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A dice playing game is proposed, by which means mathematically
unsophisticated students and school children can learn empirically the principles

of radioactive dating and population growth.

Most elementary astronomy courses describe in consid-
erable detail how to measure astronomical masses and
distances. The ideas behind these methods are under-
standable even to relatively young children, because no
sophisticated mathematics is involved. Another quantity
of astronomical importance is time; it is, in particular, rather
important to know the age of the earth and of the solar
system. However, the determination of the age of the earth
and of meteorites is based on the behavior of radioactive
materials as expressed by the Rutherford-Soddy decay law;
this law is expressed either in exponential form or in terms
of differentials, and both are generally incomprehensible
to students who have not studied calculus. One often ends
up mumbling vaguely about “measuring the radioactivity™
of a piece of rock, which leaves the student no wiser about
what is really done, and why. This is a pity, since the results
are of fundamental importance

In this note I outline a “game” which anyone can play
whatever their level of mathematical competence and which
simulates the basic processes involved. A similar game can
be used to introduce the principles of population dynamics
the biology students.

The Rutherford-Soddy law

dN = —Ndt/r

states that, in a group of NV atoms, the fraction that decay
dN/N, is a function only of time and of a constant 7, which
is different for each type of atom. In other words, the
probability that a given atom will decay is a constant.

This situation can be simulated by playing a game of
chance. We first “prepare” a certain number of radioactive
atoms. This can be just a sheet of paper ruled into squares:
each square “is” a radioactive atom. The game then consists
of throwing a die once for each atom; the result of the throw
determines the fate of the atom. For example, one can im-
pose the rule that a “6” indicates that the particular atom
has disintegrated: we then put a cross through the square.
We do this for all the atoms on the sheet; at the end of one
such game the number of atoms remaining is noted. The
game is then restarted, throwing the die for the “surviving”
atoms only. At the end of each game, we note the number
of surviving atoms, together with the ordinal number of the
game. When no more atoms are left, a graph of the atoms
remaining at the end of each game as a function of the or-
dinal number of the game will have the approximate shape
of the Rutherford-Soddy law:

N, = Ngexp(—t/1),

where NV, is the number of atoms remaining after time ¢, and
Ny is the initial number of atoms.

211 Am. J. Phys. 48(3), March 1980

0002-9505/80/030211-03$00.50

In this game, the ordinal number of a game represents
a time interyal, and the recipe chosen for eliminating atoms
gives, in the example chosen, 7 = 6. By changing the recipe,
one can generate different values of T; we shall consider
that, if the probability for “decay” is d,

T=1/d.

. Note that this method of relating the recipe to the decay
constant 7 involves a fundamental assumption: during a
given time interval, the fractional number of atoms which
“disappear” from the game is supposed to be a linear
function of time. Now, for a finite game of chance, this is
not strictly true; the Rutherford-Soddy law assumes in-
finitesimal time intervals (or very low decay probabilities).
For a finite game involving large time intervals (or large
decay probabilities), it would be more appropriate to work
in terms of a survival probability s = 1 — d, rather than a
decay constant 7; at the nth cycle of the game one will then
have

N, = Nys*,
whence
N; = Nos’.

Comparing this relation with the “ideal” form of the
Rutherford-Soddy law

N; = Noexp(—t/7),

we find that 7 is related to the survival probability
through

7 = —1/ln(s),
or to the decay probability through
7 =~=1/In(1 - d).

However,
In(1—d)=~(d+d?/2! +--),
and for sufficiently small d,
In(1 —d) =~ —d.
Therefore, in the limit of small d,
T=1/d,

which is just what was assumed at the outset.

The game proposed in this paper is to be considered in the
sp1r1t of a model. Of course, no model can reproduce exactly
a given phenomenon (otherwise, it would not be merely a
model!); a model can represent a’ phenomenon only to a
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Fig. 1. Dice data for 10 initial atoms; 7 = 3. Six different “experiments”
are shown.

certain precision, and is useful to the extent that deviations
from the process we wish to simulate are smaller than other
errors or uncertainties which arise. In the example given
above, we are using the game to simulate a decay constant
7 = 6. The exact calculation gives 7 = —1/In(1 — 1/6) =
5.5. Our game is therefore a useful représentation at the
10% level, which is quite adequate for the kind of statistics
one might accumulate with dice; no one will have the pa-
tience to play at the 1% statistical fluctuation level. If
someone does (for example, by using a programmable
calculator—see the end of this paper), they can compare
the results from games played with very large and very
small decay probabilities and so study under which condi-
tions the model approaches the process being studied.

Figure 1 shows the results of playing such games with 10
“atoms”; an atoim was “‘struck off”” when a throw gave a §
or a 6, thereby simulating 7 = 3 (7 = 2.5 with the exact
calculation). Six different games were played—the results
for all six are plotted in Fig. 1. One sees immediately a basic
problem inherent to this type of simulation: purely statistical
effects introduce rather strong fluctuations from game to
game.

Figure 2 shows the result of averaging the six curves at
each “time interval” (continuous curve): the fluctuations
are much reduced and the curve now follows reasonably well
the theoretical one computed for 7 = 3 (dotted curve). This
highlights a pedagogically important feature of this game:
individual players obtain widely scattered results, but a class
average has the “right” properties.

If students encounter difficulties with averaging, which
might raise the specter of fractional numbers of atoms, class
results could first be added, before introducing the notion
of averaging.

Figure 3 shows the results of playing the game with 50
radioactive atoms; the same recipe was used as before.
Three different runs are plotted; the statistical fluctuations
are of course much smaller and one can see clearly that the
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Fig. 2. The data of Fig. I averaged at each time interval. The Ruther-
ford-Soddy Law with 7 = 3.

212 Am. J. Phys,, Vol. 48, No. 3, March 1980

50

40

30

20

10

NN a NN

TTTT T T I T T T I T T T T I T 11

cO

Fig. 3. Dice data for 50 initial atoms; 7 = 3.

“time” taken to reduce the number of atoms by !/, is cer-
tainly not proportional to the initial number of atoms (a
remarkable result if one does not understand statistics too
well). Of course, according to the Rutherford-Soddy law,
the time taken to reduce the number of atoms by one-half,
the half-life 1, ,, is related to 7 through

1172 = —71n(0.5).

Figure 4 shows the results of changing the decay “reci-
pe’”’: an atom was struck off when a throw gave a “6” only,
corresponding to 7 = 6. Three different runs for 50 starting
atoms aie shown; one can see that the half-life is effectively
about twice as long as before.

One way of organizing a class to play this game effi-
ciently might be the following:

Everyone is made to play the game several times with a
small number of atoms (say 10) and to take the average of
his own results. This is quickly done, and by comparing their
individual averages, students can accustom themselves to
accept each other’s work and to take class averages.

Different groups or individuals can then be assigned
different starting conditions (number of atoms, 7); the basic
phenomena will then emerge from an intercomparison of
individual results.

The principles of one type of radioactive dating can now
be demonstrated. One “player” plays the game privately
using one of the recipes for which a decay curve has already
been obtained (“calibration”). He counts only the ordinal
number of the game, and stops at some convenient point
before the end. He then gives to the others the ratio of the
number of decayed to undecayed atoms at the point where
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Fig, 4. Dice data for 50 initial atoms; 7 = 6.
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Fig. 5. Sketch of the lead isotope
ratios at a given time from two
samples of radioactive material
created simultaneously. The slope
of the line AB isochrone is a
function of age. A: initial condi-
tions; B: sample 1; C: sample 2.
The dotted lines show the growth
curves for each sample.

he stopped; his friends have to deduce how many games he
played, and the probable error in the determination.

This game shows how one finds an age if the initial
sample contained none of the product nucleus. Radioactive
dating is somewhat more difficult if this cannot be guar-
anteed (for example, the Earth, meteorites, etc.); in this
case, it is necessary to use the radioactive decay of two el-
ements. The principle of one such method is quite simple
(see, for example, Eicher!). Suppose we use a sample con-
taining U238 (which decays to Pb2%6) and U235 (which de-
cays to Pb207), for which the decay constants are rather
different. At an initial instant of time, the sample contains
U238, J235, Pb204, Pb206_ and Pb297 in unknown ratios. We
note that Pb204 is not a product of any radioactive decay.
As the sample ages, the Pb206:Pb207 ratio changes since the
decay constants are different. Figure 5 shows the variation,
plotted in terms of the Pb206:Pb204 and Pb207:Pb204 ratios
since the quantity of Pb?%* cannot change.

Point A represents the initial conditions, and point B the
situation after a certain length of time. The slope of thie line
AB gives the age of the sample; however, with one sample,
we cannot obtain the slope because the initial conditions are
unknown.

Suppose we now have a second sample, created at the
same time as the first. We suppose that the ratio Pb206:
Pb207:Pb2%4 is as it was in the other sample (this wil} be fixed
by whatever process created the elements in the first place);
however, the ratio U:Pb need not be the same since this will
be the result of mixing, crystallization, and so on. As before,
as the sample ages, the ratio Pb206;Pb297 changes; when the
same amount of time has elapsed this ratio will have the
same value as before. Consequently, in the Pb206:Pb204
versus Pb207:Pb204 plot, this sample will fall on the line 4B,
whose gradient can now be determined. In practice, one uses
many meteorites so that the line is rather well defined. The
line obtained is generally called an “isochrone.”

The game we have outlined can be played for this case
also: one simply has, for a given sample, two sheets of paper
(for each of the elements U238 and U23%) into which one has
already “mixed” a certain number of lead atoms. Different
samples will have different starting ratios U:Pb (but the
same Pb206:Ph207:Ph204 ratio) and one plays, for each
sample, the same number of games (using, of course, dif-
ferent recipes for U238 and U233). One then shows that the
results fall on a line whose gradient gives the number of
games played. With enough samples being played over, one
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can show how the accuracy of the result depends on the
number of samples available.
Once again to save time and eliminaté possible boredom,
different groups of students can be assigned different
“samples,” so that an isochrone can be obtained quite
quickly. Altcrnatlve]y, one can use the dice throws already
obtained for the previous “experiments”, modifying only
the basic “data sheet” used.
I have tried this game on a group of particularly gifted
11-year olds; the results were most satisfying. Two collegues
also tried it out on a class of quite average 13-14-year olds
and their reports where also favorable,
With this game we have of course reproduced what is
called by physicists a “Monte Carlo simulation”; this kind
of procedure can be very useful for studying the behavior
of complicated systems. 1t is worth while pointing out to the
student the value of such techniques, especially in an age
of computers when Monte Carlo simulations can be carried
out swiftly and for very complex problems where analytical
solutions are not forthcoming. He might thereby better
appreciate why his pocket calculator has (as some do) a
random number generator. Indeed, many otherwise
mathematically quite unsophisticated students have learnt
to program pocket calculators with extraordinary ease; an
interesting exercise would be to make such students simu-
late the entire game on a programmable calculator. 1 have
done this myself and it is quite amusing. Incidentally, one
must beware of pscudorandom number generators on some
cdlculators, the distribution is far from random. i
The discussion so far has turned arouind radioactive
dating. However, one can think of this game as a means of
showing students empirically one reason why the expo-
nential function crops up in nature, and under which con-
ditions random phenomena can give rise to systematic ef-
fects.2 Another particularly relevant example would be
population growth in bio]ogical systems the basic equation
governing an uninhibited rise in populatlon is just the
Rutherford- Soddy law, without the minus sign. To simulate
this, one might start with just one “member” of a population
and play the game as before, this time adding members for
each successful throw. One can make the game more “re-
alistic” by including a criterion that members of the pop-
ulation start to “eat”” each other above a certain critical
‘population density. Plotting the results on log paper shows
the biology student immediately why he always does this:
uninhibited growth gives a straight line, while all other cases
indicate the presence of underlying control mechanisms.
ID. L. Eicher, Geologic Time, Foundation of Earth Science Seriés
(Prentice-Hall, Engelwood Cliffs, NJ, 1976).

21t would appear that two PSSC filis represent a partlcularly useful ad-
junct to this paper. Living in France, I have had no occasion to see them,
however, it might be useful for readers to be aware of their existence:
Random events produced by Hume and Ivey, Toronto (distributed by
Ward’s Natural Science Establishment, Inc., P.O. Box 1712, Rochester,
NY 14603) 16 mm. b/w, 31 min; Long time intervals produced by
Brown, Cal. Tech. (distributed by Ward’s Natural Science Establish-

ment, Inc., P.O. Box 1712, Rochester, NY 14603) 16 mm. b/w. 25
min.
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