A simple way to assess the structure of red giants
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A simple semianalytical calculation is used to study how a star reacts when its central stock of
hydrogen is exhausted and before the next fusion reaction based on helium begins.

L. INTRODUCTION

The structure of homogeneous stars “kept alive” by the
fusion of hydrogen into helium in a central region (the so-
called “main sequence” phase) is a rather well-worn sub-
ject: Accessible explanations (as distinct from a full nu-
merical integration of the nonlinear equations of stellar
structure) vary from the purely verbal (see any popular
book on astronomy) to quite sophisticated computational
exercises' designed for a micro- or minicomputer, via dif-
ferent levels of physical understanding and analytical ap-
proximations (see, for example, Refs. 2-8). Reasonably
convincing quantitative discussions exist also for the final
stages of stellar evolution (see Refs. 1-9). The semianalyti-
cal accounts allow one to estimate the fundamental param-
eters of a star starting from the essential physics; the result
is more or less accurate, depending on just what goes into
the intellectual gymnastics.

This does not seem to be true of the intermediate stages
of stellar evolution. We know that from the moment when
a star has stabilized, it is using up its central stock of hydro-
gen so that the central “powerhouse” must eventually run
short of available hydrogen to convert into helium. The
way the central regions become exhausted depends on the
mass of the star.

Stars whose central regions have some degree of convec-
tion and so are reasonably well mixed will tend to exhaust
“in one fell swoop” the hydrogen in a finite volume around
the center, thereby precipitating a relatively sudden crisis
in which gravitational contraction remains temporarily the
only viable source of the energy that the star continues to
radiate; the contraction heats up the now “dormant” core,
ultimately bringing it to a temperature at which helium can
begin to fuse into heavier elements. However, before the
new reactions begin, the so far unused hydrogen at the edge
of the helium-rich volume is dragged willy nilly into hotter
regions, where it begins to fuse and so release energy: For a
time, the star can be maintained by the power produced by
a “shell” burning hydrogen at a temperature that is not
directly influenced by the general equilibrium conditions of
the star as a whole.

The behavior of low-mass stars is rather different: It
turns out in this case that the central regions are not well
mixed so that hydrogen exhaustion occurs progressively,
working outward from the center; the core adjusts gradual-
ly to its changed circumstances, contracting slowly and
thus compensating for the power loss by bringing gradually
into higher temperatures the hydrogen that lies beyond the
active core. In this way, the star creates an active shell that
gradually takes over the energy production from the dying
core, but the process can be very slow. Nevertheless, at
some very late stage, the star will have a dormant and com-
pact hydrogen-exhausted core while power will be supplied
by a surrounding shell.
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It is generally accepted (see, for example, Ref. 2) that
about 1.3 M, constitutes the borderline between these two
broad classes of evolution. Although the details of the evo-
lution are rather different, there is a certain convergence in
the sense that qualitatively similar structures do emerge
sooner (massive stars) or later (less massive stars).

The equilibrium state of such a structure—a dormant
and very compact core surrounded by an active shell, itself
surrounded by an envelope that transports the energy from
the shell to the outside—is usually studied numerically
since the equations governing such a problem are even
more nonlinear than those which apply to homogeneous
stars. Results from this type of calculation are given, for
example, in Ref. 10.

However, numerical problems that appear in the inte-
grations usually force one to carry out the computations
small zone by small zone, with some continuity condition
being imposed at the frontiers of the zones in order to ob-
tain a coherent solution, and it is then very easy to lose sight
of the essential physics of the problem, especially as the
computations understandably bring into play not just one
principal phenomenon but many, coupled together in inex-
tricable ways.

Standard explanatory texts on the subject of red giants,
as these structures are called, are at best very discrete, and
some are frankly misleading; many sound like the verbal
rendering of a computer printout, especially as few at-
tempts are made to estimate the resulting stellar param-
eters (anotable exception being Reddish!' ) from what are
presented as “obvious” steps. In fact, finding a physical
interpretation for certain of the phenomena that emerge
from the numerical computations is the subject of some
discussion even among specialists, as one can see from the
opening remarks of Yahil and Van den Horn'? and the
recent paper by Applegate.!* Indeed, the latter paper,
while quite properly raising the issue, illustrates how easy it
is to lose sight of the essential physics when a powerful
computer is available: The author solves numerically a pu-
rified stellar radiation transfer problem out to a distance of
very many parsecs (which constitutes an interesting exer-
cise, but one wonders if it is really necessary to let the inte-
gration run so far, since stars are rather small objects!),
without coming to grips with the phenomena that force the
stellar envelope to recede in such a remarkable way. A
short critique of this paper has recently been published
(Ref. 14). ’

The present contribution is an attempt to show how ba-
sic physics and a useful analytical trick can be combined to
study a structure composed of a dormant core, an active
shell and an envelope—a structure associated with the
name “red giant.” The idea is not at all to provide an alter-
native to numerical analyses (without which stellar evolu-
tion would not be a viable subject), but rather to furnish a
little insight into how some of the processes articulate with-
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in an intrinsically complicated object; in this sense, the ap-
proach is similar to that used to understand the structure of
homogeneous stars and in consequence suffers from the
same type of liability—it is not clear to what particular
object the model applies and it is not even sure that any star
is quite like this. That, however, is the price paid to make
the problem analytically tractable; does any planet, moun-
tain, or star in fact really work the way that Weisskopf
described in his classic papers?

Some material, well known to astrophysicists but per-
haps not to others, is given in summary form. Unless other-
wise stated, all units are SI; the symbol (®is used to identify
the Sun.

II. THE VIRIAL THEOREM

The virial theorem expresses the equilibrium configura-
tion of a mechanical system; it can be applied to a mass of
gas in equilibrium under the opposing forces of its self-
gravitation, internal pressure, and externally applied pres-
sure and the result is discussed in most standard textbooks
on mechanics or astrophysics. A particularly convenient
form is derived by Chiu'’:

—3f VdP=U,, (1)

where V and P are the volume and pressure within the
gaseous sphere, and U, is its total self-gravitational energy.

The left-hand side can be integrated by parts, which
gives after a little rearrangement,

47rP,, = 3JP av—1u,,

where P, is the external pressure acting on the surface of
the mass of gas.

The next part of the discussion is also quite standard
(see, for example, Ref. 16) but is more often than not elided
from many recent discussions, thereby confusing the issue
(at least for massive stars) in a quite unnecessary way.

Let us simplify the previous expression by using an aver-
age temperature (7 ) and by assuming that the sphere has
uniform density; this gives

3k(T)M_iGM2
] 5 r

where M is the total mass of the sphere, 7is its radius, and i
is the atomic mass of the gas.

This expression can be applied to any internal region of
radius 7., mass M_, and average temperature T,; P,, is
then the pressure that the rest of the star applies at 7. Now,
while a star in equilibrium is burning hydrogen in a central
volume, its central temperature is a relatively invariant
quantity, dependent essentially on the stellar mass. This is
fully explained in elementary texts and has an important
consequence: For a given central mass of a given star with a
given u, P,,. is not a monotonic function of 7 as it is the
difference between two terms whose functional depen-
dence on r, is different:

Pexl =a/ri —b/r‘::'
This type of equation has an extremum in r,, which a

little analysis shows to be a maximum and which may be
located in the usual way:

4
PmaszL 1 ch . (3)
‘ G* M2\ u

4mr’P,, = , (2)
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We have thus obtained an expression for the maximum
external pressure that the central region of a star can sus-
tain without change in temperature.

Equation (3) is of only limited interest for a star having
uniform chemical composition since it tells us little more
than one might conclude from a little reflection: The larger
M, and the lower T, the lower is the allowed maximum
pressure, which is just what one might expect since this
corresponds to regions closer and closer to the stellar sur-

face.

However, the maximum pressure as given by Eq. (3) isa
very sensitive function of the atomic mass u. A change by
just a factor 2, corresponding to a change from “normal”
stellar composition to one in which the hydrogen has been
transformed to helium, lowers the maximum allowed pres-
sure by over an order of magnitude: If a sufficient quantity
of hydrogen in the central regions of a star has been con-
verted to helium, that section becomes unstable if its tem-
perature does not rise. In essence, the conversion of hydro-
gen to helium has lowered the number of particles that
contribute to the outwardly acting pressure, which there-
fore drops if the temperature does not change; however, the
temperature can only rise if the unstable mass contracts.

This result, obtained here heuristically and whose com-
plete form is known as the Schénberg—Chandrasekhar lim-
it, imposes an upper limit on the mass of a hydrogen-ex-
hausted stellar core that can remain in equilibrium at a
given temperature within a larger hydrogen-rich structure;
it highlights the rather special role played by the “dor-
mant” core that is subject to a Jocal instability leading to a
local contraction...but nothing more.

For a Schonberg—Chandresekhar type of instability to
occur, sufficient hydrogen should have been converted to
helium without significant changes occurring in the other
parameters. This will be the case in massive stars, where
central convection is continuously mixing spent and un-
spent material so that when hydrogen exhaustion does oc-
cur it does so over a relatively important voiume quite sud-
denly. This will be less true in low-mass stars, where the
exhaustion is gradual from the center outward and the core
contracts gradually: In spite of this, a time will arrive when
even low-mass stars will be unable to generate energy in a
significant fraction of their core region, and will not yet
have reached temperatures such that a helium reaction can
function.

The quantitative part of the analysis is made with refer-
ence to an object of 1.3 X M, since this is the minimum
mass for which one can (with more detailed analysis) iden-
tify an independent phase of helium-rich core contraction;
a numerical model for just such a star with a condensed
dormant core containing 26% of the total mass is given in
tabular form by Schwarzschild (Ref. 2, Table 28.7), so that
one may compare the results of our simple estimates with a
more conventional approach. Note, however, that this
model has already been a red giant for several billion years,
and so its evolutionary phase is quite distinct from that of
the model we shall estimate. The parameters of the initial
state, when hydrogen was being “burnt” in the core, are
unfortunately not available in this book for this particular
mass; they may be estimated roughly using the techniques
described by Celnikier,® remembering, however, that con-
vection does take place in the core region of a 1.3 M(;, star,
which the model ignores. Schwarzschild’s? Table 28.6 is a
model of the present Sun, and one may use it as a guide to
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the initial structure of a 1.3 solar mass object—this should
suffice for comparisons with the kind of simple estimates
made below.

The analysis that follows investigates the situation just
outside the initial helium core, a region that is now at the
edge of the red giant model’s core and so constitutes a zone
whose parameters can be compared from model to model;
it is still within the hydrogen-burning core of the original
main sequence model. We will assume that initially the
hydrogen-exhausted core occupied the same volume as
when it was generating energy, extending therefore (see
Schwarzschild’s? table for a solar mass object) to about 0.2
of the original radius. This is, of course, a gross caricature,
equivalent to assuming that the energy-producing process
suddenly switches off; however, the detailed path by which
the star actually reaches the state tabulated in Schwarzs-
child’s? Table 28.7 is not here the subject under study, only
what the star will be like when it gets there. Nor are we
investigating the time scales involved, which will be very
different for low- and high-mass stars.

The existence of a local instability suggests dividing the
star into three distinct regions: the helium-rich core, the
hydrogen-rich envelope, and a transition zone, which, we
shall see, is where all the action takes place.

III. THE HYDROGEN-EXHAUSTED CORE

As discussed above, the hydrogen-exhausted core must
shrink and in the process must heat up (virial theorem
oblige), until conditions are such that it can support the
external pressure.

How does the core evolve during its contraction?

Since it is no longer a source of thermonuclear energy,
one expects that over a period of time it will tend to become
isothermal since a temperature gradient cannot be main-
tained without a heat flow and a heat flow requires a heat
source; however, in itself this change in the temperature
distribution is of minor consequence since the inner 20% to
30% of the mass of a sunlike star is in any case almost
isothermal—over such a region the temperature changes
by a factor of at most about 2. For a perfect gas at tempera-
ture T and density p,

PaxpT
s0 that

AP<Ap T+ ATp
or

AP_8p AT

P p T

Substituting the conditions relevant, for example, to a
solar mass star, we see immediately that the temperature
gradient contributes to the pressure difference across the
central zone as much as, but not significantly more than,
the density gradient. Therefore, a mere doubling of the den-
sity gradient can compensate for a complete disappearance
of the temperature gradient. This point is worth emphasiz-
ing since many texts suggest (without proof) that the de-
velopment of an isothermal core is alone responsible for the
appearance of an important density gradient: While the
density gradient does in fact steepen considerably in the
hydrogen-exhausted stellar core, whose temperature dis-
tribution does tend to approximate to an isothermal one, it

is misleading to attribute this steepening exclusively to the
change in temperature distribution.
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Note that since the core is actually contracting and
therefore evacuating gravitational energy, its temperature
distribution cannot ever be truly isothermal; on the other
hand, contraction eventually renders the electrons partial-
ly degenerate and so raises considerably the thermal con-
ductivity of the core region. Overall, one does not expect
departures from an approximately isothermal state in the
core to be important, and we use this without rigorous
proof to facilitate the computations; a more detailed dis-
cussion can be found in Ref. 2.

A. Temperature rise of the hydrogen-exhausted core

The contraction of the core is governed, as we have seen,
by Eq. (2); if we assume that the core does remain isother-
mal during this phase and that the external pressure acting
on it does not change appreciably (see below), the ratio of
the temperature T, after contraction to that before, 7,
may be written as

T, Forig ( 47Prt +3GM2/5 )
T,..  r. \4nPr'., +3GM2/5)’

orig orig
where M, is the mass of the core, 7, is its radius before
collapse when the temperature was T, , and 7, isits radius
at some stage during the contraction when the temperature
has risen to 7.

We have taken the exhausted helium-rich core to com-
prise 26% of the mass, as in Schwarzschild’s? table. What
values of 7., and P may be plausibly substituted in Eq.
(4)?

It is easy to show using the approximate analytical re-
sults by Celnikier® that the radius of a 1.3 M, homoge-
neous star is only marginally different from that of the Sun,
that 26% of the mass is contained within a radius equal to
0.21 of the stellar radius where the pressure is 5.7 X 10'?
Pa, and that the average temperature within such a volume
is just under 1.4 X 107 K. Moreover, this volume is respon-
sible for 80% of the stellar luminosity.

In Schwarzschild’s model,? the core has shrunk to a ra-
dius of 1.62 X 107 m; applying these parameters to Eq. (4),
one finds

T, =38x10"K,

a value that can be compared to the 4X 107 given by
Schwarzschild.?

This degree of agreement, while highly satisfactory,
should perhaps not be taken too seriously. The “starting”
core parameters relate to an approximate model; the model
turns out to give a reasonable description of the Sun (see
Ref. 8), but it does ignore core convection, which is a fea-
ture of more massive stars. Even in the case of the Sun, the
radius is somewhat underestimated: I am asserting simply
that since the model predicts practically the same radius
foral.3 M® star as it does fora 1 M® object, one can use
with reasonable safety the actual solar radius for the radius
of an actual 1.3 M, star.

One might also do well to recall that electron degeneracy
sets in gradually during the contraction of the core—one
can in principle take account of this, but it seems hardly
worthwhile in the present context; in fact, the calculation
being made here would be more correct for massive stars,
since their central densities are lower (see, for example,

(4)

c
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Ref. 8) and so they are farther from degeneracy. However,
numerical models for the advanced evolutionary phases of
such stars are not as easily available as the case being treat-
ed here, and in particular are not given in the book by
Schwarzschild.?

Note, finally, that the factor 2 that appears in the expres-
sion for the gravitational energy applies in principle only to
a sphere of uniform density; while justifiable for the initial
state, one should use a different factor for the final state
since an important density contrast does develop between
the center and the edge of the collapsing core (see Sec.
IIT B). This refinement also seems hardly worthwhile here.

B. The density of the hydrogen-exhausted core

The importance of the density variation in the core may
be assessed using the method of trial functions pioneered by
Acton and Squire' ; in essence, an approximate solution to
many tricky boundary value problems can be found by sub-
stituting into the model equations simple functions whose
overall behavior mimics that of the expected exact solution
and which are expressed in terms of parameters whose val-
ues we wish to know. Physical intuition, luck, or just plain
black magic is used to identify appropriate and convenient
functions; the parameters are found by forcing the trial
functions to satisfy the model equations at some ““typical”
value of the independent variable.

The method was applied by Celnikier® to find analytical
expressions for the global structure of a star.

The contraction of the core cannot proceed faster than
energy is evacuated from it and so is relatively slow, slower
than the speed at which mechanical waves propagate in the
gas. Consequently, one can assimilate its evolution to a se-
quence of “‘stationary” states, each of which can be com-
puted as if it were in hydrostatic equilibrium. The pressure
P, density p, and mass M distribution within the core will
thus be the solutions of the following two equations:

4ar _ _ pGM (5)
dr P

a _ 47rp, (6)
dr

to which must be added an equation of state, which we take
to be that of an ideal gas

P=qa(kT,p/m,), (7)

where « is approximately equal to 0.76 if the chemical com-
position is dominated by helium and 1.65 in the case of the
“standard” interstellar mix of hydrogen and helium; m,, is
the mass of the proton and T, is the core temperature,
assumed to be uniform throughout the core.

Note that in Eq. (5) one should in principle use the total
pressure, which is the sum of the gaseous pressure given by
Eq. (7) and the radiation pressure: The radiation pressure
is in fact a small fraction of the total, and will be ignored
here.

We know that the density decreases from the center to
the outside while the mass increases; we know also that
their first derivatives vanish at the center. A convenient
trial function for the variation of the core mass is
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M=2M.(1—{1/[1+ (+/r.)*] ] (8)

where », and M, are the radius and mass of the core; this

expression ensures a positive definite value for the mass

and a clear value for the core mass at a particular value of

the core radius. Note that this expression is being used to

model the core mass only: It is in no way implied that the

total mass of the star tends to twice the core mass as 7 — oo.
For the density distribution we can take

p=p.exp( —r/i}), (9)

where p,. is the central density and 4, is a parameter that
gives a measure of the spatial density distribution. This
expression ensures that the density never becomes nega-
tive.

Most of the art in the method of trial functions resides in
the choice of appropriate functions. It is just as well to
emphasize that their exact form has no great significance
since they are being used only as mathematical supports to
obtain an approximate analytical solution to an otherwise
analytically insoluble boundary value problem; the choice
of functions is constrained by known boundary conditions
and the functions should be consistent with the general
behavior of the model equations.

These trial functions, together with the ideal gas equa-
tion (7), are substituted into Eqgs. (5) and (6), which gives

M
o GMemy 1 ) (10)
Al akTr \ 1+ (#/r)°
3M, 1

(11)

: =27p exp( — i) .
re [+ (/1)) ¢ Al
These equations are, of course, not exact and will not be
satisfied for an arbitrarily chosen value of , however, the
right-hand sides, for example, have a globally similar be-
havior to the left-hand sides of the corresponding equations
and, in the spirit of Acton and Squire’s method,'” the ex-
pressions are forcibly satisfied (“collocated” in the lan-
guage of this method) at some intermediate point in the »
range, which we will plausibly take at M_./2, ie., at
r./r =32 = 0.694. After some straightforward manipu-
lation, one obtains

( r. ) ;(M) (12)
A,)  4\kT.ra)
_ 3M_ exp(0.69°r2/47) (13)

¢ 27X 1.333* %7}
Putting a equal to 0.76 (hydrogen-exhausted core) and
~3.8% 107 (Sec. III A), one finds

(r./2,)*=8.72,

which corresponds to a density ratio between the edge and
the center of the core equal to 1.7 10~ *. This ratio is
much smaller than in the case of a hydrogen-burning main
sequence star: This comes about essentially because the
average density of the core is now very high, leading to a’
relatively small density scale height (see Sec. IV) and so to
arelatively rapid variation of the core density with distance
from the center.

From Eq. (13), the central density evaluates to
2.7X10°kg m 3, and so the density at the edge of the core
is4.4x10°.

Finally, in this simplified treatment, the chemical com-
position changes abruptly from one that is helium domi-

T

c
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nated to one containing a mixture of hydrogen and helium;
since the pressure and temperature must be continuous, the
density just outside the core, on the hydrogen side, must
drop to ¥ p,.,

l'Ipc =4.4x10°(0.76/1.65) (14)
=2X%X10°kgm~>. (15)

The density at the center and (hydrogen side) edge of
the core in Schwarzschild’s® model is 3.5X10® and
6.9 10* kg m ~?, respectively.

Knowing the density and temperature at the edge of the
core, we can estimate the pressure, which comes to
~6X 10'® Pa; this estimate of the pressure can be used to
improve the estimate of the central temperature by substi-
tuting it back in the numerator of Eq. (4) and repeating all
the calculations: One finds that the results are virtually
unaltered, showing that the computation is at least inter-
nally consistent.

IV. THE INTERFACE BETWEEN THE
SHRINKING CORE AND THE REST OF THE
STAR

The hydrogen-exhausted core has become compact and
dense. If we assume that just outside the core edge dT /dr is
not of overriding importance (see below), Eq. (5) can be
written in the form

dp/p= — (GM,M_ /akT,r.)dr,

which can be integrated immediately to give the familiar
equation

p="p.e (16)

where 4 is the height above the core edge and 7 is the so-
called “scale height,” given by

n=riakT./m,GM,. (17)

The scale height on the hydrogen side of the core edge is
~3x%10° m, which is an order of magnitude smaller than
the core radius itself and about 20 times smaller than the
scale height above the dormant core was before contraction
began. Therefore, the density will fall very rapidly in the
immediate vicinity of the core edge; this very steep density
gradient is a direct consequence of the high density of a
small core, as one can see from Eq. (17).

To show that for the purpose of estimating the scale
height just outside the hydrogen-exhausted core (and
whose exact value is in any case not important) we may
ignore the contribution of dT /dFr, it is sufficient to substi-
tute the ideal gas equation in Eq. (5); after a little rear-
rangement, this gives

Ho.(Gm, M
g _ _ L(_i"_e__ N ﬂ)
dr T, ak? ar

¢

—h/n
bl

The first term within the parentheses on the right-hand
side evaluates to about 30; in Sec. IV A we shall see that the
average value of dT /dr in the burning shell is about 40.
Even taking account of the temperature gradient would not
change the scale height by a huge factor. We shall see below
that in any case the scale height is needed only for qualita-
tive judgments and its exact value has no impact on our
conclusions.

As we have seen, the temperature on the hydrogen side
of the core edge is now over three times higher than it was
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before contraction began; consequently, hydrogen fusion
will be initiated in a surrounding shell.

A. The hydrogen-burning shell

Hydrogen fusion in stars proceeds via two principal re-
actions, the “p-p” and ““CN” cycles. The former dominates
at temperatures close to 107 deg; the latter at higher tem-
peratures. It is therefore clear that at the temperature asso-
ciated with the edge of the contracting stellar core, energy
will be generated by the “CN” cycle, for whose rate e
Schwarzschild® quotes a convenient power law approxi-
mation,

€= 10"*(XXcn)pT", (18)

where X and X oy are, respectively, the fractional abun-
dances of hydrogen and elements such as carbon and nitro-
gen; taking Schwarzschild’s> “standard” values for inter-
stellar material, the product XX . is equal to 4.7x 1073,
The values of the coefficients ¢ and v depend on the tem-

perature range; at around 3.8 X 107 K, the values of the

coefficients are (in SI)
u =975,
v =13,

the temperature 7 being written directly in Kelvin.
The power output L (“luminosity”’) of the active shell is
given by

L _ 4rre (19)
dr
=47 (XXon ) X 10 74X p? T, (20)
whence
L= f " 4mP (XX o) X 104X p? T dr. 21)

Now, vis much greater than 2, from which it follows that
the power output is particularly sensitive to the value of the
temperature; since the temperature is a decreasing function
of r, one might well expect the main contribution to L to
come from a very small range in » around the core edge.

Let us assume as a working hypothesis that the range in »
over which L is important is so small that to evaluate the
integral in Eq. (21) we may put without significant error

r=r,.,

p="p..
This will be justified a posteriori; in the meantime, we can

express the variation in luminosity as a function of the alti-
tude 4 above the core edge, so that

aL _ aTl™(h),
dh
where a is a constant that can be computed in terms of
known quantities: ‘

a =47P (XXcn ) X 104X (Fp, )2

Let us now represent the change of 7' through the shell
by a linear law of the type

T=T,(1—mh/T,), (23)
where m is an average thermal gradient and # is again the
height above the core edge. This is, of coutse, a convenient

fiction: The relative temperature gradient will tend to zero
at the inner edge of the shell (where the energy generation

(22)
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vanishes) and thereafter rise to some limiting value at the
outer edge (corresponding to the generated luminosity).
Substituting Eq. (23) in Eq. (22) and rearranging,

hmux h v
L=aTZf (1—’" ) dh.
o T

c

Putting

u=1—mh/T,, (24)
one obtains finally

L= —{aT: " /mv+ 1)}u"""']{™ (25)

In this expression, u,,;, is the value of 4 that corresponds
t0 A,m.y ; although in principle one does not know how far
out the integration limit should be, it is clear, since v = 13,
that once u,,,;,, has dropped to, say 0.85, more than 90% of
the luminosity has been accounted for. This fixes the effec-
tive width #,,,, of the hydrogen-burning shell.

Now it is shown in standard texts that a certain tempera-
ture gradient d T /dris needed in order to “drive” a power L
across a stellar shell; if the energy is being transported en-
tirely by radiation transfer,

ar_ 3 Lep
dr 64mo TP

where « is called the opacity, and is such that:

(a) If electrons only are responsible, « is independent of
temperature, and has the value 0.034.

(b) If partially ionized atoms are the main source of
opacity, one may use Kramer’s law, for which

Kk =Tx102Z(1 + X)pT ~**, (27)

where X and Z are the fractional abundances of hydrogen
and elements heavier than helium, respectively; the prod-
uct Z(1 + X) is about 0.034.

At the edge of the hydrogen-burning shell, Eq. (27)
gives 0.03: Electron scattering furnishes as important a
contribution to the opacity as scattering from heavy ions.

(26)

Expression (25) contains the average thermal gradient
m; in the spirit of this approximation, the average gradient
will be the characteristic value of dT /dr over the shell,
which we may obtain from Eq. (26) by substituting char-
acteristic values

()
m={—
dr

= — (3/64m0) (Lelp)/{T)r)*). (28)
In the spirit of a rough evaluation, we shall not distinguish
between (7°) and (T')3, (p/T>) and {p)/(T)’, etc.,
moreover, the characteristic values will be seen below to
differ only slightly from the values at the core edge so that
substituting Eq. (28) in Eq. (25) and rearranging, we ob-
tain

L = 167% 10A“/2X( o )1/2( XXcon )1/2
' 3w+ 1) K

X&(HPC)I/ZTEV—FM/Z.

(29)

Substituting the core edge radius and its density and
temperature as estimated above, one finds immediately

L=4X10®°W.

Let us now go back and verify that the simplifications
and substitutions are at least all internally consistent.
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Using Eq. (28), the thermal gradient m works out to
about 40 deg/m. Therefore, putting u equal to 0.85, the
thickness 4, of the shell that is responsible for over 90%
of the luminosity is about 0.15x 3.8 107 /40, i.e., a little
over 10° m. Now we have already seen that the density
scale height is somewhat larger than this: Over the thick-
ness of the shell, the density change is sufficiently small as
tobe neglected [ especially as only its square root appears in
Eq. (29)] and we may use the core edge value to calculate
the luminosity. Clearly,  is essentially constant over the
hydrogen-burning shell.

Our estimated value for the luminosity can be compared
to the 9 10*®* W given by Schwarzschild.”

V. THE STELLAR ENVELOPE

The luminosity of the hydrogen-burning shell is consid-
erably larger than that of the star before core contraction
began, ~9 X 10*® W is the value obtained using the calcu-
lations in Celnikier®; the extra radiation is generated just
outside the hydrogen-exhausted core in a very thin shell.
This increase in the luminosity is a direct consequence of
the evolution of the core and its associated rise in tempera-
ture and in reality takes a rather finite length of time.

How have the remaining 3 of the stellar mass adjusted to
the increase in luminosity.

Radiation can reach the outside of the star by one of two
mechanisms—scattering from electrons and/or ions in the
gas, or by inducing convection.

A. Radiation

In a normal star, photons leave via scattering processes
that may be likened to a random walk so that the typical
distance traversed by a photon before reaching the surface
is of order (R /A)?A, where R is the stellar radius and 2 is
the photon mean free path given by

A = 1/kp,

« being the opacity as described earlier.

For the Sun, {(«x) ~0.5 and {p) =~ 10°, so that the time to
“empty” the Sun of its radiation field is something like
(R /A)? (A /¢) = 10" s. Now the total radiative energy is
related to the mean internal temperature that is itself relat-
ed to the mass via the requirement that there be hydrostatic
equilibrium between gravity and pressure (sce any elemen-
tary text); one obtains at once that the power radiated L is
given by

Lo M? /k, (30)

the constant being a function of the chemical composition
of the star and of the number of free particles per proton
mass.

Of course, this can also be obtained from the standard
expression for the radiative temperature gradient neces-
sary to “drive” a certain power across a stellar shell, Eq.
(26), by replacing the derivative by the ratio of the “typi-
cal” internal values, and the other quantities by their “typi-
cal” values, as in Eq. (28).

One can immediately deduce from Eq. (30) that a star of
given mass, composition, and ionization state cannot evac-
uate energy at an arbitrary rate via the transfer of photons;
the luminosity cannot rise by orders of magnitude unless
the object becomes so extended and therefore so cold that
the internal opacity, which depends critically on the pres-
ence of ions, drops very sharply.
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This can be seen a little more explicitly by dividing Eq.
(5) by Eq. (26), to give

g_l:zééhrGMa]ﬂ
dT 3Lk '

In the vicinity of the core edge, the mass is essentially con-
stant, equal to M_ (we shall see below just how far this
approximate constancy extends), and so while a significant
contribution to x comes from electrons, this equation may
be integrated to give

P = (647GM_,0/12Lx) T* + const. (32)

Now, we know that the pressure and temperature
towards the edge of the star tend to zero; to a very rough
approximation we may define the stellar edge as the point
where P= T =0, allowing one (to the precision of this
analysis) to neglect the integration constant so long as we
restrict ourselves to the stellar interior—this is in any case
implied by the condition M =M_.

With this approximate relation for the variation of the
pressure in the envelope, we obtain immediately from the
ideal gas equation,

(31

p = (64wGM om,/12aLkk) T°. (33)

dP /dr can be written as (dP /dT) (dT /dr); substituting
this in Eq. (5) and using the above expressions for dP /dT
and p, one obtains

dr _ GM.m,
dr dakr
whence

T'=(GM_.m,/4ax) (1/r) + const. (34)

Once again, since the temperature tends to zero towards
the stellar edge, the integration constant may be neglected
in approximate considerations of the stellar interior.

Equations (33) and (34) give an idea of how conditions
in the envelope surrounding the active shell will vary as a
function of distance; the essential feature of Eq. (33), the
fact that the density is proportional to the third power of
the temperature, can be shown (see, for example, Ref. 11)
to result from some fairly general assumptions concerning
the internal structure of any ordinary star.

These equations merit a little reflection.

The first reflection is technical. Equation (34) can in
principle be used to estimate the temperature at the core
edge required to support the envelope: One obtains
3.9x 107 K.

For the second reflection, we note that the envelope den-

sity is inversely proportional to the luminosity. Let us use
relations (34) and (33) to assess the temperature and den-
sity at, say, a solar radius from the center: One finds, re-
spectively, ~10° K and ~1 kg/m*, which may be com-
pared to Schwarzschild’s® full numerical integration,
2X 10° and 7, respectively. With these values one can ver-
ify that x must still be virtually independent of tempera-
ture. )

Next, substituting the density variation in Eq. (6) and
integrating, one finds the envelope mass M, beyond the
core edge out to a radius »:

4
M, = 47(%) 6dmo 7
4ak kL r

~ 4X10%® In(r/7,).

(35)

175 Am. J. Phys., Vol. 58, No. 2, February 1990

At a solar radius from the center, this evaluates to
~10% kg, i.e., a small fraction of the core mass.

The fall in density and temperature is entirely consistent
with the way we imposed the boundary conditions; the en-
velope mass rises very slowly and so justifies (a posteriori!)
the use of a constant central mass.

These estimates merely confirm, of course, the general
conclusion: Radiation transfer cannot easily cope with the
increased flux coming from the core unless the envelope
density is lowered considerably. Indeed, if one were to fling
aside any residual pretense of mathematical rigor and “for-
get” provisionally that Eq. (35) is a poor approximation
when M, becomes a finite fraction of the stellar mass, one
could conclude that the envelope would have to extend to
at least ¢'® times the core radius to enclose the original
mass, i.e., the envelope has to be huge (this is qualitatively
the essential conclusion of Applegate’s'® numerical inte-
gration; of course, the numbers themselves are somewhat
different, as is only right and proper for a computed re-
sult). Actually, in practice, Eq. (35) is not as wildly wrong
as one might think even when applied to an entire star: In
the central hydrogen-burning phase when the luminosity is
about 9 X 10%® W, the relation predicts a stellar radius of a
little under 15 times the core radius, which is certainly too
large...but not ludicrously so.

Inasmuch as the high luminosity is being invoked to
drive the stellar envelope outward during this stage of the
star’s existence, one might think that the shell itself could
be driven out, thereby lowering its average temperature
and bringing its power production in line with the power
evacuation, obviating the need for a huge envelope. To un-
derstand at least schematically (schematically since our
calculations do not have the necessary precision) why this
is not likely to be a feasible solution, let us recall the essen-
tial elements of Sec. IV A: The inner edge of the shell is at a
temperature fixed by the compression of the core, and most
of the luminosity is generated over a shell whose thickness
is rather less than the local density scale height. Therefore,
the temperature of the inner edge is virtually decoupled
from the conditions in the envelope; the conditions in that
part of the shell where most of the power is being produced
will be driven rather by the core than by the envelope. This
is the physical significance of the final result for the lumi-
nosity, in which only core edge parameters appear-—since
in this model the inner core is not a power source, the usual
thermostatic control that a star has over its power produc-
tion is no longer efficient.

A very large envelope suggests a relatively low surface
temperature.

B. Convective energy transfer

Under certain conditions, energy can be transferred
across a star by what is often loosely referred to as *“‘convec-
tion™: “‘blobs” of gas are set into motion through the agen-
cy of a suitable temperature gradient, maintain their identi-
ty for a certain distance /, called the mixing length, after
which they ‘“‘merge” with the background gas thereby
transferring to it their higher energy. It is shown in stan-
dard texts that for a medium to be unstable with respect to
this process, the temperature gradient must exceed a cer-
tain minimum fraction of the pressure gradient,

ar _y—1T dP

, 36
dr y P dr (36)
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where ¥ is the ratio of specific heats, equal to § for highly
ionized stellar material, and P is the pressure.

One can obtain a convenient criterion for the onset of
convection by substituting Eqgs. (26) and (5) into Eq.
(36):

3ak pxL JY= 1_
64rom,GM T* Y

The term convection is somewhat unfortunate, since it
evokes an orderly cyclic fluid movement. This is certainly
most unlikely to be the case within a star, where conditions
are ripe for turbulence since the Rayleigh number is far
beyond the value generally associated with the onset of tur-
bulence (see, for example, Chiu'® ); it is better to visualize
the “blobs” transferring their energy by means of a random
walk entirely analogous to the random walk of photons, the
mean free path being the “mixing length” /. Using this no-
tion, we can assess the power that convection can transport
across a star:

total “transfer time” ~ (R /)%l /v,
where v is the typical velocity of a “blob”;

0.4. 37)

energy available for transfer by convection
=~ (k/m,)AT {p)(47R 3/3)y,

where AT is the mean temperature difference between a
blob and its environment;
power that can be transferred
3
=K ar(py 4R ML
» 3 R
Kk aT(p)dRy
m, 3

Note that when /<R, this is considerably smaller than
the power that can be transferred by an orderly motion,
k {p)ATvdmR*/m,.

What can be put for AT, v, and /?

It is known that under stellar conditions convection
starts as soon as criterion (37) is satisfied: This suggests
that the “excess” temperature of a blob is very small. An
upper limit of AT~ 1 deg (strange as this may seem to the
uninitiated!) is often taken, as a round number. In experi-
mentally controllable situations, the larger the container in
which the convecting fluid is maintained, the smaller the
value of AT: in those astronomical cases where an indepen-
dent check can be carried out, such as in the outer layers of
the Sun, via a comparison of observation with models, one
finds that AT < 1.

The convection velocity v is a rather arbitrary param-
eter. Schwarzschild? shows that its value might be as low as
a few tens of meters per second; presumably it is unlikely to
exceed the local velocity of sound, which in a gas whose
internal temperature runs to millions of degrees, is of the
order of 10° m/s.

The mixing length / is a no less tricky proposition, since
in fact one does not even now possess a satisfactory theory
f convection and turbulent energy transfer. In a gravita-
tionally bound system, it is plausible for / to be related to
the scale height at the point where the convection is driven,
since the scale height is a measure of the region over which

conditions start to change.
Can convection transport the extra energy across the

star?

(38)
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We note first that in the deep interior of the Sun, crite-
rion (37) is not satisfied: Convection is not an important
characteristic of the Sun, operating only near the surface
where the temperature has dropped to below about 10° deg.
This is a general feature of very highly ionized stellar mate-
rial for which y is always , and for which the left-hand side
of Eq. (37) is very close to 0.25 [indeed, exactly equal to
0.25 in the case of the idealized envelope discussed in Sec.
V A, as one can show by substituting Eq. (33) in Eq.
(37)1; in the Sun, convection sets in when the conditions
allow partial recombination of the hydrogen and helium
ions, thereby significantly lowering the value of y.

Convection might conceivably be excited near to the out-
er edge of the hydrogen-burning shell, where the luminosi-
ty is changing rapidly and the strict envelope solution is
presumably not valid. In this region, the scale height is only
~10° m; assuming sonic convection with A7~ 1, and as-
suming that the whole envelope is unstable to convection,
the convective power that could possibly be transported
through the star [Eq. (38)] turns out to be a little over
1077 W.

We note first that even this rather optimistic estimate is
rather short of the power that must be evacuated. The ener-
gy that is not transported can only go to increase the inter-
nal energy of the star itself—the star must expand and cool.

Of still greater importance is the fact that the envelope
itself is perfectly stable against convection, at least in those
regions where hydrogen and helium are completely ion-
ized.

One would expect convection to operate successfully in
regions where the temperature has become sufficiently low;
using the Sun as a guide, and using also the theoretical
calculations for the onset of convection in a recombining
medium given in Schwarzschild,®> we conclude that the
temperature must drop to below 10° deg, which in the case
of the model analyzed in Sec. V A occurs at a radius that
encloses only a very small fraction of the final mass.

Therefore, even if convection does start somewhere in
the stellar envelope, it will not necessarily ensure that the
overall radius will be small—it will merely be much smaller
than it would otherwise have had to be.

V1. SOME FINAL COMMENTS

At some stage in its life, a star will have exhausted its
central stock of hydrogen. It may come to the end of the
stock relatively suddenly or relatively slowly, depending on
the stellar mass; the details and the time scales of the subse-
quent evolution will depend on how the hydrogen is deplet-
ed. However, at some stage the star will find itself with a
“dormant,” compact, and ever-growing helium-rich core,
as yet too cold to initiate helium fusion, but so hot (and still
getting hotter) that a layer of hydrogen around its edge can
continue to fuse via the extremely temperature-sensitive
CN reaction. The power produced by this reaction exceeds
by a very large factor the original stellar luminosity at the
end of the main sequence, and this power can be evacuated
only if the material surrounding the core becomes very ten-
uous and/or if convection can be initiated. This is the phys-
ical meaning of the full numerical computations and I have
shown in this article how to estimate the luminosity of a
star with a compact helium-rich core surrounded by a hy-
drogen-burning shell, using elementary techniques and
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straightforward physics. The high luminosity implies an
inflated envelope since the temperature of the shell is very
insensitive to the conditions in the external parts of the star:
The usual “thermostatic control” that allows an ordinary
star like the Sun to balance its energy production with its
evacuation capability is in a sense inverted and the condi-
tions in the core now drive the outer parts of the star. From
this emerges also the idea that convection acts as a “‘safety
valve” that helps to prevent the star from expanding too far
even when it loses thermostatic control over its central re-
gions. However, the safety valve is not completely effective,
and the only real solution to the star’s problem is the stabili-
zation of the core through the appearance of a new thermo-
nuclear reaction, or the emergence of a high degree of de-
generacy.

A substantially similar discussion has been presented by
Clayton* and also by Reddish,'' albeit in a qualitative
form.

One of the more distressing features of trying to under-
stand the nature of red giant structure as it is presented in
the literature is the contrast between the affirmative state-
ments made and the arbitrariness of many of the param-
eters that are actually used in the numerical analyses. Con-
vection is clearly an essential prerequisite if a star in this
phase of its existence is to survive; while the account given
above is without doubt somewhat caricatural and truncat-
ed, the essential physical problem of knowing whether con-
vection can act efficiently is no better treated in the detailed
numerical models: The arbitrary parameters presented
here are no less arbitrary in the numerical models—rather,
they are adjusted so that the models give something that
looks reasonable. This is not a criticism of stellar modeling,
rather of the way the results are interpreted afterwérd.

The methods presented in this article do not, and indeed
cannot, lead to the calculation of when the various “hap-
penings” occur: The results should be taken in the spirit of
a “snapshot” showing an idealized stellar state at a certain
point in its evolution. By what detailed path it reached that
state, and after what time, is quite another story; note, too,
that the actual mechanism that initiates and maintains the

expansion is not identified in this article—only what the
final state should be like.
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Reconciliation of esu and mksa units in nonlinear optics
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An explanation is provided of the differences between the mksa and esu systems used in the study
of nonlinearities in the optical properties of materials used in optical waveguides. Means of
converting both units and quantities between the two are presented, and the relationship between
the electric susceptibility tensors defined in the two systems is demonstrated.

L. INTRODUCTION

Because optical waveguides confine light to small re-
gions, it requires only moderate levels of itluminating pow-
er for the guide to become nonlinear in its behavior. Many
effects, such as Raman and Brillouin scattering, self-focus-
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ing, and frequency generation, have been observed and
analyzed.' This branch of science is currently attracting
great interest,” but, to the new student or researcher, one
early difficulty is the nature of the units used to describe
phenomena. Historically, electromagnetic theory has used
Gaussian units, of which the esu (electrostatic units) sys-
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