LOFAR and the search for spatial resolution in the outer solar corona

Jean-Claude Vial
Institut d'Astrophysique Spatiale, Orsay, France

LOFAR characteristics of interest

Frequencies: $\quad 10-240 \mathrm{MHz}$

$$
f_{p}->n_{e}: \quad 1.210^{6}-710^{8} \mathrm{~cm}^{-3}
$$

Angular resolution : 0.64 arcsec at 240 MHz

Sensitivity of 0.03 mJy at $\mathbf{2 0 0} \mathbf{~ M H z}$

Large fov
High time resolution

What I will not talk about

Radio Bursts (Type III, ..)
Space Weather (Coronal Mass Ejection (CME) warning, ...)
Active sounding

A few evidences of fine structure in the solar atmosphere

Magnetic flux Tubes in the photosphere < $\mathbf{1 0 0}$ km

Spicules in the chromosphere fibers of $\mathbf{2 0} \mathbf{~ k m}$ diameter

Tangential discontinuities in the corona one order of magnitude change of the density across a 100 km boundary (Koutchmy)

Radio Scintillations in the corona density fluctuations at $1 \mathbf{k m}$ scale!

Fibers in prominences diameters of about 10 km ?

Aschwanden et al. 2000

The case of the solar corona (1)

Expansion of flux tubes Models

$$
\text { ff }->1 ?
$$

But (very) small structures are required : scale of processes (Current Sheets:
a few km ? A few 100 m ?)
turbulent cascade : dissipation at smaller scales

The case of the solar corona (2)

Origin of the fast wind :
the fine structure of polar plumes is lost above 4 Rs

The case of the solar corona (3)

Propagation of magnetic clouds (plasmoïds) : Source of wind if enough events

Koutchmv etal. 1994

Fine structure of CMEs

Topology (helicity) :
help for determining the best model

LOFAR Detectability

1 sfu = 10000 Jy

A one arcsec pixel receives less than 10^{-7} sfu ($\mathbf{2}$ Rs Sun) or 10^{-3} Jy above LOFAR sensitivity ?

Take large spectral bands ?

Pros:

"Quiet Sun" : possibility to add up signal -> arcsec resolution -> in the corona !!
"dynamic Sun" : possibility to detect any event (plasmoïd, reconnection/heating episode, ...) with a msec resolution ?!

