes. 
The process will terminate (if  we ignore  the influence 
of the  Sun)  when  the  period of the  Earth’s axial 
rotation is equal  to  the  orbital  period of the  Moon. 

This  problem is usually handled via the  torque 
exerted by the tidally defomed  Earth  on  the  Moon; 
this of course  furnishes  the  mechanism of the reces- 
sion,  but we do  not need to use  it to assess the  impor- 
tance of the  phenomenon. 

The  current  angular  momentum of the  Moon, 
JMoon,now, is substantially  due  to its orbital  motion: 

The  present  angular  momentum of the  Earth, 
JEarth,nowr is substantially  that of  its  axial rotation: 

Therefore,  the  total  angular  momentum of the  Earth- 
Moon system, &,, is just  the  sum of  these two  com- 
ponents: 

J,,, = 4.6 x 1 0 3 4 .  

When  the  Earth’s  rotation is synchronised  with  the 
lunar  orbit, its rotational  angular  momentum  can be 
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neglected, so that  the  Moon's  orbital  motion will 
furnish  the  dominant  contribution  to  the  total 
angular  momentum: 

Now,  orbital  equilibrium  requires  that: 

G M / R ~  = vioon,final/Rfinal = RtnaI  (de/dt)koon,finaI 
so that: 

JMoon,final mR&(GM)"2 = Jtot 

since angular  momentum  should be conserved, 
whence: 

Rfina, = (4.6 x 1034)2/GMm2 2: lo9 m 

N 2.5 x current  distance of Moon. 

The  time scale for  this recession can be estimated 
from  equation (6) by putting P, equal  to  the  present 
length of  the  day,  and setting 1/P,  equal  to  zero, since 
under  synchronous  conditions  the  rotation  period 
must be over an  order of magnitude  longer  than it is 
now;  this gives a  timescale  of 4 x 10"years. Con- 
sequently,  with  the values  of the  constants p and Q as 
chosen  and neglecting  all effects other  than  solid-body 
tides, the  Moon  would be receding at   an average  rate 
of something like 2cm per  year: the  paleontological 
analysis  of Sonnett et a1 (1988) leads to  an  average 
recession rate  over  the last 7 x lo8 years  of just  over 
2cm per year, while the  Apollo laser ranging experi- 
ments suggest  a  value  of about  3.5cm per year. 

5. A few  concluding remarks 

The simple calculation  presented in this  paper  has 
sidestepped many  sources of difficulty: the  lunar  orbit 

is not  circular,  the  Earth is not a cube  and is not 
homogeneous, we have neglected the effect of the  Sun, 
etc.  However, when  these effects are explicitly 
included, they unfortunately  tend  to  mask  the essen- 
tial feature  that  the basic constants  on which any 
analysis  (simple or  complicated)  depends  are very 
badly known  and I have  tried to show  in this paper 
how  to  analyse  the  problem in  a  simple way which 
highlights the  importance of the very badly  known Q 
value of  the  material. 

In spite  of the  elementary  nature of the  calculation, 
the results are within an  order of magnitude of obser- 
vation. 

Rather  more detailed calculations suggest that 
solid-body tides account  better  for  ancient values of 
the  lunar recession (as  measured,  for  example, by the 
average over  a long time scale) when oceanic  effects 
are  supposed  to have been less, than  for  the  current 
values  (as measured by the  Apollo  experiment).  This 
is part of the  rationale behind the belief that oceanic 
tides are  currently  the  major  contributing  factor  to 
tidal  braking; amusingly enough,  our simple calcula- 
tion seems to  go in the  same sense, but  one  should 
perhaps  not give too  much credence to  factors of two 
in an  estimate which  intrinsically cannot  be  more 
accurate  than  an  order of magnitude. 
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