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Abstract The  tidal  forcing  phenomenon,  used  to pre- 
dict the existence of volcanic activity on Io, is treated 
from a very  simple  point of view which nevertheless 
reproduces to a sufficient  accuracy the final  conclusions 
of the  prediction,  while highlighting the  essential  physi- 
cal  processes  involved. 

One of the more  striking  results of the Voyager 
missions was the discovery of intense volcanic-type 
activity on the surface of the jovian satellite Io. No 
less remarkable was the prediction by Peale et al 
(1979), published just three days before the flyby, 
that Io could well be  the seat of such phenomena. 

Since then the theoretical conclusions have  been 
quoted,  requoted  and even criticised (Gold 1979). 
However,  apart  from purely verbal accounts, the 
basic physics of the analysis has  remained  outside 
the scope of most discussions, since the theoretical 
formula from which the prediction follows is based 
on a very technical computation  (Peale  and Cassen 
1978) which itself relies on previous no  less in- 
volved work (for example, Kaula 1966). This is a 
pity, since the central  idea is simple and  represents 
an elegant application of elementary mechanics and 
heat  transfer  theory to planetary physics. 

In this paper it  is shown how the essential result 
may be  obtained directly from an elementary 
analysis using a somewhat simplified model for Io: 
one may think of the calculation as an example of 
how planetary physics may be  brought to a wider 
audience  than  before. Most modern astrophysics 
textbooks  contain order of magnitude  estimates of 
stellar  structure based simply on the gas  laws and 
quantum mechanics as exemplified by the uncer- 
tainty principle: these calculations, divorced as they 
are of technical (but in the final analysis, irrelevant) 
computational difficulties, give one considerable  in- 
sight into both the fundamental physics involved 
and  the particular astrophysical application (see, for 
example, Weisskopf 1975,  or Celnikier 1979). 
Planetary physics has long remained  outside this 
type of approach, presumably because of the ap- 
parent complexity of solids and liquids. One nota- 
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R&& L‘existence d’une activit6  volcanique  sur Io a 
CtC d6vinCe  comme  Ctant  une condquence des  effets de 
mar6e. L e  phknomkne  est trait6 ici par  une  mCthode 
trks  simple,  qui  permet  de  retrouver  les  resultats quan- 
titatifs  de faGon  Clkmentaire,  tout  en  d6gageant  les  prin- 
cipes  physiques  fondamentaux. 

ble exception (Weisskopf 1975) has shown, how- 
ever,  that qualitative physics can be applied to 
planetary  problems with considerable success; the 
present paper is an extension of the  same type of 
approach. 

The best verbal description I have seen of the 
basic heating mechanism invoked for Io may be 
found in Morrison and Samz’s popular  book  (1980) 
from which I quote verbatim: 

‘Io is about the  same distance from Jupiter as 
the Moon from the  Earth, but the much greater 
mass of Jupiter raises enormous tides in its satellite. 
These  tides  distort its shape, but no  other effect 
would be present if Io remained  at  a  constant 
distance from Jupiter. What  Peale, Cassen and 
Reynolds realized was that the distance of Io from 
Jupiter varies as the result of small gravitational 
perturbations from the  other Galilean  satellites. 
Therefore,  the tidal distortions also vary, in effect 
squeezing and unsqueezing Io each orbit. Such 
flexing pumps energy into  the interior of Io in the 
form of heat.’ 

Translating this simple scheme into physics is far 
from trivial if the result is to be completely 
general-for example,  for  a  satellite of arbitrary 
shape, internal structure, and elastic moduli. How- 
ever,  the essential phenomenon is the longitudinal 
‘squeezing and unsqueezing’ effect: this allows one 
to replace the real geometrical configuration by a 
much simpler, albeit rather artificial one, without 
any significant alteration of the physics involved. 

Consider  a  homogeneous cubic satellite of side L, 
density p and mass m = L3p-this  will be taken as a 
first approximation to a real body of the  same mass 
but different shape. 

Suppose  that one of the sides is permanently 
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aligned along the orbital  radius  vector: this corre- 
sponds  to  the fact that Io’s axial rotation is syn- 
chronised with its orbital  motion. The satellite can 
be thought of as two halves, each of mass m/2, 
whose barycentres are  separated by L/2. If the 
satellite is instantaneously  at  a  distance R from  a 
central body of mass M, the two ‘halves’ of the 
satellite will experience  a  different  gravitational 
force, the difference A F  being given by: 

A F  = A(GMm/2R2) 
= GMm AR/R3 
= GMmL/2R3. 

This differential force acts on two points separated 
by L/2 and is responsible for deforming the satellite 
along the radius  vector. 

A simple longitudinal elastic body of length 1 
under  the influence of a  stretching  force f satisfies 
Hooke’s law: 

Al/l = f/SY 

where: l = induced extension; S = cross section; 
Y = Young’s modulus of elasticity. It follows that 
the work W done  to extend the (cubic) satellite by 
a length AL under  the influence of the force A F  is 
given by: 

W = AL AF/2 
= L(AF)2/4SY (1) 

which reduces in our case to: 

W=-(-) ~ S Y  L GMmL 2 ~ ’  

- G2MZmZL - 
16YR6 ’ 

Now, the satellite is  in an elliptical orbit about 
the  planet, so that R satisfies the polar equation: 

R=u( l -eZ) / ( l+ecosO)  
where: 

a = semi-major axis of the orbit 

e = orbital eccentricity 

O =polar angle. 

We  see  that  the deformation of the satellite varies 
periodically, as does therefore  the work done on 
the elastic material: 

W= 
G2M2m2L (1 + e  cos e)“ 

16Yu6  (1-e2)6 
- G2M2m2L 
- 

16Ya“ 
(1-6e2+. . .) 

x(l+6ecos8+15e2cos28+ ...). 
Now, the eccentricity is much smaller  than one, so 
that in the expansion for W we may neglect all 
terms higher  than e2,  which leads to: 

G2M2m2L 
16Yu6 

W E  [(1+6e2)+6ecose+15e2cos28]. 

We  are interested in the work done on the 
satellite  during  its  orbital  motion, so that the 8-  
independent term-which represents the average 
fixed distortion-may be left out of further consid- 
eration, giving us the secular contribution to  the 
work, W,(@): 

w m  = 
G2M2mZL 

16Ya“ 
[6e cos 8 + 15e2 cos2 e]. 

The  total secular contribution W,(tot) during one 
orbit is obtained by integrating this expression over 
2lr: 

15aG2M2mZLe2 

In short,  the tide raising potential is quadrupolar 
and so proportional to l /R3,  as is therefore the 
distortion. The work done must thus  be propor- 
tional to  the  square of the distortion,  integrated 
over the volume of the body and divided by an 
elastic modulus  related to Young’s modulus; finally, 
the net work done in one orbital  period when the 
eccentricity is small is proportional to  the integral 
of e2 cos2 e. 

Consequently, the result is proportional to 
e’/(Ya“), and  the value of the constant  depends on 
the geometrical configuration assumed. 

We may think of W,(tot) as being the energy 
stored in the satellite in the form of the forced 
oscillations induced by the periodically varying tidal 
force.  Various dissipative effects will cause  a frac- 
tion of this energy to  be lost to  the oscillations and 
ultimately to  appear as heat within the satellite: in 
the theory of forced oscillators, the inverse of this 
fraction is commonly called the  ‘Q-factor’  or  the 
‘dissipation function’. Therefore,  the thermal 
energy E appearing per orbit in the satellite as a 
consequence of dissipating the stored elastic energy 
of the tidal forcing is  given by: 

E =  
15aG2M2m2Lez 

16Ya6Q 

The orbital  period P is given  by: 

P = (4rr2a3/GM)‘I2 
but it  is in fact more  convenient to work in terms of 
the angular velocity n: 

n2 = (~T/P)’ 
= GM/a3 

whence: 
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Dividing this expression by the orbital  period gives 
the mean rate  dEldt at which thermal  energy is 
dissipated within the body of the satellite: 

dEldt E/P = 
15n5m2Le2 

32YQ 

- 
32YQ ' 

This is the basic result used by Peale et al (1979); 
however, to simplify the comparison, it is better to 
present the result in terms of: 

(i) The  shear modulus of elasticity p,  since this is 
the quantity which Peale et a1 actually used; in the 
case of typical terrestrial materials, Y = 2.5 p. One 
might note in passing that an intrinsically more 
meaningful parameter  to use would have been the 
bulk modulus, since it  is better  determined for 
planetary  material  than is F ;  since the bulk mod- 
ulus is greater  than the  shear modulus,  retaining 
the  latter gives one an upper limit to  the energy 
dissipation. 

(ii) The satellite  radius R,: if one considers a 
radius to be essentially half of a  characteristic  di- 
mension, we have: 

R, = Ll2. 
Finally, therefore,  the average rate of production 

of thermal  energy in our homogeneous cubic satel- 
lite under  the action of the tidal forcing phenome- 
non is  given by: 

dE/dt c-. 
15 X 2' n5p2R:e2 

96 PQ 
n5pZR:e2 = 20 

FQ ' 

The corresponding  result  for  a  homogeneous 
spherical satellite  found by Peale et al (1979) is: 

dE/dt = - 
36rr n5p2R:e2 
19 CLQ 
nSpZRle2 

zfj 
FQ ' 

The difference between the two results is really 
not very large, especially when one considers the 
economy of effort involved in the  method  pre- 
sented  here.  The difference can be reduced  even 
farther if one wishes by noting that  the total  energy 
refers to  the volume occupied by the satellite: since 
a cubic satellite of characteristic dimension 2R, 
occupies about twice the volume of a spherical 
satellite having the  same characteristic  scale, our 
result should  be divided by about two in order  to 
reduce it to  the geometry one normally associates 
with natural  satellites. 

The small numerical difference between the sim- 
ple  derivation and  the complete one is of even less 
importance  than one might think, since the  entire 
result depends on the value of Q. This  number can 
only be calculated theoretically for the most 
elementary  laroratory oscillators; in the case of 
bulk planetary  material  its  value must be deter- 
mined empirically, for example by timing free 
planetary oscillations or by measuring the decay of 
seismic waves with distance from the source  (Cook 
1973). Reliable  measurements are available only 
for  the  Earth: a  representative  sample of results 
given by Cook (1973) shows values spread over a 
range from about 10 to nearly 1000. The 'typical' 
value used to calculate the internal  structure of Io 
was 100, which raises a  certain  number of ques- 
tions: 

The value could be wrong either way  by an order 
of magnitude. 

It might actually be on the low side, since 100 is 
the lower limit of results  obtained from free terres- 
trial oscillations which presumably are  more indica- 
tive of global planetary  conditions  than are  other 
types of determination.  Measurements on the moon 
made by the Apollo seismometers are  rather hard 
to interpret: in the crust Q is about 5000 and drops 
to about 1500 in the lower mantle-the  high values 
relative to  the  Earth  are attributed to  the absence 
of water. There is no  evidence which requires the 
solid body Q to be low. The internal  structure of 
the Moon is not known:  studies of free librations 
(Yoder 1981) suggest (but do not impose) the 
presence of a small (radius <400 km) fluid core; 
seismic results are ambiguous, relate essentially to 
one backside impact event, and their interpretation 
has  been  contested. 

The density of Io is slightly less than the Moon's, 
and one might be inclined to assimilate its constitu- 
tion to that of the  Moon.  However, Io is  an outer 
solar system body, whose initial composition may 
therefore  have  been  enriched in volatiles. How 
relevant are terrestrial  and lunar measurements to 
Io? 

The small error in the simple derivation pales in 
significance when compared to  the known uncer- 
tainty in Q! 

It is also important to note that  the shear  mod- 
ulus of arbitrary  planetary  material is actually a 
rather poorly known quantity. 6.5 x 10" Nm-' is 
often used in calculations of lunar sized bodies, 
the use of two significant figures giving an impres- 
sion of great accuracy. Actually, reliable  measure- 
ments are available only for  the  Earth's  upper crust 
(Cook 1980); these  range  from 7.2x 1 O l o  to  6.4x 
10" over  the  depth range 40-170 km, while for the 
moon lower limits for the depth  range 60-800 km 
are 7.6 X 10'" to 5.3 x 10'" respectively; no values are 
available for  a 'global' shear  modulus.  Two signific- 
ant figures may be appropriate  for  the individual 
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localised measurements,  but one has no right to 
take an average  value when considering global 
properties: two significant figures and possibly ‘even 
one  are illusory when applied to a  satellite of 
unknown composition under clearly exotic condi- 
tions. 

The  heat  generated by the tidal forcing must 
ultimately appear at the surface,  where it  will be 
radiated; calculations suggest that  the orbital  ec- 
centricity of Io is about 0.004, so that substituting 
the ‘canonical values’ of p, 10” and Q 100 we 
obtain  a  total  heat flow at the satellite  surface of 
the  order of 10” W. 

It is interesting t o  compare this value with the 
energy E absorbed by Io from the Sun.  This is 
given by: 

where: u=Stefan’s  constant; y =fraction of the 
incident energy which is reflected. The value y for IO 
in the visible part of the spectrum is about 0.8. 
Ra and To are  the solar  surface  radius  and 

temperature respectively, d = distance of Jupiter 
from the Sun, which leads to: 

E = 1014 W 

This value is about 100 times the power generated 
by the tidal forcing for the simplest model; conse- 
quently, if no  other  phenomena intervene, the  sur- 
face  temperature of Io would be very close to its 
simple ‘solar illuminated’ value of about 120 K. 

The heat generated within Io will necessarily set 
up a temperature gradient  from the inside to  the 
outside which will drive the heat flow. Within the 
limits of the cubic satellite  model, the heat will  flow 
in one direction; if we consider that  the  heat is 
generated uniformly within the satellite  at  a rate H 
per unit volume (=(1/L3)(dE/dt) in our model), 
elementary unidimensional heat  conduction  theory 
shows that when thermal  equilibrium has been 
reached: 

H = 2K AT/(L/2)’ 

where: L/2 is the distance from  the  centre  to  the 
edge, K is the thermal conductivity. 

The  thermal conductivity of planetary  material is 
not well known; the values depend on at least 
depth  and  temperature. In the case of the  Earth, 
the  quoted values increase  from 1 to about 
4 Wm” K”, up to a depth of some  2000 km. 
There is really no reason why any of these values 
should apply to Io; however,  taking (with Peale et 
al)  K = 4 x  10’ one finds: 

AT= lo4. 
Since the surface temperature is very low, this is 
effectively the central temperature,  and we note 
that it exceeds the melting point of terrestrial  sur- 
face rocks. This is the basis for believing that  the 

internal state of Io could be partly or wholly 
molten. 

One should emphasise that this result is subject 
to considerable  uncertainty. lo4 K is surely an 
upper limit to  the internal temperature of Io since: 

Q = 100 may  well be  a lower limit;  higher values 
of Q reduce the dissipation and in particular if Q 
were as high as 1000 the final temperature would 
be below the melting point of terrestrial  surface 
rocks. 

The  rate of transfer of heat  towards the surface 
may be somewhat more efficient than is suggested 
by the coefficient of thermal conductivity. ‘Solid 
state’ convection has been  proposed as a possible 
mechanism, but it  is poorly understood  theoreti- 
cally and not at all studied empirically; using order 
of magnitude  estimates of the relevant  parameters 
for the case of the moon (Schubert et al 1977), one 
finds that  the effective thermal conductivity could 
be raised by as much as about 10 or as little as 
about two-the applicability of these  numbers to 
the case of Io is  in any case questionable. If solid 
state convection is as efficient as it could be no 
melting will occur unless 1/Q is remarkably high. 

Even if one accepts an order of magnitude of a 
few thousand  degrees as a ‘best buy’ estimate of the 
central temperature, it  is by no means clear that 
melting must occur: the phase  changes occurring 
inside planetary  bodies are not well understood  and 
do not depend only on temperature. It is instructive 
to recall that  up  to a depth of 3000 km the  Earth is 
not globally molten although the  temperature  prob- 
ably reaches  a  value close to 4000 K. Of course, 
this may or may not be  relevant, since for an Io 
sized body, the central  pressure is that which occurs 
at  a depth of only about 200 km  in the  Earth; 
moreover, melting points vary widely from mineral 
to mineral, so that for example an iron-sulphur 
mixture melts at several hundred degrees less than 
pure iron. 

Let us assume, with Peale et a1 (1979),  that 
melting is initiated in a  core region of Io. One can 
see immediately that this will weaken the global 
rigidity of the satellite, whose forced oscillations 
will therefore increase in amplitude so that  more 
energy will be pumped  in. We can gauge the impor- 
tance of the effect using our cubic satellite model 
once  again.  Suppose  that  a  central cubic volume of 
side 1 < L/2 is  in a fluid state.  The ‘stretched’ solid 
material  then consists of a  segment, of length l ,  
whose cross section is L’- l’, and an effective 
segment of length L/2- I whose cross section is still 
L’. Consequently, the total extension under a 
stretching  force A F  is given by: 

extension = +- AF 
I A F  L/2-1 

Y(L’- l’) YL2 
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- “ - [ 21/L +(1-2l/L)] 
2LY 1 - 12/L2 

so that  the  ratio of the energy dissipated in this case 
to  that dissipated in a completely solid satellite is 
given by: 

1 - 12/L2 
21/L +(1-2l/L). 

Similarly, when the core dimension exceeds L/2, 
this ratio simplifies to: 

2llL 
1 - 12/L2. 

For small core sizes, the gain in energy is rather 
small;  for  example,  for l/L = O S  the above ratio is 
only 1.3 (this  compares with the value of about 3 
quoted by Schubert et al (1977)  for  a proper two- 
layer model). The  ratio can of course become im- 
portant when the core is large:  for l/L = 0.95, our 
simple estimate gives an enhancement of about 20 
(the full calculation gives 15). 

One might plausibly suppose that this energy is 
dissipated entirely in the remaining solid mantle of 
the satellite. If this is true,  the energy per unit 
volume in the mantle increases as: 

for l < L/2, and 

for I *L/2. 
As the mantle thickness decreases,  energy is 

transferred  through it more efficiently: the two 
extreme cases are conduction and solid state con- 
vection. 

In the case of conduction, the heat  transfer rate 
varies as the inverse square of the mantle thickness 
since the process is essentially a  random  scattering. 
Therefore,  the ratio of the excess heat generated  to 
the  heat transfer rate is given by: 

(1 - l/Ly  2l/L 
(1 - 13/L3) (1 - 12/L2) 

for l* L/2. This ratio is  less than one for all values 
of l/L, whence it follows that heat conduction can 
successfully cope with  any enhancement in dissi- 
pated  energy which is produced by a molten core. 
Therefore, even if for  some  reason melting did 
occur in the satellite centre, conduction would pre- 
vent any spreading of the effect, in spite of a 
thereby  weakened structure. 

Convection,  however,  introduces  a new aspect. 

Convective heat  transfer is essentially a  nonran- 
dom, directed  motion of matter so that  the  rate at 
which energy is transported must vary as something 
like l/(time to cross the mantle), which reduces to 
l/(mantle thickness). The velocity of the transfer, as 
well as the various constants,  depends on the  de- 
tailed (badly known) theory of solid state convec- 
tion,  but we do not need  these  numbers here:  the 
ratio of the excess heat generated  to  the heat 
transfer rate by convection is given by: 

(1 - l /L) 2l/L 
(1 - 13/L3) (1 - 12/L2) 

for l L > 2, assuming (with Peale et al 1979)  that 
the convection constants do not change  throughout 
the satellite. 

This  relation is roughly constant, rising very 
slowly up  to values of l/L = 0.9,  where the rise 
becomes more  important. This  contrasts sharply 
with the behaviour for  the case of conduction: 
convection is not really able to cope with the excess 
energy  generated in a  weakened  satellite. The exact 
calculation of Peale et al (1979), based on a par- 
ticular model of solid state convection, shows that 
in fact it copes even less  well than our simple 
analysis would suggest. 

Therefore, if a  central region of the satellite  does 
reach melting point,  and if energy is transferred 
through the satellite by convection, melting will 
continue  outwards  from the core-this is what 
Peale et al have called the ‘runaway melting pro- 
cess’. 

Can the central  parts of Io have  reached melting 
point through the tidal forcing process in a  reasona- 
ble interval of time? 

A lower limit on the  rate of increase of tempera- 
ture,  dT/dt, can be  obtained by ignoring all energy 
transfer mechanisms; in this case: 

d T  1 d E  c _=” 
p dt m dt 

where C, is the specific heat of planetary  material. 
Using a  somewhat ad hoc lunar value for C,- 
1O’J kg K” (Schubert et al 1977)”one obtains 
dT/dt = K S”. Consequently, to raise the 
temperature of a cold satellite to  1000 K by this 
mechanism alone will take  rather more  than 3 x lo9 
years. We note that  the time  estimate will not be 
much reduced by the run away process, which 
becomes significant only when the molten core is an 
important  fraction of the satellite. On the  other 
hand,  the time  estimate could be increased consid- 
erably if solid state convection does  indeed act 
within Io, since then the heat  deposition rate in the 
centre will be much lower. The run away melting 
only works if there is solid state convection, in 
which case however the time  at which  it might start 
is pushed  back: in fact, the ‘run away’ is more  a 
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kind of ‘crawl away’. 
3 X lo9 years is uncomfortably close to  the age of 

the solar system, since it leaves no lee-way for  the 
probable  errors in some of the constants such as Q. 
It would seem necessary to invoke an already  quite 
warm Io (heated by mechanisms not specified and 
over an unknown  time  interval) for tidal forcing to 
be  able  to  create  the observed volcanic activity. 

But in that case, do we need the tidal forcing? 
This is the  important point  made by Gold  (1979), 
irrespective of whether his alternative  proposal is 
right or not. The extraordinary success of the  pre- 
diction of volcanic activity on Io has  unfortunately 
led to a loss of perspective: one has tended  to 
overlook the fact that only a rather particular 
choice of thermal and mechanical planetary  con- 
stants allow tidal forcing to play a  direct  role. 

In conclusion, I have shown how qualitative 
physics can be used to attack  a seemingly complex 
planetary  problem. The mathematical and numeri- 
cal results are substantially the  same as those  found 
through  detailed analysis; this of course no more 

nullifies the latter’s  importance  than Weisskopf’s 
simple analyses (1979)  eliminate the need  for full 
computations of stellar  structure,  but I submit  that 
one’s  understanding is enhanced. 
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