win, London, 1979), Prob. 8.30, p. 241.

3H. Lamb, Dynamics (Cambridge U: P., Cambridge, 1926), Ex. XII (4),
p- 149; R. A. Becker, Introduction to Theoretical Mechanics (McGraw-
Hill, New York, 1954), Prob. 8.9, p. 188; R. B. Leighton, Feynman
Lectures on Physics Exercises (Addison-Wesley, Reading, MA, 1964),
Prob. 14.9; and A. P. French, Newtonian Mechdnics (Norton, New
York, 1971), Prob. 10.17, p. 416. The phraseology is Lamb’s, with length
2a replaced by L. We further use u to dencte mass per unit length, and

assume that the radius of the peg is small.

*The equivalent of Eq: (5) appears in N. Feather, Vibrations and Waves
(Penguin, Harmondsworth, 1964), p. 25, Eq. (17), as part of a deriva-
tion of the speed of propagation of a wave pulse along a stretched string.

One is reminded of the well-known problem of a skier sliding down a
large spherical snowball. See, for example, F. W. Sears, M. W. Ze-
mansky, and H. D. Young, University Physics (Addison-Wesley, Read-
ing, MA, 1982), 6th ed., Prob. 6-42, p. 141.
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Acton and Squire’s [Solving Equations with Physical Understanding (Hilger, Bristol, 1985)]
“trial function” method of handling boundary value problems is used to find approximate
solutions to the equations of stellar structure; the calculations involved are as simple to carry out
as the usual order-of-magnitude estimates, but are correct to a few tens of a percent. The method is
also used to investigate why an order-of-magnitude estimate of solar luminosity can be wrong by
up to three orders of magnitude, while a similar estimate of the central temperature can be closer

to acceptable values.

I. INTRODUCTION

The theory of stellar structure has a well-earned reputa-
tion for being a difficult subject; analytical analyses are
often obscure with little obvious relevance to real stars,
while numerical models of realistic objects are so compli-
cated and so full of parameters that the physical basis on
which they are built often disappears from sight.

This is rather unfortunate, since there is much good ele-
thentary physics in stellar structure, and the basic equa-
tions are rather simple.

Four general equations [ (1)-(4) below] determine the
equilibrium state of a star, modeled in the simplest case as a
spherical gaseous object producing energy in some cential
portion. The first two are an expression of mechanical equi-
librium—gaseous pressure balances gravitation every-
where. The third equation describes the thermal equilibri-
um, and the fourth is an expression of energy transfer
through the stellar volume (the relation given here is a
particular example for the case where the energy is trans-
ferred only by radiation).

ar

= ——p(GM/rz), ()
dr
dil=4m2p, 2)
dr
d~L=41rr2pe, (3)
dr
ar_ 3 : _X%_g'_, (4)
dr dac¢ T3 4nr

where Pis the pressure at distance » from the stellar center:
M is the mass within radius r; L is the radiation crossing the
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surface at radius 7; T'is the temperature at r; p is the density
at radius r; €is the rate at which energy is generated per unit
mass at radius r; y is the opacity of the stellar material at
radius 7; a is Stefan’s radiation density constant; and ¢ is
the speed of light.

In general, € and y are functions of density and tempera-
ture, and, as a consequence, these simple equations have no
propef analytical solutions for the usual case where energy
is being generated in some limited section of the stellar
core. Numerical modeling, via a step-by-step integration of
the original equations, is an essential feature of work in this
domain; the numerical procedures are not simple, how-
ever, since the stellar parameters run over many orders of
magnitude from the center to the outside so that, without
special care, one’s computer can easily produce significant
quantities of rubbish (albeit perfectly plausible rubbish).
Numerical modeling of stellar structure can be a good sub-
ject for a course in numerical methods but has little place in
a physics curriculum.

One’s first exposure to the theory of stellar structure is
usually via a simple artifice: All quantities that are func-
tions of 7 are replaced by “typical values” (whatever that
may mean), and derivatives are replaced by ratios of typi-
cal values. In this way, the original differential equations
become a set of simple algebraic identities that may be
solved to give “typical”’ numerical values.

It is rather surprising that such calculations do produce
starlike objects; many texts (Ref. 1 is an early example,
which has hardly been improved upon for pedagogical
clarity) begin by showing that the central temperature of
the Sun must be about 20 million deg and predict its lumii-
nosity to within a factor 1000 of the observed value. This, in
some sense, “sets the scene” (or fixes the ball park, depend-
ing on the continent); the technique has been taken to its
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logical conclusion by Greenstein,” who included nuclear
reaction processes in this type of analysis. It is often
claimed that the teclinique offers an order-of-magnitude
estimate of stellar structure; indeed, Greenstein produced
what he referred to as an “order-of-magnitude analytic the-
ory.”

In my experience, more thoughtful students tend to be
puzzled rather than illuminated by these calculations.
They are, of course, suitably grateful for the ease with
which the subject is handled; they are, however, perturbed
by the apparently light-hearted way in which quantities
that vary over many orders of magnitude are replaced by
“representative values” (can the average of infinity and
zero really represent anything but an arbitrary value?),
especially when they learn soon after just how nonlinear
the whole business is.

In one sense, these “order-of-magnitude” calculations
are just dimensional analysis masquerading under another
name (this is not always explicitly stated in textbooks, but
one good exception is Rose?); in this form, the technique is
perfectly justifiable and can yield valuable insights into the
functional dependence of stellar parameters.

However, dimensional analysis as such cannot yield the
values of constants, and is, therefore, intrinsically ill suited
to numerical evaluation. To do this, one has to estimate the
order of magnitude of the values of the constants and to
assume that single point “typical values” are to within an
order of magnitude representative of the variables. Under
certain circumstances and for certain objects, this proce-
dure can be justified, and was used in 1966 by Salpeter? to
discuss the elements of stellar structure; more recently, it
was applied with considerable elegance by Weisskopf > to
show in an elementary way how basic physics determines
the evolutionary history of a star, and by Nauenberg and
Weisskopf ® to derive an a priori estimate for the solar lumi-
nosity and for the solar radius from a calculation of nuclear
reaction rates (of which a simplified version appears in
Greenstein®); a textbook based on this approach has been
written by Sexl and Sex],” while various astrophysical ex-
amples have been discussed by, for example, Carr and
Rees,® Dyson,” and Celnikier.'*""

The most elementary of these calculations suffers from
an important defect. To obtain an answer, it is necessary to
assume either the stellar radius or the mean density; one
obtains a central temperature (which is not an observable
and can only be compared to a numerical model) and a
luminosity, which is observable, but can turn out to be
wrong by up to three orders of magnitude (depending on
just how one rounds the numbers). It is in many ways un-
fortunate that many of these analyses use an a priori value
for the stellar radius since a fundamental tenet of stellar
astrophysics with very broad implications is that the struc-
ture of a star is uniquely determined by its mass and chemi-
cal composition. Nauenberg and Weisskopf,® and Green-
stein,” have alleviated this problem by using nuclear
reaction rates to obtain interesting analytical expressions
for observable stellar parameters as explicit functions of
mass but even their analyses are flawed since they involve
the volume of the star participating in the nuclear reactions
and this cannot emerge from a model based on the riotion of
“typical values” of quantities that vary over many orders of
magnitude.

A plausible order-of-magnitude analysis of stellar struc-
ture in fact requires considerable skill, first in deciding how
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to calculate the orders of magnitude involved, and then in
choosing the variables whose orders of magnitude will be
calculated. It is particularly instructive to compare Nauen-
berg and Weisskopf’s article® with that of Greenstein.?
The former contains a plausible “fudge factor” to take ac-
count of the nonuniform density distribution; assuming
that radiation is transferred through the Sun by electron
scattering, they derive a solar luminosity and radius, which
are, respectively, only twice and | of the observed values.
Greenstein, taking a uniform model, has no arbitrary de-
grees of freedom for the density distribution, but intro-
duces instead his own plausible fudge factor in the form of
an opacity exceeding the electron scattering opacity by an
arbitrary amount; in this way he, too, obtains some degree
of agreement.

In point of fact, the opacity used by Greenstein is the
more reasonable for the case of the Sun; one concludes that
in order to get the “‘right answer,” one article takes a plausi-
ble spatial model but with the wrong opacity, while the
other takes a plausible opacity within an unlikely model.
Neither calculation works if all the ingredients are put in
correctly! One might well wonder whether, without know-
ing the answer beforehand, an order-of-magnitude calcula-
tion of stellar structure can really be done. As “ball park”
estimates, these calculations can be interesting and even
valuable techniques for highlighting the underlying phys-
ics, but referring to them as order-of-magnitude analysis in
order to convince the student that the numbers also come
out right, without some idea as to how the orders of magni-
tude propagate, is surely misleading and certainly encour-
ages loose thinking. In this sense, Nauenberg and Weiss-
kopf’s article sounds a warning bell, since their “fudge
factor” enters into the final answer for the luminosity
raised to the fourth power: Clearly, the result is sensitive to
just how one does the calculation.

In short, there is currently a large gap between rough-
and-ready “ball park” calculations (trivial, alluring but in-
complete and giving rise to numerical resuits difficult to
reproduce without a certain sleight of hand) and the full
numerical model (complicated, inaccessible to the unini-
tiated, often giving results that are counterintuitive and
difficult to explain in physical terms).

Yet the basic equations of stellar structure are simple.

I1. SOLVING EQUATIONS WITH PHYSICAL
UNDERSTANDING

Acton and Squire'? recently discussed a very neat meth-
od for finding approximate solutions to scientific boundary
value problems without going to the trouble of integrating
(analytically or numerically) the equations involved.

Very briefly, they recognize that, in many problems of
physical interest, it is possible to deduce from general prin-
ciples how the solution should behave: for example,
whether the function is convex or concave, rises or falls, is
finite or zero at the boundaries, etc. Armed with this infor-
mation, and knowing that few problems in the real world
have solutions with unpleasant discontinuities or singular
points, one then chooses the simplest one-parameter func-
tion that follows the general shape of the solution; in gen-
eral, of course, this “trial function” (as the authors refer to
it) will not satisfy the original equations over the entire
range of the independent variable, but, unless one is un-
lucky, the parameter can be adjusted so as to satisfy them
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somewhere (if it cannot be; then presumably the chosen
trial function is not a possible solution). Choosing this
point to be some kind of “average point” (the authors call
it the *““collocation point”), one can then substitute the trial
function into the original equations and find the value of
the unknown parameter at the collocation point. One ob-
tains thereby a “best fit” of the intuitive solution to the
original problem. It is clear that, unless by a remakable
stroke of luck (known sometimes as good intuition) the
guess is the exact solution, different collocation points will
give rise to different values of the parameter; however, if
the guess is a reasonable approximation to the original
problem, then the various fits will not be very different,
and, conversely, the spread of the different solutions gives
some idea of the reliability of the result.

In a certain sense, this method represents an engineering
solution to differential equations—boundary regions are
joined by a smooth curve, much in the way that boat build-
ers allowed a flexible piece of wood to take up the optimal
shape between two fixed points.

The procedure is best understood with reference to a
simple problem possessing an analytical solution; the fol-
lowing example is not without astrophysical interest.

Consider a spherical mass of gas collapsing from rest
under its own gravitation; we assuime that when collapse
begins the density is uniform with value p, and that the
internal pressure can be neglected throughout the entire
collapse.

The problem is to find the time taken to collapse to a
point: This is the so-called free-fall time.

The equation of motion of an internal spherical shell of
radius r is given by:

dv —GM

ad . r
where v s its velocity, initially zero, and M is the total mass
within r.

Substituting dv/dt = (dv/dr) (dr/dt) = 0.5 d(v*)/dr
into the equation of motion and integrating, one obtains

dr_ (2GM)'/2(1 __1_)1/2
dt rorg ’

where 7, is the initial radius of the shell.

This equation can be integrated analytically to obtain the
free-fall time exactly (see Rose,” for example); it turns out
to be equal to

(37/32Gp)'? = 0.54/(Gp) 2.

To find an approximate value for the free-fall time using
the method of trial functions, we note that:

(1) The velocity must be zero at ¢ =0 and infinite at
r = O (this curious circumstance comes about because the
pressure has been neglected). ‘

(2) The acceleration is finite at =0 and infinite at
r=0.

(3) Acceleration and velocity are monotonically rising
functions. 4

A simple function that satisfies these boundary condi-
tions is

r=ro[l1—(t/7)?1"2,

where 7 is the free-fall time. Note the square root and the
square: Both are essential for the above boundary condi-
tions to be satisfied. Of course, one can imagine more com-
plicated functions.
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Substituting this trial <unction into the relation for dr/
dt, puttingp = 3M /4rr}, and rearranging, we emerge with
a simple relation for :

Lo - (] -]

A general property of the solution can be seen at once but
seems surpr1s1ng to some: For the case of uniform density,
all shells arrive at the center simultaneously.

Choosing the collocation point to be at ¢ /7 = 0.5, the
free-fall time evaluates to

T=0.5/(Gp)'"?,

which compares very favorably with the exact solution and
is certainly easier to find by students unversed in the subtle-
ties of transcendental integration.

Acton and Squire’s book'? shows that this degree of
agreement is quite typical.

I show below how this elementary method can be ap-
plied to the problem of stellar structure for the particular
case where the star has a uniform chemical composition.
This discussion: will throw some light on the question of
why “ball park” analyses of stellar structure are bad, but
not as bad as one has every right to expect.

III. REAL PHYSICS IN...

The equations of stellar structure (1)—(4) must be sup-
plemented by information concerning the physical behav-
ior of stellar material. I do not propose in this article to
review this subject, since basic physics is covered more than
adequately in many excellent texts; my purpose is to show
how to apply this knowledge in a straightforward way to
obtain approximate analytical solutions to the equations of
stellar structure via the method of trial functions. There-
fore, I shall reduce this part of the discussion to the strict
minimum consistent with comprehension by nonspecial-
ists; much of this material is simply taken from Schwarzs-
child.

Three extra relations put physical content into Egs. (1)-
(4).

(1) Anequation of state. I shall take this to be the perfect
gas equation,

P=nkT,

where 7 is the number of particles per unit volume and k is
Boltzmann’s constant.

It will turn out that, without sens1ble error and with the
exception of the heavier elements whose abundance is,
however, rather low, much of the interior of most stars can
be taken to be virtually entirely ionized so that n must take
account of both ions and electrons. This allows us to ex-
press the equation of state in terms of the chemical compo-
sition of the stellar material,

P=pkT(2X 4 0.75Y 4+ 0.5Z)/m, , (5)

where X is the hydrogen abundance expressed as a fraction
of mass; Y'is the helium abundance expressed in the same
way; Z is the abundance of heavier elements expressed sim-
ilarly; and m,, is the proton mass.

(2) The opacity y of the stellar material. Three basic
types of interacton of photons with ionized matter need be
considered: electron scattering; scattering against ions
without inducing transitions (freefree scattering), and
scattering against ions in which bound electrons are raised
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into the continuum (bound-frze scattering; essentially
only the heavier €lements participate).

Electron scattering can be calculated exactly, and the
opacity turns out to be independent of density and tem-
perature:

v =0.02(1 +X) m%’/kg. (6)

A very approximate analytical expression can be ob-
tained for scattering against ions (a heuristic justification
for the bound—free case may be found in Reddish'?); it has
the form

X =xopT ~*° m’/kg, (7
with

Xo=10"(1+X)(X+ 1),

Yo=T0X102°(1+X)Z,

for bound-free scattering .

for free—free scattering ,

In a given cdlculation, one should use whichever one of
these gives the dominant contribution; this will depend on
the internal structure, and so “ball park” analysis cannot
be used to distinguish bétween the different cases. Note
that numerical models usually rely on tabulated values of
the opacity, or on analytical expressions of which the above
are only a first approximation.

(3) Production of energy. Two basic processes only need
be considered here: the transformation of hydrogen to heli-
um via the proton—proton cycle or via the carbon—nitrogen
cycle. The latter is more efficient at higher temperatures
but is a function of the carbon and nitrogen abundance X,
which we shall take to be about Z /3. Nauenberg and
Weisskopf © give a relatively simple ab initio derivation of
the thermonuclear power as a function of temperature
whose results one could use, but it is more convenient for
the purpose of this article to use an approxirate power law,

€= €0X*(T/10%)",
(T/10%",

The value of €, can be tabulated for different tempera-
ture ranges: A very convenient table that I have used for the
numerical estimates can be found in Ref. 1 (note, however,
that his values are given in cgs units). Note that v is in the
range 3.5 to 6 for the pp cycle and in the range 13 to 20 for
the cn cycle.

for the pp cycle, (8)

€ = €epXX,, for the cn cycle . 9

IV...REALISTIC RESULTS OUT

Even using the above analytical expressions (5)—-(9),
Egs. (1)-(4) cannot be integrated analytically.

The boundary condmons, however, are quite straight-
forward. Even if one’s intuition is not up to the task, the
structure equations themselves indicate that mass and lu-
minosity are rising functions, while pressure and tempera-
ture (as well as density) are decreasing functions. More-
over, the first derivatives vanish at the center of the star and
tend to zero for sufficiently large values of r. One of the
simplest functions whose derivative has the requlred prop-
erties is the Gaussian exp( — 7*/A %), where 4 is a spatial
decay constant to be determined for each of the variables;
in the case of the mass, this decay constant is related to the
stellar radius in a direct way. With the help of the Gaussian
function, we may express the density, mass, temperature,
and luminosity variations throughout the star using the
following trial functions,
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M=M[1—exp(—r/A%)], (10)

L=L;[1—exp(—r/i1)], (11)
p=p.exp(—r/2%), (12)
T=T.exp( —r/iA%), (13)

where M is the total mass; L is the total luminosity; p. is
the central density; and T is the central temperature.

Each of the variables has a different spatial decay con-
stant, so that in this form the problem has seven unknown
parameters instead of the usual four.

However, only four basic equations are available.

Collocation at several points is clearly indicated; this is
contrary to the advice given by Acton and Squire, who
consider it to be, in general, unduly complicated, but it
turns out in this case to be very easy to apply. We can
illustrate the procedure by using Eq. (2); substituting the
trial functions 10 and 12 into Eq. (2), we obtain

exp( — rP/A?) <rexp(—r/A%). (14)

In the spirit of the trial function method, we assume that
this relation will be satisfied at at least two points. The
choice is not very critical, as we shall see below: Neverthe-
less, it would seem reasonable to choose points that span a
substantial portion of the star—take #/A4 = 0.5 and »/
A =2, points that correspond, respectively, according to
Eq: (10), to fractions 0.22 and 0.98 of the total mass. At
these points, Eq. (14) becomes

exp( — 1/4) <exp( —A%/412)/2,
exp( — 4) cexp( —442/A2)X2.
This allows us to obtain 4, in terms of 4,

A%/A2 =137,

Using this result, we may obtain from Eqgs. (1) and (3)
in a similar way the décay constants for the temperature
and for the luminosity distributions as functions of the de-
cay constant for the mass distribution,

A2/A% =07,
A%/A2 =234 +0.7v.

Note that the decay constant for the luminosity is a de-
creasing function of the power index that defines the nu-
clear energy generation law; when the index is very high, as
in the case of the cn reaction (see Ref. 1 for the detailed
table), the energy produciiig volume shrinks to a small re-
gion around the center.

Using these decay constants, we may now rewrite Egs.
(1)=(4) in terms of the total mass, the total luminosity, the
central density and temperature, and the decay constant
for the mass distribution. Again, in the spirit of the method,
we assume that the relations are satisfied at some value of
r*/A %, which we plausibly choose to be at the point where
the mass attains half of its total value (the optimum choice
for one-point collocation of exponentials, as recommended
by Acton and Squire'?)—this corresponds to /A * = 0.7.
In this way, after some straightforward manipulation, Eqs.
(1)—(4) reduce to the simple algebraic identities (15)-
(18), respectively:

A=a(M/T,), (15)
1/A%=b(p,/My) , - (16)
1/A% = (T, vp2/Ly) , (17)
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A=d(p.L;/T?), for pure electron scattering, (18a)

A =d(p?L,/T??%), forion scattering. (18b)

The quantities a, b, ¢, and d are functions of physical con-

stants, and also depend on the way that the decay constants
have been evaluated,

a=02Gm,/k(2X +0.75Y + 0.5Z),

b= 1.6m7,
¢~ [0.057€,/(2.34 + 0.7v) X 10°"] X 2,
for the pp cycle,

¢=[0.057€,/(2.34 + 0.7v) X 10%] (XZ /3),
for the cn cycle,
d=0.12{1 — exp[ — 0.7(2.34 + 0.7v) 1 }/ac,
for electron scattering,
d = 0.09y,{1 — exp[ — 0.7(2.34 4+ 0.7v) 1 }/axc,

for ion scattering.

Itis now a trivial matter to derive rather simple analytical
expressions for the mass decay constant (which is related
to the radius of the star), for the total luminosity, as well as
for the central temperature and density. Two different re-
sults are obtained, depending on whether electron or ion
scattering is dominant.

It turns out that all the results may be written in the form

a®bPctd °M 4
and so it is convenient to present them as a table giving the
values of the powers a, £, ¥, , and u, for each of the scat-
tering assignments (this is shown in Table I). Of course,

the functional dependence on M is just a dimensional re-
quirement; the interesting feature here is the ability to

propagate through to the final result the dependence on

physical constants, detailed mechanisms, etc.

Note that the functional dependence is very tightly
linked to the assumption that energy is transferred through
much of the star by radiation scattering only. If it is not,

then one cannot rely on these expressions and one should
work through the calculation using an appropriate equa-
tion in place of Eq. (4). This turns out to be particularly
important for stars significantly less massive than the Sun,
since a large fraction of the stellar envelope is then in con-
vective equilibrium; one can easily show this using the ex-
pressions given in this article and a criterion given in
Schwarzschild.' The difference in the dependence of, for
example, the radius as a function of total mass, is spectacu-
lar. That any of these calculations work at all for the Sun
(and this applies as much to the results of this article as to
“ball park” estimates) is due to the lucky fact that only a
small fraction of the solar envelope undergoes convection;

stellar structure would be harder to teach if the Sun were

less massive!

The object of the game is, ultimately, to reproduce the
observable features of a known star. Therefore, let us post-
pone discussion of these expressions until later, and simply
substitute the mass of the Sun, 2 X 10°® kg, to see how well
they stand up to this simplest of tests—the observed lumi-
nosity is 3.8 X 10*® W, the radius is 7 X 10® m, and the sur-
face temperature is 5770 K.

We should not impose a priori a particular nuclear ener-
gy generating law, which must emerge from the analysis
itself; it is, therefote, advisable to tabulate first the results
for several different values of the energy index v (say, 6,
3.5, 20,and 13, the former two corresponding to the pp
cycle and the latter two to the cn cycle). Similarly, the
scattering mechanism should not be guessed in advance,
and so for each value of v the solar parameters have been
calculated for the three principal mechanisms.

We can assume the chemical composition: X = 0.73,
Y =0.25, and Z = 0.02 are values used by Schwarzschild
and so convenient to take in order to compare subsequently
our results with his numerical calculations.

Finally, the analysis given in this article does not directly
yield a stellar radius, but a spatial mass decay parameter A.
The radius can be said to be that distance from the center at
which the mass has attained some large fraction of its total
value, say, 0.999. With this criterion, the radius is just 2.64.

Table 1. Parameters for the analytical expression of stellar quantities, written in the form a®b #c’d °M %, for different scattering regimes.

Scattering
regime a B Y ) u
Electron v=4 -3 1 1 -1
A v+3) (v+3) (v+3) (v+3) (v+3)
Ton (v—15) —4 1 1 (v—13.5)
(v+2.5) (v+2.5) (v+2.5) (v+2.5) (v+2.5)
L, Electron 4 1 0 -1 3
Ton (7Tv+22.5) 2v+7) -2 —(v+4.5) (5v+ 15.5)
(v+2.5) (v+2.5) (v+2.5) (v+2.5) (v+2.5)
p. Electron =4 (6-v -3 -3 (6—2v)
(v+3) (v+3) v+3) (v+3) v+3)
Ion I(v—17.5) (145 —v) 3 3 (13—-2v)
(v+2.5) (v+2.5) (v+2.5) (v+2.5) (v+2.5)
T, Electron U 3 —1 —1 4
(v+3) (v+3) (v+3) (v+3) (v+3)
Ion _ 1o _ 4 =1 = 6
(v+2.5) (v+2.5) (v+2.5) (v+2.5) (v+2.5)
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Table II shows the various possible “suns” correspond-
ing to the different regimes assumed.

We notice immediately that whatever the imposed con-
ditions, the temperature remains in the vicinity of 107 deg;
for consistency, therefore, we can eliminate the higher val-
ues of v in the case of the pp cycle and the lower value in the
case of the cn cycle. We can distinguish between the two
cycles by comparing their power output for the calculated
central conditions—we find that in the case of the Sun the
pp process dominates. Similarly, comparing the opacities
at the calculated central conditions, one finds at once that
the bound—free opacity is dominant.

These considerations allow us to identify which combi-
nation of parameters should be relevant; we note, in partic-
ular, that according to the table a more appropriate value
for the nuclear energy index v would be 4.5. We thus esti-
mate a solar radius of about 4.5 X 10° m, radiating about
2.1X 10°° W, with a surface temperature of about 5700 K
(given by Stefan’s law), to be compared with the actual
values of 7 10® m, 3.8 X 10*®* W, and 5770 K—the agree-
ment is quite satisfactory. It it, in fact, better than this first
comparison might indicate, since the calculation does not
really pertain to the Sun as it is now, but as it was at the
beginning of its existence—the analysis in this article has
been carried out for a homogeneous star, and the present
Sun is no longer in this happy state. To judge the quality of
the appproximate analytical model, one should compare it
to what is called in the astrophysical literature a “zero age”
model: Just such a model is, in fact, presented in Schwarzs-
child (albeit using a more sophisticated opacity law, and
with a suitable treatment of the outer stellar regions), and
one finds that the luminosity of a homogeneous star having
a solar mass and composition is about 0.6 of the present
luminosity, i.e., about 2.3 X 10?® W. The radius of the zero-
age model is marginally larger than the present one; note,
however, that one should compare our “radius,” which is
that distance at which the mass is 0.999 of the final mass,
with the equivalent quantity in the numerical model—this
latter value is 0.88 of the solar radius, i.e., 6.2 X 10® km.

Finally, the central temperature and density given by

trial function method (for v =4.5) are 1.1X10’ and
7.9x 10%. :

The method used in this article, simple as it is, yields
solutions to the equations of stellar structure that are at the
30% level of the accuracy; this is often considered to be the
preserve of numerical analysts.

V.THE FAULT, DEAR BRUTUS...

One of the striking features of the results evaluated for
the Sun using the trial function technique is how insensitive
certain of the final numbers are to the nuclear generation or
opacity laws. Even the luminosity “only” spans a range of
about 40. This is in some contrast to a statement sometimes
made in defense of the “ball park™” analyses when their
results fail to match observed values, generally solar—the
blame is put onto the opacity as the single item most likely
to be wrong (the ball park calculations are usually done
using the electron scattering opacity).

It is instructive to examine how the stellar parameters
vary with the constants g, b, ¢, and d. For many values of v
(especially those appropriate to the pp reaction, dominant
in solar type stars), many of the parameters are rather in-
sensitive to the precise value of the constants (the luminosi-
ty is the single most important exception to this). The
weakness of the trial function method lies in the apparently
arbitrary way in which the collocation points are chosen. It
is clear that using different collocation points on the Gaus-
sian distributions will give rise to changes in the values of a,
b, ¢, and d; however, it is easy to verify that these changes
are considerably less than 50% and so have relatively little
effect on the final parameters of the star; consequently, the
effect of changes in, say, the opacity or energy generation
laws show up in a reasonably clean manner.

It is amusing to apply the trial function technique todo a
“proper” calculation using the model on which the “ball
park” analyses are based, i.e., a linear change of all param-
eters from the center of the star to the outside. The param-
eters then take the form

Schwarzschild for the zero-age model are 1.2X 107 and M=M,(1-1r/R), (19)
7.7 % 10* kg/m?; the corresponding values obtained by the L=L,(1—r/R), (20)
Table II. Parameters for a solar mass object estimated using the analytical expressions of this article.
Scattering
regime v=6 v=23.5 v=20 v=13
Electron 3.7x10? 3.4x%10° 3.1x10% 3.7x 10
Radius Free—free 4.1x10% 3.8x10* 3.2x10° 3.9% 10°
inm Bound-free 4.8%10% 4.8x10% 34x10° 4.3x10°
Electron 1.4 107 1.6 107 1.7x 107 1.4 107
T, Free-free 1.2 107 1.3x 107 1.6 107 1.3 107
Bound—free 1.1x107 1.1x10’ 1.5x 107 1.2x 107
Electron 1.4x10° 1.9%10° 2.5%x10° 1.5x 10°
Pe Free—free 1.1x10° 1.3x10° 2.3%x10° 1.2x10°
in kg/m* Bound—free 6.6x10% 6.6 10* 1.9x10° 9.2x10*
Electron 2.0 1077 2.1x 107 2.0x 1077 2.0 10%
L, Free-free 8.9 10% 9.4 10%¢ 1.0x 1077 8.9 10*
inW Bound-free 2.0%10% 2.1x10% 2.4x 10% 2.1x10%
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(21)
(22)

p =pcr/R ’
T=T.r/R,

with R being the stellar radius.

With this law, the boundary conditions are naturally not
satisfied.

Using linear trial functions, the overall problem has only
the usual four parameters; substituting Eqs. (19)—(22) in
Eqgs. (1)—(4) and collocating at #/R = 0.5 leads immedi-
ately to a set of equations whose form is identical to that of
Eqgs. (15)-(18b) (this is inevitable—dimensional similar-
ity oblige), but with the constants a, b, ¢, and d now multi-
plied by numerical factors, '

@jinear = AGavssian X 10

Diinear = DGaussian X 0.3,

Ciinear = CGaussian X (2.3 +0.7v)/22 ),

dincar = Agaussian X211 — exp[ —0.7(2.3 + 0.7v)1}.

These changes are hardly negligible, even when v takes
the values appropriate to the pp reaction, but one could live
with them individually on an order-of-magnitude under-
standing.

Similarly, their effect on the value of the central tem-
perature is not too catastrophic—it moves by somewhat
less than an order of magnitude; this is why calculations
such as that in Weisskopf ’s article,® which are based al-
most exclusively on the central temperature, are quite reli-
able.

However, folded into the expression for the luminosity,
they change its value by rather more than two orders of
magnitude. Here, we see, in pristine form the essential
weakness of “ball park” analyses as applied to stellar struc-
ture: The orders of magnitude do not propagate through
the calculation in a linear way, and so do not necessarily
cancel at the end (a central assumption in order-of-magni-
tude estimates). One might be lucky, as in the case of the
temperature, which turns out to depend on fractional pow-
ers of the dubious quantities, or very unlucky, as in the case
of the luminosity, which depends on high powers of these
same quantities. This is quite independent of the detailed
values of physical constants such as opacity: Any attempt
to improve the results of the calculations by adjusting the
opacity constant, for example (on which the luminosity
depends only in a roughly linear way), ignores that the
luminosity is, in fact, much more sensitive to the way the
model is built.

The ball park technique in whatever form gives poor
numerical results, not just because the physical constants
used are wrong, but because the model is a poor representa-
tion; while no one would deny that using the right con-
stants is better than using the wrong ones, I submit that it is
first essential to get the model right.

Nevertheless, it is some consolation to know that the
error introduced by choosing a poor model is reasonably
bounded so that the results obtained, while wrong, are not
ludicrously wrong: This is why one obtains starlike param-
eters at the end of the calculation. However, one can obtain
solarlike parameters only with the help of fudge factors
(which it is best not to introduce in a systematic manner).

The analytical expressions for the stellar parameters as a
function of the total mass can be used to illustrate a number
of features of stellar structure—a couple of examples are
sufficient to show the principle.

The well-known L, < M 3 law for the case of electron
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scattering emerges almost immediately; however, this is
hardly original.

Of greater interest is the equivalent luminosity mass re-
lation for the case of ion scattering

(Sv+15.5)/(v+2.5)
LT CEMT ’

which, in the case of solarlike stars, yields L «c M 5*¢. This
is close to the relation L, « M 3 actually satisfied by stars
less massive than about two solar masses (note in passing
that the elementary discussion of the mass luminosity rela-
tion, based on the electron scattering law, is invalid in the
mass range for which it is carried out—in the interest of
simplicity, one tends to foist onto elementary students a
calculation whose results are subsequently contradicted).

Electron scattering in stars having a normal chemical
composition can only become important at high tempera-
tures and low densities; since we have seen that even in the
Sun ion scattering dominates, and since intuitively one
would suppose that the density would rise with the mass,
one wonders how any group of stars can enter the electron
scattering regime and so satisfy the M > law.

If fact, this is a case where intuition is misleading. The
opacity due to electron scattering is a constant, while the
opacity due to ion scattering varies as p/7>°. Using the
expressions for central temperature and density in the ion
scattering regime, one finds immediately:

opacity due to ion scattering o« M ;8 +2/(v+25

Consequently, the central opacity is a decreasing function
of mass, and it is quite reasonable that at some value of the
mass it should fall below the electron scattering opacity;
the nature of the mass—luminosity law will then change.

The way in which the central density changes with mass
depends on the scattering; the analytical expressions show
that, while in the ion scattering regime the central density
does rise with mass, when electron scattering becomes
dominant, the central density can become an inverse func-
tion of the mass—this is a counterintuitive result.

Finally, the analytical expressions for the stellar param-
eters can be used for a variety of purposes, from finding the
volume of a star undergoing nuclear burning, to obtaining
upper and lower limits to the mass of a star involving fewer
ad hoc assumptions about the critical temperature for nu-
clear burning (a fundamental defect of many “order-of-
magnitude” estimates, as rightly pointed out by Green-
stein®) or the pulsational instabilities to which gaseous
masses are subject (it is very easy to find an expression for
the maximum radiative flux that the surface of a star can
support without losing its outer layers under the influence
of radiation pressure, the so-called Eddington luminosity).

V1. CONCLUSION

The trial function method of finding approximate solu-
tions to boundary value problems emerges as a viable way
of analyzing the structure of homogeneous stars. The
method requires no mathematical sophistication on the
part of the student beyond the ability to differentiate a
Gaussian function; it is nevertheless sufficiently flexible to
allow the use of reasonably correct expressions for the rate
of production of nuclear energy and for the opacity of the
stellar material, and gives results that are within about
30% of numerical models. It is a useful quantitative ad-
junct to the type of qualitative discussion that is very popu-
lar in elementary textbooks. In this sense, the technique is
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to be preferred to the standard methods of introducing stel-
lar structure via order-of-magnitude estimates, which are
rarely within even two orders of magnitude of the right
answer, and require particular care in the way orders of
magnitude are neglected and the orders of magnitude of
physical constants are chosen.
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A single algebraic expression is derived for the optical thickness of dust or smoke generated by a
large-scale nuclear attack such as envisioned in nuclear winter studies. The formula is proposed as
an addition to the set of “‘simple formulas” for the classroom study of nuclear effects. It may also

be of use to analysts for first-order calculations.

L. INTRODUCTION

In a recent article in this Journal, Broyles' presents
“some simple formulas and calculations to show students
what elements are involved in estimating the amount of
smoke that will be generated in a nuclear war and the re-
sulting attentuation of sunlight.” Broyles’ formulas for the
amount of smoke generated are indeed simple and reasona-
ble. His formulas for sunlight attenuation, however, do not
quite measure up to that standard. Diermendjian’s formu-
las for Mie scattering are not “‘simple” as formulas (25)—
(29) in Broyles’ article testify. Further, since the resulting
extinction coefficients are dependent on the smoke particle
radius, the calculation for optical thickness can be carried
out only for monosized particles rather than for a distribu-
tion of particle sizes as usually assumed in nuclear winter
studies.

We offer here an alternate “‘simple” formula that over-
comes both of the above objections and can be given a
straightforward physical interpretation thus (hopefully)
leading to a more intuitive understanding of the phenome-
non of sunlight attenuation by smoke or dust.

II. AN EXPRESSION FOR OPTICAL THICKNESS

If we consider any sunlight interaction, whether absorp-
tion or scatter, to be a removal or extinction and if we ig-
nore the added contribution from scattered sunlight, then
the sunlight flux on the ground is related to the sunlight
flux just above the sensible atmosphere by

PR (1)

¢ground = ¢above atmosphere

The product N, (u) is the optical thickness OT, where N,
is the total number of particles in a column of air of unit
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area extending from the ground to the limit of the atmo-
sphere and where (u) is the average extinction cross sec-
tion or area presented for interaction. We note here that
since we are ignoring scatter, the altitude location of the
particles does not matter. (If scattering is treated, it mat-
ters a great deal.) The average extinction cross section (u)
is found by integrating over the distribution of particle
sizes,

() =f n(r)u(r)dr. (2)
(]

It is the cross-section variation with size that Broyles (and
others) suggests may be modeled with Diermendjian’s for-
mulas, which are an approximation to Mie scattering theo-
ry. Ramaswamy and Kiehl® present the results of a Mie
scattering calculation for 0.5-um monochromatic light
(near the peak of the visible spectrum). Their calculations
yield the extinction efficiency @, , which is simply the ratio
of extinction cross section to geometric cross section, that
is,

u(r) =Q,mr. (3)

Pontier,* one of my graduate students, has also carried out
these Mie calculations as well as the Diermendjian approx-
imation described by Broyles. Pontier’s Mie results are
shown in Fig. 1.

Keeping in mind Broyles’ purpose, “simple formulas
and calculations to show students what elements are in-
volved...,” I suggest that, for classroom calculations, the
extinction coefficient be taken as a constant, Q,. The value
of that constant must be defined by

() = F n(r)Q.(rymr dr=Q, r n(rymr dr. (4)
0 0
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