equilibrium is found outside the vertical diameter of the
circle. This symmetry change is spontaneous in the sense
that the symmetry of the environment of the system is not
modified as {2 goes through the value £2, . In the same way,
the time reversal symmetry of an Ising magnet is spontan-
eously broken at the magnetic transition, as the tempera-
ture T is lowered below some critical value T,.

(2) We check here the general property” that the solution
of a symmetrical problem is symmetrical only if it is
unique. For £2 < (2, stable equilibrium is found only for
@ = 0 and is symmetrical. For £2> £2_, it is found for two
different positions & = + 6, and is nonsymmetrical. The
two solutions 8 = + 6, are similar to the two domains of
opposite magnetization of an Ising magnet below 7., they
are symmetry related.

(3) The bifurcation found at £2 = 2, is a consequence of
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the softening of the oscillation of M around the equilibrium
position & = 0 as £2 increases. The instability is similar to a
displacive® phase transition.
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This article presents a simple, but accurate, method for determining the distance of the Moon
using a cheap sextant. This result can then be used to obtain the size of the Moon and the mass of

the Earth.

The distance of the Moon has played an important role
in the history of science. It was the only cosmic distance
which the ancient Greeks were able to determine with any
kind of precision, while Tycho Brahe, by showing that
comets were certainly more distant than the Moon, con-
tributed to the demise of the Aristotelian vision of the uni-
verse. '

Cosmic distance scales are based on one of two essential
methods. Simple triangulation using the largest available
base line provides a scale for nearby objects. The Earth’s
surface furnishes a base line for the Moon and certain aster-
oids (although to a large extent laser and radar ranging
have replaced this method as far as the solar system is con-
cerned), while the annual movement of the Earth itself
around the Sun provides a suitable base line for the nearer
stars. The distances of distant stars and galaxies are ob-
tained indirectly, using essentially a measure of their ap-
parent brightness coupled to some more or less plausible
and more or less well-verified set of hypotheses concerning
their intrinsic brightness.

Geometrical methods are inherently more reliable if at
all applicable, since no suppositions concerning the nature
of the object enter into the procedure. However, they suffer
from two drawbacks. In the first place, a large base line is
needed, and in the second directions must be determined
with high precision.

The Earth furnishes an excellent base line of variable
length: during the course of 12 h an observer is carried
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through a distance of 12 000 km: over such a base line, the
direction in space of a fixed object at the distance of the
Moon changes by about one degree. This fact was already
recognized by Tycho Brahe; its power is that one person
can, in principle, carry out all the measurements and it is
not necessary to set up a time synchronized team of observ-
ers at opposite ends of the globe. The same principle is of
course applied to measurements of stellar parallaxes at op-
posite ends of the Earth’s orbit.

While one degree is not an impossibly small angle to
measure, it is also by no means trivial with simple instru-
ments—the mountings of most small amateur telescopes
are really quite inadequate (in spite of the makers’ claims)
and cannot be used to obtain a spatial direction to this pre-
cision without considerable effort. The problem is com-
pounded by the fact that the Moon is not stationary: its
orbital motion is in the same direction as the rotation of the
Earth and so the apparent parallax is actually smaller than
it should be; moreover, measurements cannot in practice be
spread over 12 h and are rarely made at the equator, so that
the effective base line is much smaller than 12 000 km.

The mariners’s sextant is a rather accurate device. Pro-
fessional instruments are very expensive, but it has for
some time been possible to obtain cheap plastic models
which, in spite of their apparent simplicity, are quite rug-
ged and have an inherent precision better than one minute
of arc even in relatively unskilled hands—I do not know
the American market, but an instrument of this type is
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available in Europe for the equivalent of about $50. This
allows nearly anyone to determine the distance of the
Moon, and consequently its size; finally, through Kepler’s
third law, one can obtain the mass of the Earth.

The sextant is ideally suited for measuring the angle
between two points. In normal use, of course, one of the
two points is the local horizon, and the other the Sun or
some other celestial object, and the construction of the sex-
tant is optimized for easy manipulation when used in this
way, i.e., when held vertically. In the experiment described
here, the sextant is used to measure thé angle between the
Sun and the Moon: this requires a little practice before-
hand, since the sextant will be held at some large angle to
the vertical—the biggest problem is to obtain the Moon
and the Sun simultaneously in the sextant’s telescope.

The principle of the method is very simple. One picks a
part of the month when the Moon is somewhat less than
quarter, and the angle between the Sun and the Moon is
measured at least twice during the course of the day. We
suppose in this experiment that the Sun is so far away that
its parallax over a terrestrial base line is negligible to the
accuracy of our measurements, and so its direction fur-
nishes a “fixed” direction in space with respect to which we
observe the Moon using the sextant.

Consider first an ideal case in which the observer is at the
equator, and let us for simplicity ignore the fact that the
equatorial plane, the plane of the Earth’s orbit, and that of
the lunar orbit do not quite coincide. Figure 1 shows the
geometrical configuration of the Moon, the Sun, and the
observer at two instants of time if the Moon were station-
ary: it follows immediately that

?/:ﬂ—a’

where a and § are the measurements of the angular separa-

tion of the Moon and the Sun at two different moments
during the day. Now, the distance of the Moon is much
greater than the size of the Earth (if one does not wish to
know this before finding the result, one can consider what
follows to be a first approximation to the distance between
the Moon and the surface of the Earth, followed by an
iterative calculation which will turn out to converge very
rapidly); consequently, to a rather good approximation:

ABcos 8 = Dsiny,

where D is the distance of the Moon, and § is the angle
between the apparent direction of the Moon seen at B and
its apparent direction when it is highest in the sky, i.e., the
local meridian. Here & appears only as a cosine; conse-
quently, it may be obtained to a sufficient precision simply
by knowing the time at which the measurement B is made,
and the times at which the Moon rises and sets that day.
Alternatively, it could be found using the sextant, but this
requires more involved computation which will detract
from the basic simplicity of the method with no significant
gain in precision or interest.

AB is determined by knowing the time interval ¢
between A4 and B, and the radius of the Earth R:

AB = 2R sin (mt /24)

if ¢ is measured in hours.

Two important corrections must be applied.

(1) The Moon is not stationary, but completes an orbit
around the Earth in just over 27 days. Consequently 7,
which is a measure of the triangulation parallax, is not sim-
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Fig. 1. Geometrical configuration of the Moon, the Sun, and the observer
at two instants of time if the Moon were stationary.

ply B — a, but is given by
y=(B—a)—6t/27.

The negative sign appears because the orbital motion is in
the same direction as the Earth’s rotation.

(2) If one is not at the equator, R must be replaced by
R cos A, where A is the local latitude: the observer executes
around the polar axis a circle of radius smaller than that of
the Earth. 4 subsidiary preliminary experiment with the
sextant could be used to find the latitude; for midlatitude
areas of the world, a high precision is not needed, since the
latitude enters as a cosine.

Other corrections, due to the inclination of the Earth’s
axis and the lunar orbit, may be neglected; the values are
small, will appear essentially as cosines, and may be expect-
ed to modify the final result by only about 10% at most.

One might suppose that an entire day is needed to obtain
a reasonable result. This is not so. Consider the simplest
(and most advantageous) situation in which one of the mea-
surements is made at around the time when the Moon
crosses the meridian, so that § = 0. Then for a latitude of
45°, one will obtain a parallax y after

(24/7) arcsin (D sin y/RV2) h.

For areasonable determination by unskilled students using
a simple sextant whose precision is 1 arcmin, one might
require y to be at least 10 arcmin; this gives a time interval
of the order of only about 1 h!

Several practical precautions should be taken to obtain
reproducible results. (1) A given set of measurements
should be carried out with the same sextant. All sextants
have systematic errors which will be eliminated during a
difference operation using the same instrument. (2) Rather
than superimpose the Sun on the Moon in the sextant tele-
scope, it is preferable to bring the limb of one in contact
with the limb of the other; this is easier and more accurate
and although it does not give the true angle between the
Sun and the Moon, the error is eliminated when taking the
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difference between two measurements. (3) Most cheap sex-
tants have some play in their gears. Consequently, one
should always approach the contact point between the
Moon and the Sun from the same direction and against the
gear train; it is also a good idea not the change the sextant
setting between two measurements since this will minimize
residual play. {4) If the angular separation between the Sun
and the Moon is large, one should avoid taking readings
when one or the other is low in the sky: differential refrac-
tion will not be negligible.

This experiment always surprises the students who try it:
after all, one does not usually associate a hand-held $50
gadget with fundamental astrometrical measurements.
The experiment in fact shows the value of a “zero-measur-
ing” device. The sextant owes its precision not merely to its
1 arcmin mechanical precision—this is actually quite easy
to build in—but rather to the fact that the angle between
two distinct objects is measured by superimposing their
images using a single optical system: consequently, exter-

nal perturbations affect both images equally and an accu-
rate measurement can be obtained in spite of, for example,
slightly shaky hands and without the need for massive sup-
porting elements, leveling screws, etc. Moreover, by using
differences between successive measurements, systematic
instrumental errors are reduced or eliminated.

From the astronomical point of view, this experiment
simulates the measurement of stellar parallaxes: the posi-
tion of a star with respect to a background reference system
of more distant “fixed” stars is measured—usually photo-
graphically—during the Earth’s orbital motion around the
Sun, but before obtaining a useful parallax it is necessary to
allow for the intrinsic motion of the star itself. The same
kinds of problems arise as in our sextant experiment; for
example, one should not mix astrometrical results from
different instruments.

And finally, three fundamental quantities are obtained
rather easily during an afternoon’s pleasant work in the
sunshine!

On the approach to electro- and magneto-static equilibrium
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Many textbooks claim that the relaxation time for the approach to electrostatic equilibrium is
€,/0. We show that, for a good conductor, this claim is false. For such a conductor, the approach
to the electro- and magneto-static equilibrium hinges on the damping of the induced dynamic
electric and magnetic fields. The relaxation time depends on the conductivity, the geometry of the
conductor, and the details of the initial charge distribution.

I. INTRODUCTION

As is well known, in a homogeneous conductor in elec-
trostatic equilibrium, the electric field is zero and all the
free charges reside on the surface. A question frequently
asked in electricity textbooks is: how long does the conduc-
tor take to achieve this equilibrium configuration if the
charges are initially distributed all over the volume? The
authors of many introductory and even some advanced
textbooks commit a glaring error in their attempts at an-
swering this question.' They commonly present the follow-
ing “derivation” of the characteristic relaxation time for
the electrostatic field, taking as starting point the contin-
uity equation

vit+ L =, (1)
ot
Ohm’s law
j=0E, (2)
and Gauss’ law
V.E =p/e,. (3)

They substitute Eq. (2) into Eq. (1) and then use Eq. (3} to
obtain a differential equation for the charge density
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€ at
which has the solution
p =poe—(¢7/e(,)t' (5)

From this, they jump to the conclusion that the relaxation
time for achieving electrostatic equilibrium is

Tpr = €/0. (6)

For a good conductor, e.g., for copper with a conductivity
o = 1/(1.7x 1078 £2.m), this expression yields an extreme-
ly short relaxation time, 7, = 1.5 107 "5,

But a bit of thought immediately convinces us that this
expression for the relaxation time cannot be right—it has a
nonsensical dependence on the relevant physical param-
eters. For a very good conductor, the relaxation time ought
to be very long because, in the absence of dissipative forces,
the free charges will surge back and forth on the conductor
instead of settling quickly into their equilibrium positions.
Thus, we expect that the relaxation time ought to increase
with the conductivity. We also expect, on the basis of me-
chanical analogies, that the relaxation time ought to in-
crease with the size of the conductor. Equation (6) fails to
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