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The “design” of a simple radio telescope is proposed as a multidisciplinary
exercise, bringing together radioastronomy, electronics, and the theory of

structures. The telescope can be built by relatively inexperienced students and
used to observe Jupiter bursts as well as the quiet sun (under favorable

conditions).

INTRODUCTION

As a lecturer in astronomy, I sometimes take my stu-
dents on a tour of the radio astronomical observatory at
Nangay, France. A type of question which crops up re-
markably often is “Why was the telescope/antenna built
this particular way, rather than any other? Why are
structural elements the size they are, and not smaller or
larger?”” Such questions are astonishingly difficult to an-
swer, since the design of a radio telescope brings into play
elements from various formally separate domains of
physics.

The exercise I shall outline (one might perhaps more
accurately call it a group project . . . it cannot be done in a

single session) attempts to lead the student to a better.

feeling of the various parameters involved in building a
radio telescope; it is a multidisciplinary exercise, in that
elements from quite diverse subjects (radioastronomy,
electronics, mechanics of structures, etc.) are fused together
to create a specific object. In effect, the student is led to
design a simple radio telescope, subject to a number of
“realistic” constraints; the student learns the art of finding
an optimal solution to a particular problem.

The exercise is most suitable for reasonably advanced
students who have already mastered (or have the basic
knowledge to acquire readily) the essential notions which
will be used. Less advanced students can play the same
game, but will have to assume some of the rules. This is not
really a drawback: in practice, an engineer uses standard
formulas. Since the exercise is a multidisciplinary one, it
need not be restricted to astronomy students; for example,
an electronics class can thereby learn some astronomy and
appreciate the problems of radio astronomers. Finally, if
there is enough money available, the telescope can even be
built: pedagogically, this is a most valuable end result, since
it moves the game from a purely theoretical level to prac-
tice.

In this exercise, one important choice has been deliber-
ately taken out of the hands of the student—*“build or buy.”
Almost suitable antennas are apparently available in the
U.S. and can be easily retuned for radio-astronomy pur-
poses, but [ am unable to make specific recommendations
since I do not know the American market—interested
parties will have to consult the appropriate ham radio shops.
While buying such an antenna would of course enable one
to obtain Jovian “squiggles” sooner, I believe that it would
detract from the initial motivation of the exercise. Only by
*‘getting one’s hands dirty” can one really learn about the
constraints imposed by physics, electronics, and me-
chanics.
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The exercise can be readily divided into a number of
sections: (a) the basic problem of how a radio telescope
works; (b) definition of the source we wish to observe, and
an investigation of how its properties define the basic
electronic constraints; (¢) choice of an antenna type which
best satisfies these constraints, and the translation of (b)
into antenna parameters; (d) search for a viable mechanical
realization of (c).

To add spice to the game, we impose a certain number
of “realistic” constraints: we use a standard communica-
tions receiver; we “buy” our material off the shelf; we can
build or buy any supplementary electronic equipment
needed; we can “spend” only up to some fixed sum of money
(1 spent $400 in France) for an antenna and its support.

Different students will, of course, compute different
configurations, most of which will turn out to exceed the
“budget” or to be insufficently sensitive. They should be
allowed to go through with their analysis—this exercise is
a kind of simuiacrum of the world of research!

Many of the basic concepts used in this paper are ex-
plained in considerable detail in Kraus!-? and in Schelkunoff
and Friis.?

BASIC RADIO-TELESCOPE CONCEPTS

This part of the exercise is best presented by analogy
with the optical case. One might begin by asking how an
optical astronomer “sees” the world—the immediate an-
swer is, of course, via a photographic plate, a television
camera, or some suchlike device. In short, the optical as-
tronomer obtains first an extended image, which he there-
after analyses.

Is this true of the radio astronomer? Why not? The dis-
cussion can be made in terms of parabolic radio anten-
nae—this is not the kind we shall “build,” but the same
concepts apply and the discussion is much more straight-
forward.

The radio astronomer does not “se¢” an image directly.
The parabolic mirror does, of course, produce an image;
however, “radio-photographic plates” do not exist and the
radio astronomer is limited to sampling the energy coming
to him from different parts of the image, which he recon-
structs a posteriori in the manner of a mosaic. The mirror-
antenna system is just a device for absorbing energy from
finite regions of the sky: it is analogous to an optical pho-
tometer.

How big are these regions? Here again, we return to the
optical analogy—is a point source reproduced as a point
image?

The Airy disc of a lens or mirror (=\/D rad, D being the
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aperture diameter) represents the smallest angular extent
of the sky one can resolve. An optical image is essentially
just a “mosaic” of regions each of which has angular extent
~\/D (leaving aside atmospheric effects). Consequently,
in the case of a radio telescope, the basic “mosaic” size is
also #\/D rad; energy is absorbed at a given observation
only from such “mosaic” elements. This is simply the an-
tenna “lobe.”

It is interesting to note that image reconstruction from
“mosaic” elements has its counterpart in modern optical
astronomy. Photographic plates are often analyzed by
electronic devices, whose scanning elements have of course
a finite size. The electronically reconstructed image is then
a mosaic of tiny squares. This is also true generally in sat-
ellite astronomy, where the image, projected on some
suitable surface, is electronically dissected and transmitted
to earth by radio. In these cases, it is usual to refer to “pic-
ture elements” or pixels.

Using simple radio telescopes, a planet such as Jupiter,
or even a body as large as the Sun, has a much smaller an-
gular extent than the basic pixel so that we absorb energy
not only from the given source, but also from surrounding
regions of the sky. If the latter emits energy, the contribu-
tion from the source is likely to be a small fraction of sky
signal—how can we improve the *““contrast”? (to use an
optical term).

The notion of antenna gain can now be introduced via the
optical analogy. The solid angle of the Airy discis 2, @ ~
wA2/D? ~ 7 2A\2/4S, where S is the surface area of the
aperture.

This type of relation holds for any radiation absorbing
device; in the radio domain, it is usual to define a main lobe
solid angle and an effective collecting surface through QS
= A2,

This relation is used even if the antenna has no “aperture”
in the optical sense, for example, a dipole. S is then just a
measure of the efficiency with which the antenna absorbs
incident energy (one might compare it to the “cross-section”
used in nuclear physics) and can be calculated for any given
system. In all calculations, we can use S wherever an ap-
erture area would have been appropriate.

Consider now a small source observed against a uniform
background. The smalier the value of €2, the smaller the
contribution from the sky, and therefore the larger the
relative contribution from the source (so long as its solid
angle remains less than Q). Consequently, the ratio 47/}
is a measure of how good the “contrast” is between the
source and the background. This is known as the antenna
gain G. Therefore, G = 47 /Q = 478/ 2. We emphasize
here that the antenna gain is a dimensionless quantity. Its
value is a function of wavelength and (through S) of an-
tenna design.

At this stage, it is useful to note that G can be made ar-
bitrarily large for a given A simply by increasing S, but this
is expensive, and hence the need to find an optimal solution
for a given application.

Students often do not easily grasp the important idea that
the energy received from the source has to exceed a certain
finite amount before it can be seen against the background;
this is because they are not accustomed to signals which
arrive in the form of noise. It is necessary to show chart
recordings of celestial radio sources, such as the quiet Sun,
galactic emission, and so on; a good technique is to play with
computer generated noise to show that if the signal is too
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small with respect to the random fluctuations, it cannot be
distinguished. The recipe then emerges in a natural way:
the signal must be several times larger than the rms am-
plitude of the background fluctuations.

What is the rms amplitude of the background fluctua-
tions? This is given by Nyquist’s theorem and some statis-
tical reasoning which the students can be asked to demon-
strate or, at a lower level, it can be given them.

W = 2kT/(AvAL)\/2,

where W is the rms noise amplitude; Av is the bandwidth
of the apparatus; At is the period of time over which a given
measurement will be taken; 7T is the temperature of the
background signal.

Here again, optimization will rear its head; clearly, the
noise can be reduced to any desired extent by increasing Av
or At but we then lose information about the frequency or
time structure of the source. Worse still, if Av is too large,
we risk picking up locally generated radiofrequency inter-
ference.

To compare the source with the background, one must
express both in terms of equivalent parameters; since as-
tronomers have different ways of describing different types
of source, one should first understand their language and
we shall do this in an intuitive way.

Consider an extended black body source of surface area
2 and temperature T. In this context, “extended” signifies
merely that the source solid angle at the telescope is larger
than the telescope main lobe solid angle @ (or the Airy disc,
in optical terms). According to Planck’s radiation law, the
source radiates per unit bandwidth at the frequency » a
power W,

W, = 2mwh Zv3/c2(e®/KT — 1) WHz !,

where % is Planck’s constant and K is Boltzmann’s con-
stant.

In the radio domain, hv « K7, which gives the Ray-
leigh-Jeans law

W, = 2w Zv2KT/c2.

Now, each unit area of surface radiates uniformly out-
wards into a solid angle 27; since the telescope receiving
area subtends a solid angle S/d? at the source, d being its
distance, the telescope can only intercept a fraction S /27d?
of the energy radiated by unit area.

Moreover, through its lobe, the telescope can “see’” only
a fraction d2/22 of the emitting surface; therefore, the
power absorbed by the telescope P is given by

S Qd?

ext — e W —1
V= Tpar 2y e WHZT,

where ext stands for extended. Substituting the expressions
for @ and W, one finds immediately P$*' = KT/2.

In this estimate we have ignored such details as the shape
of the emitting surface; assuming Lambert’s law and using
the proper photometric formulae (Kraus?), one obtains the
exact expression P = 2KT.

The quantity measured at the antenna terminals is P,.
We note that in the case of an extended source, a mea-
surement of the absorbed power gives directly the temper-
ature of the source whatever the antenna size. This quantity
is called the brightness temperature of the extended
source.
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Now, sources do not necessarily radiate as black bodies;
in such a case, the above relation has no particular physical
significance. However, astronomers tend to define the
quantity P$*'/2K as the brightness temperature: it is then
just a convenient mnemonic for absorbed power, and its
identification with a thermodynamic temperature depends
on the source itself. For example, sky emission (with which
we shall be concerned) is usually parametrised in terms of
sky brightness temperature.

Consider now a source having solid angle w << €. In this
case, the telescope intercepts energy radiated by half of the
emitting surface, whence

Pimall = (S/27d2)(1/2)W, W Hz~!
= (N2/4m)(2w2Z/d?*c?)v2 KT
= (1/2)(w/KT.

Again, a rigorous calculation leads to P{™ = 2(w/Q)KT.
In this case, the power absorbed is not a direct measure of
the temperature (even if the source has a black body spec-
trum); one must also know the source size and the antenna
lobe. Knowing these quantities, the temperature one obtains
is called the source brightness temperature; again, its
identification with a thermodynamic temperature depends
on the physics of the source.

One often finds the received power parametrised in terms
of the flux density F,, this is defined as the power per unit
surface area of telescope F, = P,/S. For a small source, this
is quite useful, being a function of source parameters
only

Fmall = 2 KTA2 WHz !m—2

For extended sources, the notion is less useful F&*' =
2KT/S.

A final definition used by astronomers is the antenna
temperature: whatever the source, the antenna temperature
T, is defined by P, = 2KT,. Again, this is just another way
of expressing the power absorbed by the antenna (the rig-
orous definition is in terms of the operations carried out in
order to measure this quantity—however, for our purposes,
the outcome is the same). For an extended source T, =
brightness temperature. For a small source T, = (w/) X
brightness temperature

One can now pick up the threads of the basic discussion.
We are choosing to observe small sources against an ex-
tended source (the sky); all parameters must be expressed
in the same form. Tables and graphs usually quote the
strength of small sources in terms of flux densities while sky
emission is given as an antenna temperature (see Fig. 2).
To save unnecessary computing, it is convenient to express
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the latter as a flux density, consequently Fyack = 2KT/S,
where back stands for background. Consequently, the
background radiation will have an rms flux density variation
given by

Fems = 2KT/S(AvAD)!/2.

To distinguish the source from the background, Fyou,/
Frms (Which is the signal to noise ratlo) must exceed some
critical number, say five, whence,

Foour > 5 [2KT/S(A11At) 1/2]
= [40r KT/GA2(AvAr)'/2).

The student is now ready to calculate all the basic an-
tenna parameters, for a given source and background.

CHOICE OF SOURCE AND FREQUENCY

A good procedure is to let the student discover for him-
self which, out of a certain selection of sources, is the most
viable. Some students will try to “build” a tclescope for
impossibly faint quasars!

We shall fix our ideas on a Jovian eruption receiver; it will
turn out that the device we build can be used to observe solar
outbursts as well as the quiet Sun (under favorable condi-
tions). The reasons are clear. These are by far the strongest
celestial sources. Data on Jupiter can be found in Carr and
Desch? (Fig. 1 shows the peak flux density as a function of
frequency) and data on the radio sun in, for example, Er-
ickson et al.> or Gibson®; Kraus? gives a graph of the sky
temperature as a function of frequency, which is reproduced
schematically in Fig. 2. The student will now be confronted
by another problem of optimization. The background flux
drops with increasing frequency but so does the flux emitted
by Jupiter. What is a reasonable upper limit to the fre-
quency? The lower limit is troublsome too. The flux rises
up to 18 MHz but so does the importance of man-made
interference. In short, in which frequency range will Jupiter
be reasonably strong, and free from man made and galactic
noise?

It turns out that 25-30 MHz is a good range. Here, the
maximum flux density emitted by Jupiter is ~ 1072} Wm =2
Hz~!. On the other hand, the sky temperature at 25-30
MHz is in the range 4 X 10*-5 X 10° K. Consequently,
taking the most unfavorable case, the telescope parameters
have to satisfy

10721 > 40w K T/GA2(AvAr)' /2,
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Fig. 3. Schematic diagram of a Log Periodic antenna.

whence
G(AvAHY/2>2.6 X 103, (1)

Any configuration will have to satisfy this criterion in
order to see Jovian bursts with any certitude. The definition
of the telescope comes next.

THE TELESCOPE

It is clear from Eq. (1) that if Av and At are sufficient-
ly large, G can be quite small. However, we were “given”
a standard receiver; a typical maximum bandwidth for such
a device is about 20 kHz. With a chart recorder, one can
manually integrate for several seconds. To fix our ideas, let
us take Az = 5 sec. With these figures G =~ 9.

It is instructive to compute the effective surface area
needed: it turns out to be of the order of 20 m2. Is it mean-
ingful to build a 20-m? dish for v ~ 30 MHz?

A simple form of antenna is the dipole. This is essentially
two colinear sections of a conducting material placed close
together; the receiver is connected to the center. If the total
length is A/2, the dipole will produce a particularly strong
current for an incident signal of wavelength A. Can one such
dipole give the necessary gain? Advanced students can be
asked to calculate the gain of a dipole from its radiation
pattern—it turns out to be 3/2, much too small. However,
it is worthwhile noting that were we to build a special re-
ceiver, with a sufficiently large AN and Az, a simple dipole
could work (once again a simulacrum of the world of
modern research—do we prefer to invest in special elec-
tronics or special hardware?). An intuitive solution for small
Av and Ar immediately springs to mind. The gain is a
function of effective aperture area S; one might therefore
connect together several dipoles, and these as a whole must
have a larger gain than a single unit.

The single dipole has another property which one must
consider rather carefully. A resonator responds principally
to one frequency vg; however, energy losses damp out the
oscillation on a time scale 7: 7 = E /(dE/dr), where E is the
energy stored in the system and dE/dt is the rate of loss of
cnergy. This means that oscillations will be maintained even
if the frequency of the exciting signal is vo + Av, providing
that Ay < 1/7. Aw is the bandwidth of the resonator; it is
often expressed as Av/v = (dE/dr)/vE or in terms of the
angular frequency w: Aw/w = 2w(dE/dr)/wE. The
quantity wE/(dE/dr) is called the “Q” of the system; when
the energy loss is small, Q is high and the frequency re-
sponse is narrow.

Now, we have seen that the signal/noise ratio depends
on the bandwidth of the received signal. Using the band-
width of a communication receiver—20 kHz—the telescope
must have a gain of at least nine. Consequently, the tele-
scope bandwidth must not be less than 20 kHz.

Advanced electronics students may be made to find the
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bandwidth of a simple dipole; it is given by Schelkunoff and
Friis® Aw/w = 46.5/Z,, where Z, is the characteristic
impedance of a dipole and is equal to 120 [In (2/,,2/D) —
1)], 2112 is the total length of the dipole, and D is the ex-
ternal diameter of the dipole. An apparently more accurate
expression for Z,, which we use in practise, is given by
Carrel’

Zy=120[In (2/,/2/D) — 2.25]. 2

At 30 MHz, 2/,/, = 6 m. Taking D = 2 cm as a typical
diameter, the characteristic impedance is about 414 £; the
relative bandwidth of this kind of dipole is thus given by
Av/v = 46.5/414 ~ 0.1. Therefore, a single dipole will
certainly respond uniformly over the bandwidth accepted
by the receiver.

However, our telescope should satisfy another condition.
We have chosen to work in the 25-30 MHz range, but we
have not specified the exact frequency. This was deliber-
ate—local interference is difficult to forsee in advance and
may vary from time to time, so it is desirable to have the
freedom to tune to a “quiet” part of the spectrum after the
telescope has been installed. Therefore, the instrument must
respond uniformly over the entire band in which we have
chosen to work. The single dipole, with its 3-MHz band-
width, satisfies this condition only marginally. The situation
will be much worse if one chooses to work in a broader
frequency range, such as 20-30 MHz, in order to benefit,
when interference is low, from the increased Jovian flux
density at low frequencies.

It follows that our telescope should consist of several
dipoles, arranged so as to have a broad frequency response.
This can be done by noting that if the dimensions of a dipole
which resonates at frequency v are scaled by a factor 7, it
will have its original electrical properties but at the new
frequency 7v. Now, a set of dipoles, whose lengths vary from
L in to Liyax, will as a whole be sensitive to a wavelength
range 2L ,in — 2Lmax; moreover if the lengths L, and sep-
arations d, of intermediate dipoles follow the simple rela-
tion:

Ln = TLn—ly
d,, = Tdn_l, (3)

where 7 is a number <1, the response of the dipole system
is essentially constant in the wavelength range 2L, —
2Lmax-

This 1s called the “log-periodic” antenna, and is the type
we shall design. It is shown schematically in Fig. 3: the di-
poles feed a common waveguide in the form of two parallel
conductors. By its very nature it is rather insensitive to small
errors in construction and, as we shall see, its impedance is
easy to adjust.

The most recent description and explanation of this type
of antenna may be found in Smith?®; other useful references
are Carrel” and Jasik.®

In a nutshell, the structure of log periodic antennae,
drawn schematically in Fig. 4, is defined by Lin, Lmax» 75

Fig. 4. Basic parameters of a Log Periodic antenna.
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and « (the angle by which the ends of the dipoles converge
towards the central conductors). Now, the grain of such a
system is a function of the number of dipoles which are not
too far from resonance at a given frequency, and this is a
function of both 7 and «: the closer 7 is to 1, the larger the
number of dipoles between L.« and L ,; the smaller the
value of «, the larger the number of dipoles having almost
the same length. Therefore the gain is a rising function of
Tand l/a.

Exact calculations have been made, and are summarized
in Fig. 5.

The number of dipoles N for a given frequency range is
easily shown to be approximately

108 (Amin/xmax)
log (1/7)
A more accurate expression, which takes into account an-
tenna end corrections is
log (0.5 Amin/0-4 Amax)
log (1/7)

We have already estimated how much gain is needed.
The student now has to play about, to get a feel for the re-
sults. Is it better to have a low 7 (and so relatively few di-
poles) but with a very small o (which therefore gives a very
long and unwieldy telescope), or is there some convenient
optimum? There is, in fact, no unique solution; the answer
depends on purely technical constraints and this is the whole
point of the exercice.

A particular solution in the 25-30 MHz range is Ly, =
39m, Liyax =5.9m, 7 =955 a=13° N = 10. This gives
an antenna which is just over 4 m long with a gain of 10.

The electrical parameters of the antenna are now fixed.
How do we translate into hardware?

N~1+

N=1+

TECHNICAL REALIZATION OF THE
TELESCOPE

A technically viable and electrically advantageous way
of constructing the telescope has already been indicated in
Fig. 3.

The waveguide is a parallel conductor, from which
emerges 1/2 of a complete dipole. The dipoles are spaced
along the parallel conductor according to Eq. (3).

A formal operation consists of computing the positions
of the dipoles along the central conductor.

A more subtle problem is in the choice of the materials
from which to construct the antenna. Metallic rods imme-
diately spring to mind but should they be solid or hollow?
Steel or aluminum? What should their cross section be?

This is where the student learns about cantilevers and
bending moments. A tube of length L, internal-diameter d
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and outside diameter D, fixed at one end, bends under its
own weight by an amount f,'° f = PL4/8EI, where P is the
weight/meter of tube, E is the modulus of elasticity, and
I is the w(D* — d*) /64.

Playing about with this formula, for different values of
P, E, D, and d soon teaches the student that steel is out of
the question, and that hollow tubes are more efficient than
solid ones (they are also cheaper!). An important point to
hammer home is that, from an electrical point of view,
hollow tubes are just as good as rods (skin effect). The
student must also learn not to be too fussy; after all, an el-
ement can be allowed to bend by a few centimeters, since
this is small with respect to the length and wavelength.

The diameter of the central conductors poses an inter-
esting problem. Antennae can be designed so that a heavy
nonconducting supporting member holds all of the dipoles.
The central conductors can then be small since they have
no structural importance. However, impedance matching
(dipoles to conductor, conductor to receiver) is then some-
what subtle and requires an electrical solution. A simple
procedure, which simultaneously solves the mechanical and
electrical problems, consists of forcing the dipoles into the
conductors themselves. The conductors are then also sup-
porting elements.

This introduces a mechanical constraint. The conductor
must not bend under the combined weight of the dipoles,
must be significantly thicker than any of the dipoles while
not being too heavy, etc. With this solution, an additional
electrical constraint appears for the dipole elements. The
impedance presented by each dipole to the central wave-
guide is a function of dipole length and diameter, and for
optimal operation each dipole should present the same
impedance. The impedance is given by Eq. (2); we can see
that since the dipole elements are of different lengths, their
diameters will be different also.

We have finally obtained the mechanical parameters of
a possible antenna. Were we to manufacture the tubes
ourselves, these could even be considered as the working
numbers.

Unfortunately, we “buy” our material from a manu-
facturer, who supplies tubes only in certain diameters and
lengths, which the instructor can find by obtaining a cata-
logue. Almost certainly, most of the diameters we have just
calculated simply do not exist. One has to make do with the
nearest approximation. For the central conductor, should
one take the upper or lower available diameter? How should
one group the diameters of the dipoles, so that their im-
pedances do not vary too much from their average
value?

The lengths of the tubes can also cause headaches.
Standard lengths are certainly not simple multiples of the
numbers we need, and if one is not careful, one ends up
throwing away as much as a half of what has been acquired.
One must not forget to add to the lengths of the dipole ele-
ments the diameter of the central conductor. The dipole
elements have to be held somehow! How to group the
lengths so as to fit the standard modules? Can one, just by
changing the initial electrical specification by an insignif-
icant amount, reduce by a large fraction the amount of
material to be bought? One begins to see how the original
choice really does affect the final design.

Finally, we have a “working” design. Different students
will, of course, have found different parameters, as a con-
sequence of errors, different starting conditions, etc. Let
them fight it out: which design is the better one? Table 1
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Table 1. Dimensions of a log periodic antenna for the 25-30 MHz
range.

Distance from External
Dipole longest dipole L diameter
No. (inm) (inm) (in m)
1 0 2.94 0.025
2 0.577 2.808 0.025
3 1.128 2.731 0.025
4 1.654 2.561 0.02
5 2.157 2.445 0.02
6 2.637 2.335 0.02
7 3.095 2.230 0.02
8 3.533 2.13 0.016
9 3.95 2.034 0.016
10 4.35 1.943 0.016

shows a representative set of figures, for material available
in France.

ELECTRICAL CONNECTION TO THE
RECEIVER

We have now, in principle, the mechanical description
of an antenna which can deliver a signal such that the
chosen source is distinguishable from sky and galactic noise.
This signal must now be detected by a receiver, and re-
corded.

Standard communication receivers have an input im-
pedance of 75 €. To prevent losses, the parallel conductor
must also present, at the input terminals, an impedance of
75 €. This is where we see one of the principal advantages
of this type of antenna: the impedance Z of two parallel
conductors, each of diameter D separated by a centre to
center distance S is given by

Zy = 120/cosh(S/D) €.

Once again, electronics students may be made to find or
prove this formula.

For Zog = 75 Q, this gives S/D = 1.2. Clearly, such an
antenna can easily be “tuned” to any input impedance one
likes, simply by changing the separation of the parallel
conductors.

The next problem is analogous to our original design
constraint. The power from the source had to be greater
than the fluctuations due to background. In the present case,
the signal at the receiver terminals must exceed the fluc-
tuations due to receiver noise.

The noise of a reasonably good communications receiver
corresponds to an rms voltage of about 1 uV at the input
terminals. Consequently, the power delivered up by the
antenna has to correspond to an rms voltage of at least, say,
2 uV.

Now, if the antenna absorbs a power W, one has W =
(V2) /2R where (V2)!/2 is the rms voltage and R is the
antenna impedance. :

The antenna has been optimized for Jovian bursts; using
the design data

10721 A2G Av
8

Note the extra factor of 1/2 which has been introduced. A
dipole antenna responds to only one polarization vector,

W=10"2S Av/2 = ~0.8X 10715 W.
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which reduces by one-half the power absorbed from an
unpolarized source.
Consequently,

(V) =08 X 10713 X75X2=12X10"13
(VH)1/2=4X1077 V.

Therefore, our antenna with its gain of 10 cannot alone
give a singal which exceeds the receiver noise—the power
is too small by a factor of about 16. Some students will react
by redesigning a monstrous antenna with a gain of 160; let
them, it will be a good lesson. In fact, all we need to do is to
attach a good pre-amplifier at the antenna output, to boost
the signal by about 20 before entering the receiver.

The type of pre-amplifier chosen will in principle be de-
termined by noise considerations. The thermal noise gen-
erated by an amplifier stage may be parametrised in terms
of a noise temperature T which represents the equivalent
power fluctuations of a resistance connected across the
antenna terminals. The power delivered by the antenna has
to be sufficiently smaller than the rms value of these fluc-
tuations.

Manufacturers generally quote the noise temperature
in terms of the noise figure F (in dB):

F = 10log(1 + Tn/290).

It is quite easy to obtain high gain pre-amplifiers with a
noise figure of less than 10. It is easy to show that the noise
power passed on to the receiver from such an amplifier is
negligible with respect to the power absorbed from Ju-
piter.

MOUNTING THE ANTENNA

We have now a viable radio-astronomy antenna. How
should we mount it? This is another good example of how
the original constraints define the end result.

One can think up quite complicated adjustable equatorial
mountings but is this necessary? The antenna has a gain of
about 10. Therefore, its lobe extends to about 47 /10 rad?,
which amounts to a resolving power of about 1 rad, or about
60° (in fact, the resolving power is not the same parallel and
perpendicular to the dipole plane; however, this hardly af-
fects the argument). Therefore, for practical purposes, a
fixed antenna inclined at 45° and in the plane of the me-
ridian, will be quite adequate!

FINAL REMARKS

Many astronomy courses dismiss telescope design in a
few words. At the very best, one might find a tedious dis-
cussion of various kinds of optical aberrations, or the dif-
ferent places around a telescope where one might find a
focal plane. Radio telescopes are generally treated even less
well; indeed for many practising radio astronomers, their
instrument is just a heap of wire and a black box. This is
rather sad. Radio-telescope design is not just a technical
problem, but brings into play much good physics, and in
particular obliges one to use a variety of different skills to
solve a single problem.

Electronics students often suffer from the converse
problem. They know the theory, but the applications are
always rather contrived and pedantic. This exercise brings
electronics and the theory of structures into the astronomy
classroom, and astronomy to the budding engineer.
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Note added in proof.

In an interference-free region of France, and using a 27
dB preamplifier, | was able to measure the continuous de-
cametric emission of the sun with the antenna described in
this paper, and so deduce the temperature of the upper co-
rona. The result is so surprising (>10° K) for many students
(the photospheric temperature being only #6000 K, mea-
surable by a simple bolometer consisting of a piece of
blackened brass), that the experiment is worth doing for its
own sake.
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