Towards an impressionist picture of the history of astronomy L. M. Celnikier Laboratoire Associé no. 173 au CNRS and Laboratoire d'Astronomie Université Pierre et Marie Curie, Observatoire de Meudon, 92 Meudon, France (Received 26 November 1979; accepted 11 August 1980) A description and short extract are given of a tabulated history of astronomy, in which particular emphasis is placed on the interaction of astronomy with various discilplines. In an earlier paper I suggested that the time was ripe for a new approach to the teaching of astronomy; I proposed what amounts to a series of multidisciplinary courses in which particular physics topics would be analyzed from many different points of view. The history of astronomy also requires a considerable facelift; most traditional elementary courses and texts tend to highlight how terribly clever "we" are, and how obtuse (though ingenious) were our predecessors (with of course, such notable exceptions as Aristarchus, Copernicus, Galileo, Newton, etc.). A basic defect which one finds depressingly often in the history chapters of most introductory texts is the presentation of astronomy as a subject developing on its own in total isolation from the scientific and social context of its time. One finds, for example, inumerable and tiresome discussions on the absurdity, beauty, and complexity of the Ptolemaic model of planetary orbits, but virtualy no mention of the reason why Greek philosophers were so obsessed with circular motion—the obsession, of course, had virtually no relation to astronomy but was rooted in certain perfectly reasonable assumptions (within the context of the time) about the nature of motion, and astronomy merely "proved" that these ideas were right. Since we have no hindsight on our own epoch, it is difficult to make reasonable judgements about it; however, it is a salutary lession to see how another civilization reacted to complicated and conflicting sense impressions. Do many students (or even their teachers) appreciate in a rational (rather than purely gratuitous and mystical) way the physical hypotheses underlying such standard operations as the assignment of quantum numbers to elementary particles or the decomposition of complex waveforms into harmonic components (the Ptolemaic world system is in some sense an early equivalent of these operations)? In our own infinitely more sophisticated way, we too often construct models with much the same disregard as the Greeks for tiresome "details" which do not fit the "grand scheme." Another defect which springs to mind is to ignore the interplay between technological capability, its effect on scientific instrumentation, and the resulting (though often delayed) consequences for astronomy—modern astronomy so often emerges as a triumph of the intellect and one forgets about the technical triumph which led to it. I have found that my students are keenly interested in the evolution of astronomy when presented within a wider cultural and social background, and this has motivated me to find a way of supplementing the usual one chapter summary which just gives a blow-by-blow account of how different, apparently arbitrary models succeeded one another. The essential problem is how to reduce the information contained in a library full of books into a form which occupies about a dozen pages, without destroying the essence of the message one wishes to transmit. One way is to give an ordered enumeration of all scientific and astronomical "happenings." However, as S. Lem has so nicely pointed out in his short story "The sixth crusade, or how Trurl and Claupaucius built a demon of the second kind," too much information is as bad as none at all (maybe worse), since one simply cannot digest it. The solution I chose was to construct a two-dimensional table of very carefully selected "events." The horizontal division is into categories (astronomical discoveries, instrumentation, mathematical discoveries, science, society); the vertical is a time scale. Associated with the time scale is an ordered list of "fiducial points"—dates of critical "happenings," births of prominent or important or "typical" persons, etc. The aim of all this is not so much to enumerate facts (although facts there must be) as to evoke the intellectual climate of an epoch by association with events or names one already knows about (even if only vaguely). The compilation covers the period 1300 BC to AD 1980; even with the most savage editing it would have been too long for publication in this Journal and so has been published by the Physics Auxiliary Publishing Service (PAPS).² However, to give an idea of the usefulness of the approach chosen, Table I shows an extract, which covers the critical period AD 1100-1650. One sees immediately that the table cannot be used alone and is not in itself a history; technical jargon inevitably creeps in, there is no description or discussion, and the material has been selected brutally. It is a *tool* to be used with a more traditional course or book—one should think of it as a means of placing astronomy in perspective against a constantly shifting scientific, cultural and social background. In this sense, the compilation bears much the same relation to history as an impressionist painting to a photograph; looked at very closely, it disintegrates into a collection of apparently unrelated point events, but seen from a distance, shapes and patterns start to emerge. Compare an impressionist painting of a crowd with a photograph: in the former, distorted and incomplete image though it is, one can almost hear what each person is saying and even guess why the crowd is there—in the photograph, exact in every detail, one can discern nothing. The reason is simple: the impressionist painter uses fragments of familiar images to suggest subconciously the caracteristics of an entire world. The history chart has been constructed in the same spirit: fragmented but familiar events are used to evoke an entire period and the reader, suitably stimulated, actually supplies most of the missing information. Not all of the events will necessarily be familiar to everyone; however, many events Table I. Extract of the history chart for the period AD 1100-1650. | 90 | Astronomical discovery | Astronomical instrumentation | Mathematical discoveries | Science,
technology,
and philosophy | Society | Fiducial points | |------|---|--|---|---|--|---| | = | - | | "Arab" arithmetical
notation known in
Europe, but not | Aristotelian
philosophy studied
in Mohammedan | Bologna, Oxford, | 1136 Cordoba
captured by
Ferdinand III | | | | | exploited | Spain Latin translations of many Greek works transfer of Arab knowledge of Christian Europe | Paris
; | 1170 Omar
Khayam | | 200 | <u> </u> | | | Distillation of alcohol
in Christian Europ
Canal locks (Bruges) | | 1193 Albertus
Magnus | | 21 | General acceptance of
spherical Earth at
center of the universe;
stars, planets, in
concentric shells
Calculation of planetary
tables using Ptolemaic | Large masonary
quadrants in
Persia | | Fusion of christian
and Aristotelian
philosophies—
growth of
scholasticism
Mobile limber | Decline of Arab power Voyages of exploration by | 1225 Thomas
Aquinas
1254 Marco Polo
1258 Baghdad
taken by Mongols
1265 Dante | | | methods (Spain) | | | Mechanical clock
with "escapement"
Spectacles | Europeans
Growth of
ecclesiastical power | 1270 Occam | | 300 | | NORTH CONTRACTOR | | | | of Swiss
confederation | | 1400 | | | | Firearms (Arabs) | Growth of commerce
in Europe; Growth
of royal power and
bourgeois influence | 1313 Boccacio
1340 Chaucer
1347 Great
Plague | | | | | | Sandglass
Dyeing stimulates
chemical research | 100 years war | 1400 Gutenberg | | | European calendar in
complete disarray
(wrong dates for
equinoxes, etc.) | Pinules in Europe | "Arab" notation
used only by
merchants | Greek treatises
available in
Europe | Turkish invasion of
Byzantium | 1401 Nicolas de
Cusa | | | Penetration of
Ptolemaic ideas into
Europe | Building of
observatory in
Samarkand,
with large
graduated circles | | Printing | Universities in
Prague,
Heidelberg,
Vienna,
Leipzig | 1436
Regiomontanus | | | Astronomy confused with astrology | Precision of
angular measure-
ment ≈ 5' | | Metal
engraving | Voyages toward
the "Americas" | 1451 C. Columbus
1452 L. da Vinci
1453 Fall of
Constantinople | | | Speculations about
extent of the universe
(Nicolas da Cusa) | | | Glass making
(Venice) | Mercantile spirit | 1462 J. Bosch | | | (Thomas du Cusu) | | | Crankshaft | a secco painting
ousts a fresco | 1470 Magellan
1473 Copernicus
1475 Pizzaro,
Michelangelo | | 200 | | | | Reappearance of animist and vitalist ideas | | 1483 Luther
1494 Rabelais | | 115 | Heliocentric model of
solar system; circular
orbits and epicylces
(Copernicus) | | Spherical
trigonometry | Observational
disagreement
with Gallen's
anatomical
ideas | Internal problems
in the Church | 1509 Calvin
1514 Vasalius | | Astronomical
discovery | Astronomical instrumentation | Mathematical discoveries | Science,
technology,
and philosophy | Society | Fiducial
points | |---|--|---|---|---|--| | | | Mercator's projection | Beginnings of
modern botanical
classification | Rise of the "Universal man" and encyclopaedic knowledge | 1530 Establishment
of the College de
France | | | | "Handbooks" of calculating procedures | Zoological
classification
based on
Aristotelian ideas | Increasing use
of mines and
quarries | 1540 William
Gilbert
1546 Tycho
Brahe | | | | Symbolic notation in algebra | Chemistry dominated by theory of 4 elements + quintessence | Earth
circum-
navigated | 1550 John Napier | | | | Solutions to 3rd-
and 4th-order
equations | quintessence | • | | | Calendar reformed in Catholic world | Tycho Brahe's observatory in Denmark; best quadrants, sextants, and armillary spheres; corrections for atmospheric refraction; precision of angular measurement ≈ 1' | Use of decimal fractions | University teaching dominated by Aristotle and Ptolemy; Aristotelian theory of motion criticized as being inconsistent with observation; Aristotle's finite and hierarchial universe attacked (Bruno) | Rise of Jesuit
power | 1561 F. Bacon
1564 Galileo,
Shakespeare | | Zero parallax
measured for
comet and nova | | | Theory of lever,
inclined plane, and
communicating
yessels | Wars of religion | 1571 Kepler | | Geocentric model of
Tycho Brahe—
planets turn around
sun which turns
around Earth | | | Microscope | Development
of artillery | 1578 W. Harvey | | 1st variable star | | | Rolling mill Magnetism and electricity distinguished | Colonialism | 1596 R. Descartes
1599 Cromwell | | 009 ——— | | , | Notion of electric and magnetic forces | | 1600 G. Bruno
burnt at
the stake | | Parallax of a nova
estimated at zero
(Kepler, Galileo) | Spy glass | Modern algebraic notation | Empiricism (Bacon) | Scientific academies (Italy) | 1601 Fermat | | Parallax of sun
estimated < 1' | | Theory of equations | Rationalism
(Descartes) | Ecclesiastical
reaction
against "new
sciences" | 1623 Pascal
1625 Cassini
1627 Boyle | | Kepler's laws of planetary motion | | Analytic and projective geometry | Reappearance and
universal
application of
Democritus's
atomic theory
of matter | Revolution in
England | 1629 Huygens
1632 Trial of
Galileo; Locke,
Spinoza,
Wren | | | | Combinatorial analysis | | 30 years war | | | Confusion between gravity and magnetism | | Theory of numbers | Compound
movement
(Galileo) | | 1635 Hooke | 475 | Astronomical discovery | Astronomical instrumentation | Mathematical discoveries | Science,
technology,
and philosophy | Society | Fiducial
points | |--|------------------------------|--------------------------|---|---------|-----------------------------| | "Changing shape"
of Saturn | | Areas of various curves | Pendulum (Galileo) | | 1642 Newton | | Observation of lunar mountains, planetar discs, Jovian satellit stars in Milky Way, sunspots and solar rotation, phases of Venus, Andromeda nebula | es, | Logarithms | Steam Pump | | 1644 Roemer | | Planetary motion "explained" by theo of vortices (Descarte | • | Calculating machine | Barometer;
hydrostatics | | 1646 Leibnitz,
Flamsteed | | Age of the world
estimated to be ≈ 60
years (by counting
biblical events) | 000 | | Electrostatic
generators | | | | , | | | Laws of refraction | | | | | | | Circulation of the | | | | | | | blood | | | | | | | Notion of man as a | | | | | | | machine; more | | | | | | | generally, the world | | | | | | | "explained" | | | | | | | through laws of | | | | | | | mechanics + | | | | | | | imperceptible | | | | | | | matter (Descartes) | | | should be sufficiently familiar to the average scientist to make this a useful tool, and maybe stimulate him to seek out details on the less familiar contents. One final word of . . . warning. Any historical compilation of this kind which tries to evoke ideas and not just to enumerate facts must to some extent be biased and even idiosyncratic. I have tried to be honest, but a compilation done by someone else might well look more or less different, in much the same way that two paintings of the same scene are not always identical, although good photographs are. Note in particular that oriental astronomy is virtually absent; fascinating in its own right, its contribution to our present world picture is too limited to justify a possible doubling of the size of the table. Moreover, since Western knowledge of oriental culture is very limited, it would be well-nigh impossible to present it in the "impressionist" form. ¹L. M. Celnikier, Am. J. Phys. 46, 994 (1978). ²See AIP document no. PAPS AJPIA-49-473-36 for 36 pages of the entire table for the period 1300 BC-AD 1980. Order by PAPS number and journal reference from American Institute of Physics, 335 E. 45 Street, New York, NY 10017. The price is \$1.50 for each microfiche (98 pages), or \$5 for photocopies up to 30 pages with \$0.15 for each additional page over 30 pages. Airmail additional. Make checks payable to the American Institute of Physics.