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Introduction 

• e.m. waves = main information vector in astronomy 
   (+ cosmic rays, dust, neutrinos, gravitational waves...)

• Atmospheric transparency :

• Observation = Energy collection (of photons) + Measurement

Radio window = 2nd transparent window of the atmosphere



       λ =  0.1  –  1 cm                      ~30 m   
                 ⇓      ⇓               ⇓

• Access to :  λ  ≤  0.1 cm    &    λ ≥ 30 m   ⇒  Space
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• Some definitions & reminders: Fourier transform ......

Signal (electric field) : E(t) 

Spectrum :              Ē(ν) = ∫∞ E(t) exp(-i2πνt) dt = TF[E(t)]  

thus inversely :           E(t) = ∫∞ Ē(ν) exp(+i2πνt) dν = TF-1[Ē(ν)] ) 

Spectral component :      Ē(νo) = ∫∞ E(t) exp(-i2πνot) dt 

⇒  practical calculation :   Ē(νo) = (1/ΔT) ∫ΔT E(t) exp(-i2πνot) dt    ( ΔT  >> 1/2πνo ) 

                    Ē(νo) = |Ē(νo)| exp(iφ) = |Ē(νo)| ( cosφ + i sinφ )  

Signal at frequency νo :    E(t)|νo = ∫∞ Ē(ν) exp(+i2πνt) δ(ν-νo) dν 

                        = Ē(νo) exp(+i2πνot) 

                        = |Ē(νo)| exp[+i(2πνot + φ)]      ( but E(t)|νo  real ) 

                ⇒  E(t)|νo = |Ē(νo)| cos(2πνot + φ) 

Spectral power :     P(ν) = |Ē(ν)|2    (often mistakenly referred to as the « spectrum ») 

⇒  Ē(ν)   hereafter noted  E(ν) 

t & ν = conjugate variables 

E(t) & E(ν) = Fourier pairs



E(t)  real  ⇒  E(-ν) = E(ν)* 

Convolution product :    h(x) = ∫∞ f(y).g(x-y) dy = f  ⊗ g 

              ⇒ TF (h) = TF (f  ⊗ g) = TF(f) × TF(g) 

Auto-correlation function : C(τ) = ∫∞ E(t).E(t+τ) dt 

              ⇒ TF [C(τ)] = C(ν) = E(v) × E(-v) = E(v) × E(ν)* = |E(ν)|2 = P(ν) 

               = Wiener-Khintchine Theorem 

The Fourier Transform conserves energy :  ∫∞|E(t)|2 dt = ∫∞|E(ν)|2 dν 

Translation and Modulation :   E(t) × cos(2πνot) = E(t) × ½(exp(i2πνot) + exp(-i2πνot))  = E’(t) 

              ⇒ TF[ E(t) × cos(2πνot) ] = E’(ν) = ½ [ E(ν-νo) + E(ν+νo) ]

ν ν+νoν-νo

• Some definitions & reminders: Fourier transform ......

E(t) 1 cos(2πνot) sin(2πνot) Π(t) 
=1  if  |t|≤ ½, =0  else

exp(-π2t2) Random 
Gaussian / Uniform

E(ν) δ ½[δ(νo)+δ(-νo)] ½i[δ(νo)-δ(-νo)] sinc(ν) 
=sin(πν)/πν

exp(-ν2) ~Flat 
Random Gaussian / +δ



• Coherent detection = "Radio" domain

• Techniques adapted from radar and telecommunications 
• Boundary between incoherent / coherent detection = technological limit        

           "Visible", IR ... / Radio 

rises in frequency with time (e.g. Lasers as O.L. ...) 

→ Current limit ≈ some THz = (λ ≤ 0.1 mm)

Incoherent detection Coherent detection

Measurement  of <E(t)2> or <E(t)|ν2> 
⇒ total flux only 

⇒ HF (ν ≥ νIR) 

⇒ bolometers (1 pixel-imagery), 
     micro-bolometer arrays, 
     CCD, micro-channels… 

Direct mesurement of  E(t) or E(t)|ν  
⇒  |E| & ϕ 

⇒  ν ≤ νsub-mm 

⇒ Radio receivers 
- in baseband: ADC for ν ≤  ~1 GHz 
- heterodyne: E(t) → E’(t) = E(t)×cos(2πνOLt) 
  ⇒ translation in frequency of the spectrum, requires   
       phase-preserving oscillators and mixers



Historical milestones

1800 Existence of invisible light William Herschel

1889 Radio wave = e.m. wave = light wave : propagation in straight line at c in 
a vacuum, 1st emission/reception 
∃? cosmic radio waves ?    (but no radio technology available)

Heinrich Hertz 
Henri Deslandres

1900-5 1st attempts to detect the Sun       (175m wire antenna + galvanometer) 
→ failed (sensitivity, solar minimum…)

Oliver Lodge 
Charles Nordmann

1930-33 Birth of Radioastronomy : ν = 20.55 MHz (λ=14.6 m) 
→ lightning storms + emission from galactic center (fixed sidereal time)

Karl Jansky



1936 Sky map at  ν =160 MHz (λ=1.87 m) with a parabola   ∅=10m 
Solar waximum  → radio noise … unidentified !

Grote Reber

1940-45 Development of antenna and receiver technology for Radar
1942-45 Detection of the Sun at  ν =150 MHz (λ=2 m – Radar jamming  → 

published in 1945 !) and at 3 & 10 GHz (λ=3 & 10 cm)
James Hey 

1946 Thermal radio emission from the Moon US, Australia

1946 Start of radio astronomy in France Yves Rocard



1947 RADAR-astronomy (meteorites …) J. Hey & G. S. Stewart

Leiden survey of HI (Oort 1958)

•

1951-63 HI line at λ~21 cm (ν =1420 MHz) → ubiquitous 
→ development of Radioastronomy 
→ spiral structure of our Galaxy

(Hendrik van de Hulst) 
Harold Ewen & Edward Purcell 
Jan Oort

1949-60 Radiogalaxies James Hey



1950’s Radio observatories : Cambridge, Jodrell Bank, 
Westerbork, Parkes, Greenbank, Arecibo ...

1955 First solar radiotelescopes in Nançay Emile-Jacques Blum, André Boischot ...
1953 Foundation of the Nançay Radio Observatory Jean-Louis Steinberg, Jean-François Denisse



1955 Jupiter’s decametric radiation (ν =22 MHz, λ=13.6 m)  
⇒  Existence and amplitude of Jovian ⎥B⎥

Bernard Burke & 
Kenneth Franklin

visible radio

1958 Jupiter’s decimetric radiation (ν =3 GHz, λ=10 cm)  
⇒   Proof of existence of B Jupiter, angle (Ω,B) ~10°

Russell Sloanaker



1960 Rydberg atoms : ΔE=(1/na2 - 1/nb2)×Ei Nikolaï Kardashev

1965 Cosmological background at 3 °K (λ≈mm) Arno Penzias & Robert Wilson

1963-68 OH & complex molecules
1964 TKR (Terrestrial Kilometric Radiation) at ν=300 kHz (λ=1 km) 

→ Space Radioastronomy (Elektron satellite)
E. A. Benediktov

1965 Rotation of Mercury by RADAR from Arecibo (88 59 days) Gordon Pettengill & Rolf Dyce

1963 Quasars (3C273)  



1965 Inauguration of Nançay decimeter Radio Telescope
1960’s Aperture synthesis Martin Ryle
1967-68 Pulsars Antony Hewish & Jocelyn Bell

Pulsars



1970 LF  VLBI on Jupiter : Instantaneous decameter source ≤400 km  George Dulk
1970's LF antenna arrays (Nançay, Kharkov, Boulder, Floride) … 

VLBI
1980's Voyager (LF space planetary radioastronomy) 

IRAM
1974-93 Milliseconde pulsar & gravitational waves Russell Hulse & Joseph Taylor
1990’s Ulysses, Galileo, Cassini 

VLA, GMRT



1990’s COBE: fluctuations of the cosmological background George Smoot & John Mather

2010’s ALMA, LOFAR, Planck

1992 1st exoplanet around a pulsar Alexander Wolszczan
2000’s Space radio astronomy : Cassini, Stereo …
2006-7 RRATs, FRBs Moira McLaughlin, Duncan Lorimer



2030’s Radioastronomy on the Moon ? …
2020’s SKA, Microsatellite constellations ? 
2023 Gravitational waves from galactic giant black holes EPTA, IPTA

EPTA

2021

2023



Specific features of Radioastronomy

• « Physical"

visible radio

→ Aspect of sources ≠ from "visible" (Jupiter decimeter emission, RadioGalaxies...)

visible radio



→ New sources :  
• Pulsars (3473 as of today : http://www.atnf.csiro.au/research/pulsar/psrcat/ ) 
• Radio-galaxies 
• Quasars …

http://www.atnf.csiro.au/research/pulsar/psrcat/
http://www.atnf.csiro.au/research/pulsar/psrcat/


→ Thermal emission from cold objects

B(ν) = Brightness (Luminance in optical photometry) 
T = TB = Brightness temperature

     Planck law (black body) : 
B(ν) = (2hν3/c2)/(exp(hν/kT)–1) [W m-2 Hz-1 sr-1] 
                         ⇓     ⇓ 
                      of source  from the source

NB : Flux Unit = Jansky (Jy) = f.u. = 10-26 Wm-2Hz-1 
    In Solar radioastronomy, one uses : Solar Flux Unit = s.f.u. = 10-22 Wm-2Hz-1

For  T≤100 K (ISM), ~ no thermal emission for   ν ≥ 1014 Hz 
⇒ invisible in optical range, but bright in IR & Radio

At low frequencies : hν << kT   
  (hν/kT = 4.7×10-11 ν/T ⇒  ν << 2×1010 T) 
⇒ B(ν) = 2 k TB ν2 / c2 = 2 k TB / λ2 (Rayleigh-Jeans) 
  λ(Bmax) = 3×10-3 / T   [m]  (Wien)



→ Emission processes different from optics

 TB = B(ν) λ2 / 2k   always usable in a restricted Δν spectral band 
       = temperature of the blackbody emitting the same brightness B(ν) at this frequency  
       ≠ physical temperature of the source if not a blackbody

- Continuum not only thermal : ∃ numerous non-thermal emission processes 
 ⇒ spectrum  ≠ ν2  (ν-α notably)

Ex: TB ≥ 1012 K for Solar radio emissions, TB ≥ 1018 K (Jupiter),  TB ≥ 1022 K (Pulsars)



- HI line at 21.2 cm (1420 MHz - 5×10-6 eV) 
 = "hyperfine" structure of Hydrogen atom   (preponderant in the Universe) 
   "forbidden" transition (P ~ 3×10-15 s-1, lifetime  τ ~ 1/P) 
 ⇒ very narrow line (natural width  Δω = 2πΔν ~ P) 
 ⇒ tracer of the physical conditions in the source



- Numerous molecular lines in radio 
  (calculated / measured in the laboratory / observed in space from ≥1965-70)

Energy levels Spectral domain of transitions
Electronic orbits 
Atomic vibrations 
Molecular rotations 
Hyperfine structure

Visible, UV 
IR 
Radio (mm → 
Radio         → dm)



Comet Hale-Bopp observed by IRAM 30m antenna in Spain

Ex: OH radical (comets, stellar envelopes, etc.) 
       → ∃ 4 possible transitions between 1600 and 1670 MHz (λ~18 cm), 
       = "forbidden" lines with intensity ratios  1-5-9-1



>200 organic molecules detected to date (CO, CN, H2CO, alcools, acids…) ⇒ astrochemistry

• Masers (OH, NH3, H2O) : 

1 very intense line, revaling the 
existence of a "pumping" process 
(IR radiation from nearby stars, 
etc.) + induced de-excitation



⇒ Opacity of ISM in visible light beyond ~3 kpc (<< ∅ galactic disk)

→ Scattering & Opacity : the ISM contains dust grains (r ~ qq 0.1 µm) + HI

Scattering ≠ Absorption, but lengthening of photon path increases the probability of being 
absorbed by other processes

Probability of scattering a photon λ (& fraction of incident light deflected) 
   P(λ) ∝ 1/λ4   (r << λ) ~isotropic (Rayleigh scattering) 
   P(λ) ∝ 1/λ2   (r ~ λ)  mostly forward (Mie scattering)

grains 0.1 – 0.2 µm

ionisation de HI





⇒ Reddening of the spectrum of distant objects → modifies the evaluation of T(source) 

In Radio, λ >> ⇒ P(λ) << ⇒ the Galactic disk is ~transparent 
→ galactic structure 
→ radio study of dark nebulae (dust)

→ Propagation of a radio wave depends on the electron density Ne 
     (and the magnetic field B) of the propagation medium 

⇒ probing of cosmic plasmas (Solar corona, ISM…) inaccessible in optical & IR

Plasma

Plasma

Ionosphere

Radiosource



☺ Coherent detection : direct measurement  of amplitude E, ⎥E⎥ or ⎥E2⎥, and phase ϕ 
   (fast electronics)

☺ Low photon noise 
   nphotons =    E / hν 
   ⇒ the statistical noise of photon counting 
     (to which any flux measurement ultimately reduces) is ∝     √n/n ∝ 1/√n 
   Comparison Radio / Visible (at equivalent flux) : 
     1/√nvisible / 1/√nradio = (λradio/λvisible)1/2 ≥ (1 mm / 0.5 µm)1/2 ≈ 45

Example 1 :  For a very weak radiosource : 
   S = 10-30 Wm-2Hz-1 a 100 MHz  ⇒ S / hν = 1.5×10-5 photons/m2.s.Hz 
   With b = 10 kHz & Aeff = 1000 m2  ⇒  n = 150 photons/s 
 ⇒ statistics at ~8% accuracy in 1 second (acceptable even with τ < 1 s)

Example 2 : For a very weak optical source : 
   mv = 21 (limit magnitude for a telescope of ∅ = 4-5 m), λ = 0.55 µm (yellow),  
   & filter Δλ = 0.1 µm ⇒  ∫filter S.dλ = 10-21 W/m2 = 3×10-3 photons/m2.s 
   With Aeff ≤ 100 m2  ⇒   n ≤ 0.3 photons/s   (+ atm. losses & in the receiver) 
 ⇒ τ > 500 s needed for a statistics at ~8% accuracy (1/√nτ  ≤ 8%) 
 ⇒ optical measurements less sensitive to fast flux variations

Specific features of Radioastronomy

• « Technical »



☺ RADAR astronomy = Active Radioastronomy (teledetection) 
   Echo / t ⇒ Relief mapping 
   Echo / ν ⇒ Surface (texture)

 [only comparison in visible = Laser Lunar ranging]

Example: Magellan/Venus, Saturne rings, Solar corona …



The amplitude received in the θ direction (in P) is : 
  Ē(θ) = +D/2∫-D/2 Eo exp(i2πνt) exp(-i2π x θ / λ) dx 
     = Eo exp(i2πνt)  +∞∫-∞ f(x) exp(-i2π x θ / λ) dx 
      with f(x) = 1  for   x ∈ [-D/2, +D/2], f(x) = 0 elsewhere 
  Ē(θ) = Eo exp(i2πνt)  [exp(-i2π x θ / λ) / (-i2π θ / λ)]-D/2D/2 
  Ē(θ) = D Eo exp(i2πνt)  sinc(π D θ / λ)

• Reminder: diffraction at ∞ through a rectangular aperture (1D) 

The phase shift of a ray passing through the aperture at distance x from O, in direction θ, is : 
 φ = k.x = k Δs = 2π x sinθ / λ  ( ≈ 2π x θ / λ    for small θ) 
Corresponding wave (passing through M) writes :  E = Eo exp[i(ωt-φ)] = Eo exp(i2πνt) exp(-i2π x θ / λ)

NB : Ē(θ)  =  TF(E(x)) where E(x) is the amplitude distribution on the aperture 
       (= constant for a plane wave from ∞ near the axis) 
       θ and x/λ  are conjugate variables 
   sinc(x) = sinx/x   (or its normalised form: sinc(x) = sin(πx)/πx = « 1D Airy function »)

I(θ) ∝ Ē2(θ)  ∝ sinc2(π D θ / λ)      [ 4J12(πDθ/λ)/(πDθ/λ)2  for a 2D circular aperture] 
→ Criterion for separating 2 point sources:  θ ≥ K λ / D   [K = 1.22 for an Airy function]

Angular resolution





☹ Ionosphere disturbances (same problem as ~atmosphere in optics - see below)

☹ Angular resolution of an instrument of ∅ D ~ λ/D ⇒ 107 ×< a 10m / 1 µm 
   ⇒ radio instruments need to be large, 
   ⇒ signal must be transporter over long distances

Ex:    Human eye : ∅(pupil) = 2-8 mm (day/night) ⇒ λ/D = 0.25' – 1'at  λ = 0.5 µm 
         Same resolution at λ = 1 cm  ⇒  D = 40 – 160 m 
         With D = 100 m at  λ = 21 cm ⇒ λ/D = 7' 
    at λ = 10 m  ⇒ λ/D = 6° (∅Sun = 30',   ∅Jupiter = 40")

⇒ very large collecting areas / very extensive instruments required, 
  but with modest surface precision   ☺ 
  (Rayleigh criterion ~λ/10 → 1 cm wire mesh Ok at λ = 21 cm) 

⇒ Interferometry is necessary (and "easy" : coherent detection + many baselines 
  generally available ) for reaching a correct angular resolution 
  (~λ/d,  with d the distance between the antennas) 

⇒ in VLBI, one reaches  λ/d ~10-3" (104 km at λ = 21 cm)

😀



☹  No radio lens (mirrors only) 
   No sensitive surface: focal antenna = horn or dipole 
    ⇒ Few focal pixels (image plane) : generally only 1 
   (recent arrays of horns or dipoles = Focal Plane Arrays) 
    ⇒ instantaneous imaging difficult (impossible with a single antenna) 
    ⇒ phased array or interferometer → image synthesis

☹  High "sky" temperature at low frequencies : 

   T(K)  ~ 1.15×108/f 2.5   ~ 60 λ2.55    (f  ~ 3 - 300 MHz)

f (MHz) λ (m) T (K)
1 
10 
100 
1000

300 
30 
3 

0.3

>107 

~3×105 
~103 
~5



⇒ the LF radio sky, even at night, is brighter than daytime optical sky

TB,min~104 K, TB,max~6.6×104 K 



☹  Radio Frequency Interference (RFI)

- Man-made = industrial, military, telecommunications activities [4G!] (predominant)

- Natural = lightning  (broadband: <10 kHz → >10 MHz, summer, low latitudes)



⇒ Isolated, locally protected sites (forest) 
⇒ Protected frequency bands (HI, OH ...) where all emissions are prohibited 
  ["passive primary" WRC-ITU = World Radiocomm. Conferences of Int’l Telecomm. Union] 
     = growing problem due to the increasing sensitivity of observations, 
    and economic pressures (TV, telephone, broadcasting, radiocommunications...)



- Space observations protected by the earth's ionosphere for  ν ≤ 5 MHz

- Moon = radio shield
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k(z)

E(x)B(y)

Wave

• Radio wave = transverse e.m. wave (E, B ⊥ k) → propagation in straight line at c in vacuum

NB: ∃ "plasma" waves, e.s., longitudinal: B = 0, E // k 
   → excited near the resonance frequencies of the medium 
      ~ fpe, fce  (generally VLF / radio frequencies) 
   → no propagation outside their medium of origin 
   → e.m. / e.s. distinction e.g. via magnetic antennas

Pulsation :       ω = 2πf 
Wave vector :    k = 2π/λ



• Electric field → E = Eo x cos(kz - ωt)     T = 2π/ω   f = ω/2π 
                                k = 2π/λ    λf = c    (in vacuum) 

E unchanged for  (kz - ωt) = Ct  ⇒  k dz - ω dt = 0  ⇒  vϕ = dz/dt = ω / k

⇒ Eo x cos(kz - ωt) represent a monochromatic harmonic wave 
propagating without deformation at speed    vϕ = ω / k 

[vϕ  is determined by the physical characteristics of the propagation medium (= c = Ct in a vacuum)] 

→ In a medium ≠ vacuum, ω is generally a function of k

→ energy carried by a wave (= intensity = modulus of the Poynting vector) 
  - instantaneous : ⏐P⏐ = ⏐E∧B⏐/µo = ⏐E(t,z)⏐2/Z      [ B = E / c = E / √(εoµo) ] 
  - average :  <⏐P⏐> = Eo2 / 2Z 
 in a vacuum, Z = Zo = √(µo/εo) = 120 π = 377 Ω (impedance of free space)



• complex wave equation

vg ≠ vϕ  (velocity of individual monochromatic components) 
       →  a detector responds to wave energy

Energy is transported at group velocity   vg = ∂ω / ∂k

→ Re(U) only represents the wave amplitude 
→ the energy transported is then <⏐P⏐> = U.U* / 2Z

U = Eo exp[i(kz - ωt)] = Eo [cos(kz - ωt) + i sin(kz - ωt)]

If  vg(k) ≠ Ct  ⇒  dispersion of a narrow pulse during propagation 

(conversely, signal spread allows us to trace the dispersion characteristics of the 
medium)

The medium is non-dispersive if vg = Ct  ⇒  ∂2ω/∂k2 = 0    (ex: ω/k = Cte = vϕ = c   in vacuum) 
or     Δk = 0  (monochromatic wave  ⇒ vg = ∂ω / ∂k |k=ko )



x

y

z
E

→ Linear Polarisation : E  maintains a constant orientation (e.g. // Ox) 
     Polarisation plane = trace of E in xOy  plane

Σ 2 linear polarisations in phase = linear polarisation 
U1 + U2 = E1 exp[i(kz-ωt)] + E2 exp[i(kz-ωt)] = (E1+ E2) exp[i(kz-ωt)]

Polarisation

Ex: Pulsars, Jupiter’s decimeter emission (synchrotron) …

Σ 2 linear polarisations with a pjhase shift of ±π/2 : 
U1 + U2 = E1 exp[i(kz-ωt)] + E2 exp[i(kz-ωt ±π/2)] 

Si ⏐E1⏐ = ⏐E2⏐ = Eo (E1 = Eo x ; E2 = Eo y) 
U1 + U2 = Eo exp[i(kz-ωt)]  (x ± iy) 
⇒ Re(U1 + U2) = Eo (x cos(kz-ωt) ± y sin(kz-ωt))  = Eo (x cosϕ ± y sinϕ) 
⇒ U1 + U2  is a circularly polarised wave 
         (constant amplitude & direction rotates with t or z)

± ±



x
z
E

y

→ Circular Polarisation : E rotates / k during propagation, by one turn per period or wavelength.  
                                                     
     Origin of phases = direction of E in xOy plane at fixed z

Direction of rotation : IRE convention (international radio-electricity) [1942] 

(L)eft (LHC)  → rotation of E in the direct sense when looking along k (⊗) 

(R)ight (RHC)   → inverse sens (= sense of gyration of electrons around B // k) 

NB: opposite rule in optics.

k⊗

k⊗

Ex: auroral radio emissions from planets …



If their phase shift is Φ = 0 ⇒  trivial : 
UR = U+ = Eo (x + iy) exp[i(kz-ωt)] 
UL = U- = Eo (x - iy) exp[i(kz-ωt)] 
⇒ UR + UL = 2Eo x exp[i(kz-ωt)]  linear !

If  Φ ≠ 0 : 
UR  = U+ = Eo (x + iy) exp[i(kz-ωt)] 
UL  = U- = Eo (x - iy) exp[i(kz-ωt+Φ)] 
   = Eo (xcosΦ + ysinΦ + i(ycosΦ - xsinΦ)) exp[i(kz-ωt)] 
⇒ UR + UL = Eo [x(1+cosΦ) + ysinΦ + i(y(1+cosΦ) - xsinΦ)] exp[i(kz-ωt)]

Wave amplitude 
Re(UR + UL) = Eo x [(1+cosΦ) cosϕ + sinΦ sinϕ] + Eo y [sinΦ cosϕ - (1+cosΦ) sinϕ]  
                      with  ϕ = kz - ωt 
Re(UR + UL) = Eo [ x (cosϕ + cos(ϕ-Φ)) + y (sin(ϕ-Φ) - sinϕ) ] 
            = 2Eo [ x cosΦ/2 cos(ϕ-Φ/2)) + y sinΦ/2 cos(ϕ-Φ/2) ] 
                           ⇓                     ⇓ 
                       the 2 components are in phase

Any circular wave can be decomposed into Σ of 2 linear ones (above) 
or conversely, any linear wave in 2 opposite circular waves (L + R) of equal amplitude

⇒ (UR + UL)  is linearly polarised 
Amplitudes are different on x & y 
→ the linear polarisation plane makes an angle Φ/2  with Ox



The sum of 2 circular waves of equal amplitude and opposite direction, dephased by Φ, is a 
linearly polarised wave whose plane of polarisation is at Φ/2 from the phase origin.

NB: 2 opposite circular waves, or 2 ⊥  linear waves = orthogonal bases on which the 
decomposition of any polarised (elliptical) wave is unique

→ Elliptical Polarisation = Σ 2 circular waves L & R with ≠ amplitudes 
     = Σ 2 linear waves phase shifed by φ ≠ 0, ±π/2,  or non ⊥ 
     = Σ 1 linear wave & 1 circular wave 

Characterised by :  direction (L or R) 
ellipticity (circular/linear) 
orientation of major axis of ellipse

Ex: decameter radio emission from Jupiter …



→ Stokes Parameters : S, Q, U, V

complete wave polarisation Ux = E1 exp[i(kz-ωt)] 
Uy = E2 exp[i(kz-ωt+φ)]

S = total intensity (flux) 
Q, U : linear polarisation 
V = circular polarisation 
      (G→V>0 ; D→V<0)

S = < E12 + E22>/2Zo 
Q = < E12 - E22>/2Zo 
U = < E1E2cosφ>/Zo 
V = < E1E2sinφ>/Zo

For a fully polarised monochromatic wave : (Q2+U2+V2)1/2 = S 
If partially polarised : (Q2+U2+V2)1/2 < S 
 (Q2 + U2 + V2)1/2 = polarisation fraction of the wave 
 S - (Q2+U2+V2)1/2 = unpolarised fraction of the wave (or randomly polarised)

T defined by   V = 2T/(1+T2)   characterises ellipticity 

T = cosθ       = ( 1 - (1-V2)1/2 )/V 



q

u

v = 1

v = -1

We also use normalised quantities :   q = Q/S,  u = U/S,  v = V/S 
⇒ graphic representation on the "Poincare sphere"

Non-polarised radiation (cosmic thermal radiation, galactic background, etc.) 
⇒ the orientation of E in the plane ⊥ k varies randomly (as does ⎥E⎥ or ⎥E⎥2) 
     = succession of wave packets of any and variable amplitude and polarisation 
(e.g. elliptical polarisation rapidly fluctuating in direction, ellipticity and orientation) 
⇒ Q, U, V = 0 (on average)
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electronic pointing, imaging, correlation, coherence, VLBI) 

• Observation methods 
• Large present & future ground-based radio arrays 
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Plasmas Basic notions : 
→ medium containing free charges (e-, p+, ions) 
→ large-scale global electrical neutrality 
→ partial or total ionisation 
  - radiative  hν ≥ Eionisation 
  - collisional kT ≥ Eionisation (~e2/8πεorBohr ~13.6 eV for the most external e-) 
  - via energetic particle bombardment 
→ conductor-like behavior for e.m. waves 
→ collective effects = ∃ natural frequencies of the plasma

Plasma frequency (oscillation e- / ions)
ωpe (Hz) = (Nee2/εome)1/2 
 fpe (Hz) = (1/2π) (Nee2/εome)1/2 
              =  9 Ne1/2        with Ne in m-3

Cyclotron frequency (gyration e- / B)
ωce (Hz) = (eB/me) 
fce (Hz)  = (1/2π) (eB/me) 
              = 2.8×106 B     with B in Gauss (10-4 T)



Solar min. Solar max.

Examples: 
• Earth’s ionosphere :  No=1014 cm-3, Ne/No~10-9   (ionisation via Solar X & UV), T ~900 K 
  Ne≈105-6 cm-3 (day)  ⇒  fpe ≈ 3-10 MHz 
 Ne≈5×104-5 cm-3 (night)  ⇒  fpe ≈ 2-6 MHz 
  (function of season, latitude, solar activity ...)

• Solar corona : No~Ne≈108-9 cm-3 (complete ionisation) 
  ⇒ fpe ≈ 100-300 MHz, T ~106 K 
• Inter Planetary Medium (solar wind at Earth orbit) : No~Ne ≈ 5-10 cm-3 (variable) 
 ⇒ fpe ≈ 20-30 kHz, T ~4×105 K 
• Inter Stellar Medium :  No=1 cm-3, Ne ≈ 0.03 cm-3, Ne/No ~ 3%  ⇒ fpe ≈ 1.5 kHz 
     (except HII  regions near hot stars)



Propagation

Non-magnetised plasma (B=0) 

E.m. wave (E, B) induces electron motion in the plasma : F = -e (E + v × B)

(vϕ = propagation velocity of an e.m. field disturbance of frequency ω/2π and wave vector k) 

and  n = (εr µr)1/2    refraction index      (µr1/2 =1 for a non-magnetised medium)

⇒ Maxwell equations for harmonic perturbations E & B : 
  rot H = j + ∂D/∂t  ⇒ i k B / µr µo = j + i ω εr εo E    ⇒ E / B = k /ω µr µo εr εo 
  rot E = -∂B/∂t  ⇒ i k E = i ω B                ⇒ E / B = ω / k 
  d'où  ω / k = (εo µo εr µr)-1/2 = c / (εr µr)1/2 = c / n = vϕ

similarly : B = µr µo H = µo H + M  (B & H = magnetic induction & field) 
 with µ = magnetic permeability and M the magnetisation vector

w define the electric displacement : D = ε E = εr εo E = εo E + P 
 with ε, εr, εo = electrical permittivites (total, of matter, of vacuum) 
 and P the polarisation vector (of the medium)  hence :  εr = 1 + ⎥P⎥/⎥εo E⎥  = 1 + χe

Plasma = dispersive medium 
Wave/Plasma interactions along wave propagation: 

➡ Cutoff at fpe     !"Faraday Effect 
➡ Dispersion     !"Scintillations



Calculation of P : 
→ oscillatory motion of plasma electrons (ions assumed to be immobile, ⎥B⎥~⎥E/c⎥<<⎥E⎥) 

  me d2z/dt2 = -e E = -e Eo cos ωt  = - me ω2 z   ⇒    z = e E / me ω2

hence    n = (1 - ωpe2/ω2)1/2  = (1 - fpe2/f2)1/2  < 1 
         vϕ = ω / k = c / n     > c    

(but "non-physical" speed, since a monochromatic wave of constant amplitude carries no 
information)

the transport speed of energy/information is vg = dω/dk 

we have :  c2 k2 = ω2 n2 = ω2 - ωpe2 ⇒ 2 c2 k dk/dω = 2ω 

⇒    vg = dω/dk = c2 k / ω  = c n < c

NB: vg vϕ = c2

→ the dipole moment of an (e- - ion) pair separated by z is (–e.z)  thus 

  P = -Ne e z = - (Ne e2 / me ω2) E   ⇒ εr  = 1 + ⎥P⎥/⎥εo E⎥ = 1 - Ne e2 / εo me ω2 = 1 - ωpe2/ω2



• Wave propagation in non-magnetised plasma : LF cutoff at fpe

(2)  f ≈ fpe   
   ⇒ e.m. wave induces resonant oscillations at fpe (large amplitude)  
     + energy dissipation through collisions 
  n=0 ⇒ absorbing medium     [a fraction of the energy is re emitted at ~fpe  
                        as e.s. waves in the plasma]

(1)  f >> fpe  
   ⇒ the e.m. wave induces forced oscillations at f of the plasma e- 
  (HF therefore low amplitude) 
  n ≈ 1  ⇒ free propagation at  vg = c n ≈ c  ⇒ the medium is ~transparent

→ 3 propagation regimes :

plasma 
restoring force

wave 
excitation

Incident wave ⇒ setting e- in motion :

(3) f ≤ fpe   
    ⇒ the e.m. wave induces non-resonant LF oscillations, but with amplitude > case (1) 
  n imaginary ⇒ ⎥E⎥ ∝ exp[i(kz - ωt)] ∝ exp[ik(z - ct/n)] ∝ exp(-α)   with α real 
  ⇒ damped wave beyond a surface layer (skin depth) 
    + re-emission at f by the e- having not sustained any collision 
  ⇒ reflecting medium (+ absorbing)

Skin depth



Example: Earth ionosphere = high-pass filter sky ←→ ground 
     Ionospheric sounding: exploiting the cut-off frequency fc = fpe at ~normal incidence 
  → sending variable-frequency radio radiation to the zenith, 
      and measuring the delay between transmission and reception   Δt = tR - tE

     As f ↑, the radiation penetrates higher and Δt ↑  
  ⇒ we deduce   Ne(z) = fpe2/81 = f2/81 with z = c Δt / 2

     The latest reflected frequency gives Ne-max(zmax)
     For the profile at z>zmax the same procedure is followed from an orbiting satellite



v~400km/s

Example:  Solar wind : Ne = 5-10 cm-3 / L2 

  (with L in UA)      →  fpe = 20-30 kHz / L



→ Cutoff frequency fc for an angle of incidence θ / normal to the plasma layer : 
  Total reflection for    1.sinθ = n.sin(π/2) 
  ⇒  n2 = 1 - fpe2/fc2 = sin2θ 
  ⇒  fc = fpe / cosθ

⇒ possibility of terrestrial radio-communications on "short waves" (f ≤ 30 MHz) : 
     propagation beyond the horizon by reflection under the ionosphere for f < fpe/cosθ



Example:  Mirror → metal's free e- reflects incident e.m. waves. 
  ratom ≈ 1 Å   &   1 free e- libre pooled per atom 
  ⇒  Ne ≈ 1/(2 Å)3 ≈ 1029 m-3 
  ⇒  fpe ≈ 3×1015 Hz λ ≈ 100 nm (UV) 
  → a metallic mirror reflects visible light but not X-rays 
       (except for specular reflection, θ ≈ 90° ⇒  fc = fpe / cosθ   ↑↑ )



• Wave propagation in a non-magnetised plasma : Dispersion 

→ vg = dω/dk = c2 k / ω  = c n ≈ c (1 - ωpe2/ 2ω2)  for  ωpe2 << ω2 
  (typically f ≥ 100 kHz in natural plasmas)

or more strictly, if Ne ≠ Cte along the path L 
  Δt(ω) ≈  ( ∫L NedL )  e2 / 2εomeω2c  = <NeL> e2 / 2εomeω2c 

We call « Dispersion Measure" [DM]  the quantity  ∫L NedL   integrated along the wave path

  vg = vg(ω)  ⇒ plasma is a dispersive medium for radio waves 

→ For a broad-spectrum radiosource at distance L from the observer : 
  t(ω) = L / vg(ω) ≈ (1 + ωpe2/ 2ω2) L / c        assuming that  ωpe = Ct along the path L 
  ⇒  Δt(ω) = t(ω) – t(ω→∞) ≈ ωpe2 L / 2ω2 c = Ne L e2 / 2εomeω2c

Plasma

Hence :  Δt(f) ≈  4.15×103  [DM]  f-2 
          ⇓               ⇓   ⇓ 
         [sec]         [pc.cm-3]   [MHz] 

Δt(f1)- Δt(f2) ≈  4.15×103  [DM]  (f1-2- f2-2)



→ Measuring Δt(f) 
gives information on 
Ne and L of the 
traversed plasma.



• Wave propagation in a magnetised plasma : Faraday effect

NB: B introduces anisotropy that makes the plasma birefringent 
   (≡ crystal where the anisotropy comes from the crystalline structure)

n+ → LHC wave propagation,     n- → RHC wave propagation 
   (demonstration by considering E rotating, L or R, and recalculating P, εr, n±)

If we neglect collisions, i.e. fcoll << fpe, fce, f ⇒ Z ≈ 0   and consider propagation quasi-// B 
  (actually not strictly ⊥ B)   ⇒ YT2/2  << YL    

  n2 = 1 – X / (1 – ½YT ± YL)  =  1 -  ωpe2/ ( ω ( ω - ½ωcesinθ ± ωcecosθ ) ) 
⇒ n± = [ 1 -  ωpe2/ ( ω ( ω - ½ωcesinθ ± ωcecosθ ) ) ]1/2

→ we show for a magnetised plasma (with collisions = general case) that the refraction index 
writes   (Appleton-Hartree equation) :  
    n2 = 1 – X / {1 – iZ – ½YT/(1-X-iZ) ± [¼YT4/(1-X-iZ) + YL2]1/2 } 

with X = fpe2/f2 
    YT = (fce/f)sinθ & YL = (fce/f)cosθ où θ = (k,B) 
    Z = fcoll/2πf  where fcoll ∝ NeT-3/2  for collisions e--ions 

⇒ n = µ - i χ  où µ = Re(n) characterises refraction 
    and χ = Im(n) characterises damping/amplification



→ vϕ± = c / n± 
⇒ Δvϕ   = ⎥vϕ+ - vϕ-⎥  = c ⎥1/n+ - 1/n-⎥  
       ≈ c ωpe2/ 2ω ⎥1/(ω-½ωcesinθ+ωcecosθ) - 1/(ω-½ωcesinθ-ωcecosθ)⎥ 
       = c ωpe2ωcecosθ / ω[(ω-½ωcesinθ)2-(ωcecosθ)2] 

thus for  ω >> ωpe, ωce  Δvϕ  ≈ c ωpe2ωcecosθ / ω3 =  c ωpe2ωce// / ω3 

For 2 circular waves (L & R), initially in phase (∝ exp[i(kz-ωt)] ∝ exp[ik(z-vϕt)] ) 
⇒ Δϕ(t) = k Δvϕ t = 2π/λ  cωpe2ωce/ω3  t  =  e3 λ2 B// Ne t / (4π2c2 me2 εo) 
  with t ≈ L/c for a source at distance L

→ the Faraday Effect is the rotation of the linear polarisation plane of a wave propagating 
   parallel to B in a magnetised plasma. The polarisation plane rotates from : 

  θ (rad) =  Δϕ/2 =  e3 λ2 <Ne L B// > / (8π2c3 me2 εo)  =  e3 λ2 < [DM] B// > / (8π2c3 me2 εo) 

  θ (rad) =  RM  λ2   with λ in m   and RM = Rotation Measure =  0.8  ∫L  Ne  B//  dL 
                                                          ⇓    ⇓     ⇓ 
                                                     cm-3   µG   pc 
or     θ   =  4×1012  < [DM]  B// > f-2 
       ⇓                 ⇓       ⇓     ⇓ 
     [°]             [pc.cm-3]     [G]   [MHz] 

    Δθ = θ(f1) - θ(f2) ≈  4×1012  [DM]  B//  (f1-2- f2-2)



Example : Faraday fringes are observed in the dynamic spectrum of Jupiter's  
  decametric emission (observed with a linear antenna). 
Fringe separation at 27 MHz is ~0.15 MHz → origin ? 

    Δθ (°) =   dθ/df.Δf =  4×1012 [DM] B// 2 f-3 Δf    ⇒    Δf = Δθ f3 / (8×1012 Ne L B//) 
    Δθ  between 2 consecutive fringes (bright or dark) = 180°

- Io’s plasma torus : Ne~1000 cm-3, L~2RJupiter (1RJ =7×104 km), B// ~ 0.003 G 
  ⇒   Δf ≈ 31 MHz
- IPM : Ne~5 cm-3, L~5 UA (1 UA =1.5×108 km), B// ~ 3 nT 
 ⇒   Δf ≈ 118 MHz

- Earth’s ionosphere : Ne~5×105 cm-3, L~500 km, B// ~ 0.3 G 
 ⇒  Δf ≈ 0.18 MHz
- Earth’s ionosphere : Ne~5×105 cm-3, L~500 km, B// ~ 0.3 G 
 ⇒  Δf ≈ 0.18 MHz



Direction (& amplitude) of Bz

in the galactic plane



• Wave propagation in an inhomogeneous plasma : IP & IS scintillations

n2 = 1 - fpe2/f2 = 1 – Nee2/4π2εomef2 
but the IPM and ISM are in fact inhomogeneous : Ne = <Ne> + δNe 

⇒ 2n δn = (-e2/4π2εomef2) δNe 

⇒ index variations δn ≈ (1/2n) (e2/4π2εomef2) δNe 

⇒ phase variation introduced by an inhomogeneity δn of size L : 
 δφ ≈ ω δt = ω δ(L/vϕ) = 2πf (L/c) δn = (e2/4πcεome) L δNe / (f n)

-   δNe <<Ne, large spatial scales (Ne 

gradients), high frequencies ⇒ weak 
scintillations ⇒ refractive effects 
(fluctuations in intensity, position, 
temporal dispersion)

-   δNe ~ Ne, small spatial scales (turbulence) 
⇒ diffractive effects (intensity fluctuations,  
             angular, temporal, spectral spreading)



(DM~100)

Δtr(σI/I)

Dispersion

time scale of 
erratic 
displacement

Δt1D(Δθr) 

Δt2D(Δθr)

GMRT @ 150 MHz

~200 km

~20 km TID



(DM~100)

spectral and 
temporal scales of 
fluctuations  σI ~ I

• → O

Doppler on scattering 
inhomogeneities

σI ~ I

Maximum DM for time resolution δt: δt ≤ τd

(DM ~ 5)



θIPS ~ 100’/(Pf) 2 (MHz) 

P = minimun distance to Sun (UA) 
θISS ~ 22’/f 2 (MHz)

θmin ~ λ/d ~ c/fd
dmax(km) ≃ c/f θmin ~ c/f θIPS 

               ≃ 10 P2 × f (MHz) 
               ~ 10 × f (MHz)

}
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- intense noise sources : 
  → sky background (Galaxy) 
  → nearby transmitters (thunderstorm lightning, artificial transmitters) 
  → noise from receiver system electronics

• Problems posed by radioastronomy observation

- weak signal (~10-4 → 1 Jy), "HF" (→ GHz, THz …), with zero mean (<V>) 
  ⇒ amplification 
  ⇒ frequency change (→ LF) 
  ⇒ positive values / detection

- calibration of received intensity in physical units → reference radio source ?

• Schematic diagram of a radiotelescope

→ statistics of measurements ? 
→ effect of filtering (band selection) 
→ how to separate RFI from the emission of interest ?



• Nature of the signal received

- artificial signal → narrow band, sustained/coherent emission, 
   modulated (AM, FM...)

- natural signal = "noise", generally broadband, stationary,  
   with gaussian statistics  (incoherent source with ∅ >> λ) 
 P(x) = 1/(σ √2π) exp[-(x-xo)2/2σ2]        (x = E, ⏐E⏐, I …)

⇒ amplitude & phase of E (broadband) vary randomly vs. t, z 
  ⎥E(z)⎥to and ⎥E(t)⎥zo  are random functions, <E>=0, <E2>≠0

The spectral (Fourier) decomposition of E provides E(f) components with any relative phase 
⇒ energies carried in disjoint frequency bands add up.

⇒  Working hypothesis : the received signal ris a white noise  ( I(f) ∝ ⎟E(f)⎟2 = Ct) 
We can always return to this case by studying the spectrum of the signal 
in narrow bands where the noise is - to 1st approximation - white

⇒  Thermodynamical formulation employed in Radioastronomy measurement theory



• Basic Notions on Radio Astronomical Antennas

Relation A ←→ Ω  (preliminary derivation)

For any single dish (≠interferometer) of size (∅) D,  
we have :   θmin ~ λ/D ⇒ θmin2 ~ Ω ~ λ2/D2 ~ λ2/A

NB : A is not necessarily the geometrical area of the collector, but its "effective" area = 
"effective cross-section" of the radiotelescope / incident radio radiation (taking losses into 
account ...) in the direction of the main lobe.

Example : Lossless dipolar antenna : Aeff = 3λ2 / 8π 
  → unrelated to its geometric surface

More generally, for any antenna of effective area Aeff  and main lobe Ω, we show that : 

Aeff Ω = λ2  ⇒ G = 4π / Ω = 4π Aeff / λ2



A AS

ΩA Ω

d

Antenna temperature

→ Observation of an extended black body (/Ω), of brightness B = 2kTB/λ2  [W m-2 Hz-1 sr-1] 
                                                          ⇓         ⇓ 
                                                    of source    from the source 
  Source "seen" by the radiotelescope (Ω) : As = Ωd2 

  Solid angle subtended by the RT as seen from the source : ΩA = Aantenna/d2 = A/d2

⇒ Spectral power received by the radiotelescope from an extended black body : 
  P(ν) dν = B(ν) AS ΩA dν = (2kTB/λ2) (Ωd2) (A/d2) dν    = 2 k TB dν 

⇒   P(ν) = (2) k TB [W Hz-1] 

         ⇓ 
  relative polarisation antenna / wave

∀ A, d, λ... : A ↑ ⇒ Ω ↓ 
         d ↑ ⇒ Ωd2 ↑ 
         λ ↑ ⇒ Ω=λ2/A ↑  but  B ∝ 1/λ2 ↓

⇒ Flux density received from an extended black body : 
    S(ν) = P(ν) / Aeff = (2) k TB / Aeff  [W m-2 Hz-1] 
                               ⇓ 
                            of antenna



A As

ΩA Ω

d

seen by the 
radiotelescope

ω→ If ωsource < Ωantenna (with   ωsource = Asource/d2) 

⇒   P(ν) = (2) k TB (ωsource / Ω)  = (2) k TA 
and S(ν) = (2) k TB ωsource / Aeff Ω  = (2) k TA / Aeff

⇒ definition of  "Antenna temperature" : TA = S(ν)Aeff / (2) k = P(ν)/ (2) k 

TA is a measure of the received power (or flux density) 
[for a source polarised ≡ antenna ⇒ TA × 2]

In the case of an extended black body, we have : TA = TB = Tphysical 
In the case of a non-extended source :   TA = TB ω source /Ω  <<  TB

For a point source, we can measure S and TA but not TB, for which we can only 
obtain a lower/upper limit if there is an upper/lower limit on ωsource

Example : Jupiter observed with the Nançay Decameter Array  (A ≈ 3000 m2) 
 S ≈ 10-19  W m-2 Hz-1 at 10 MHz   ⇒ TA =  A S / 2 k  ≈ 107 K 
    In addition, VLBI measurements show that  ∅(source at 10 MHz) ≤ 400 km 
 thus  ωsource < π∅2/4d2 (d ~4.2 UA) 
⇒  TB > TA Ω/ωsource  = (AS / 2k) (λ2/A) (4d2/π∅2)  = 1019 K ⇒ coherent emission !



• Measuring the received signal

Source is never isolated 

⇒ received signal =  signal of interest (source) 
 + "background" 
 + RFI (from main or side lobes) 
 + Nyquist/Johnson noise (due to antenna and receiver’s resistive elements) 
 + …

Eliminating the "background" : observations "ON" – "OFF" 
TA (RFI + Nyquist + …) = Tsystem 
 depending in particular on the physical temperature of the receiving system

If ωsource << Ω     TA(signal) = TB ω source /Ω   may be     << Tsystem , Tbackgound 

⇒ difficulty = measuring weak signals superimposed on stronger signals 
  limits = instrument accuracy, and above all random fluctuations in received signals (= noise)

Examples: •  Radio emission from a Jupiter-like exoplanet ? 
     TA = TA(Jupiter) × (dJupiter/dexoplanet)2 ≈ 107 × (5 UA / 5 pc) 2 ≈ 4×10-3 K 
     with Tsky background  ≥ 105 K at 10 MHz  (+ RFI…) 
  •  Cosmological background at 2.7 K, whereas Tsystem ≈ 10 – 100 K 
      at λ ∈ [cm, dm]  and impossible to point « OFF-source" !

= Background



• The case of noise

All signals follow random fluctuations 
(quantisation of e.m. energy → photons ⇒ statistical fluctuations of nphotons received)

Main sources of noise : 

- Photon noise  (= S / hν) → ~ negligible in radio 
- Noise in  1/f  (S(ν) ∝ 1/ν)  universal, affects ~ all physical phenomena 
- Shot noise  (hν ⇒ V ⇒ e- in detector with an energy distribution + potential barrier 
           (e.g. transistor) ⇒ random fluctuations in output current = e- flow) 
- External interference (RFI) 
- Nyquist/Johnson noise 
           = fluctuating power delivered by any resistive circuit, even in the absence of a signal



Nyquist noise

Passive circuit passif (no generator) at T≠0 
⇒ thermal agitation of e- (Brownian motion) 

⇒ non-uniform distribution of free e- in the conductor 

⇒ a random voltage drop (V) appears at conductor terminals 

     an a random current (I, correlated with V) in the conductor, 

  <V> = 0  and  <I> = 0  but  <P> =<V×I>≠0

⇒ Power P dissipated in resistor R: source = thermal agitation of  e- 

⇒ T(R) ↓ unless resistance absorbs energy from its environment

The thermal motion of e- generates white noise, which is independent of ν 

→ on what depends power P supplied "spontaneously" by R ?



Notes: all passive resistive system (the elements of the measurement system - antennas, receivers,  

etc.) contribute to its resistive noise ≈ noise generators 

     Tsystem of a system is ≤ Tphysical (∃ radiative dissipation…) 

     Tsystem typically ~150 K for an uncooled antenna+receiver system

White noise ⇒ fluctuations at 2 ≠ frequencies ν are uncorrelated 

        ⇒ spectral powers add up :  P(ν) Δν = k T Δν

Experience 1 : thermostated cavity at T
∃ spontaneous power exchanges between R1 and R2  
but  T(R1)=T(R2)  
⇒  P(R1→R2) = P(R2→R1) 
[1st principle of Thermodynamics]

Experience 2 : thermostated cavities at T1 and T2

ΔP = P(R1→R2) - P(R2→R1) ∝ (T1 - T2)  only 
⇒ P supplied by R  
→ independent of R value  (∀ resistive system) 
→ ∝ T only

Nyquist Theorem :   P(ν) = k T    is the average power at the terminals of a 

resistive circuit at temperature  T  ⇒   "System Temperature"   TS

              [Johnson, Phys. Rev. 1928 ; Nyquist, Phys. Rev. 1928]



The "quality factor" or "sensitivity" of a system is defined by : F = Ae / TS  
Ex:  For the Nançay radiotelescope : Ae / TS  ~ 5000 / 25 ~200 m2/K 
   For SKA, we aim for : Ae / TS = 20 000 m²/K

TOFF = Tsystem + Tbackground = TS + TF

TOFF sometimes improperly noted TS 

dominated by Tbackground at LF (≤0.5 - 1 GHz), by Tsystem at HF (≥0.5 - 1 GHz)

→ Various contributions to TF

= Background



→ How to reduce TS ?

[~1 , ~100 MHz ]  TS << TF → transistor amplifiers + high-dynamic electronics 
                      (to avoid saturation in the presence of interference) 

[ 0.1 , 1 GHz ]  low-noise electronics (field-effect transistors, etc.)  

[ 1– 100 GHz ] cooled electronics (FET, HEMT) with liquid N2 (77 K) or He (4 K) 
   → reduces Nyquist noise, which is very high at the input stages, up to 1st amplification 
   → TS = 20-25 K reached in Nançay (down to 10 K at e.g. Goldstone/JPL)  

[ ≥ 100 GHz ] No more direct amplification → shift to Lower Frequencies via local oscillator 
           + low-noise mixer

⇒ rapid technological progress :  

- specific integrated circuits at room temperature 

- approaching ultimate limits 2.7 K and photon noise 
   (k TS = h ν) 



• Effect of random fluctuations on measurement / How to reduce fluctuations ?

More realistic situation :  if TA (source) << fluctuations of (TS + TF) 
→ the signal will be undetectable (hidden in noise)

⇒ Statistics of fluctuations of Vout :  we show that in both cases :  σ  ∝  <Vout>

Measurement of E : E → Vin (=Ve) ∝ E 
                → Vout (=Vs) ∝ ⎥E⎥  or  ⎥E2⎥

Gaussian signal E(t) :  P(E) = 1/(σ √2π) exp[-(E-<E>)2/2σ2] 
          with     <E> = 0 et σ2 = <(E-<E>)2> = <E2>



Linear detection : Vout ∝ ⎥E⎥

  
    P(E) ∝ exp(-E2/2<E2>) 
  ⇒ Rayleigh distribution = "rectified" Gaussian 
  P(Vout=V) = (2V/<V2>) exp(-V2/<V2>)    ⇒    ∞∫0P(V)dV = 1 
  ⇒ <V> = ∞∫0 V P(V) dV = (π<V2>/4)1/2 

  ⇒ σ = (<V2>-<V>2)1/2 = ( (1-π/4)<V2> )1/2  

    σ = 0.52 <V>

Quadratic detection : Vout ∝ ⎥E2⎥ ∝  S

  P(Vout=V) = (1/<V>) exp(-V/<V>)    ⇒     ∞∫0P(V)dV = 1 
 ⇒ < V2 > = ∞∫0 V2 P(V) dV = 2 <V>2 

 ⇒ σ = [< V2 >  -  <V>2]1/2 = [2<V>2  -  <V>2]1/2  
       σ = <V>



→ Reduction of fluctuations (thus of σ) :

Let  Ai   (i=1,N)   be independent random variables :      B = (1/N) Σi=1,N (Ai) 
σAi2 = σA2 = < Ai - <Ai> >2       ⇒ σB2 = Σi=1,N σA2 / N2 = σA2 / N 
                         ⇒ σB = σA / √N

Let us consider a large number of independent measurements of VS,  
with mean M = <VS> and dispersion σ  ∝  M    

Each measurement lasts δto and is performed  
by a receiver of band δνo

Average of measurements in groups of N time steps δto × P frequency bands δνo : 
independent random fluctuations ⇒ new random distribution of mean M and dispersion σ' = σ/√NP

    N×δto = τ = total integration time of a measurement 
  P×δνo = b = total measurement bandwidth 

⇒ σ'(τ,b) = σ(δto, δνo)/(NP)1/2 = σ(δto, δνo) (δto×δνo)½ / (b×τ)1/2   ≈  M (δto×δνo)½ / (b×τ)1/2   
                = uncertainty in measurement of M



What are "independent measurements"?

For a fixed τ, the stochastic fluctuations of VS are affected by fluctuations such that : σ  ∝  τ-1/2 

If τ is such that σ << M, successive VS measurements are "correlated" around M 
(e.g. P(VS=<VS>±1σ) ~ 68%) → not totally independent

When τ ↓, σ ↑ ⇒ for τ sufficiently small, we reach : σ = M 
   ⇒ measurements often reach zero, consecutive values become uncorrelated 
   ⇒ τ = δto

Consider a pulse of duration δto ( interval of constant VS(t) ) 
the spectrum of this pulse is: 
 TF(VS(t)) = VS(ν) = 1/δto ∫ V(t) exp(-iωt) dt  ∝  sinc(πνδto) 
→ the useful part of the spectrum is the interval [0, δνo=1/δto] 
to which the receiver must be sensitive to detect the VS(t) pulse 
⇒  δto×δνo  ≈ 1

For white noise and observation conditions such that  δto×δνo  ≈ 1,  successive measurements 
constitute a sequence of random, independent values of mean M and dispersion σ ≈ M 
hence :  σ(b,τ) ≈ M (δto×δνo)1/2 / (b×τ)1/2  ≈  M×1 / (b×τ)1/2 
⇒  σ ≈ M / √(bτ)



NB : 

- When τ↑, fluctuations diminish but we lose temporal resolution, hence sensitivity to rapidly 
varying signals (pulsars, Jupiter bursts...) 

- When b↑, fluctuations decrease but spectral resolution is lost, which limits the analysis of 
narrow lines  (HI , OH...) and makes it more difficult to eliminate artificial, generally narrow-
band interference

A more detailed (complicated) analysis shows that for any detection system, we have : 

σ = K × M / √(bτ)  with  1/√2  ≤  K  ≤  2

NB : 

-  In general, for any function, "useful" spectral width × temporal length ≈ 1 
 (ex:  sin ωt → zero spectral width and temporal length ∞) 



→ Realistic radioastronomy measurement

• Noise temperature & minimum detectable flux

⇒ condition for detecting a radiosource in the sky background (+ system noise) : 
TA(source) > n× TN   with  n = 2 to 5  depending on required confidence level and difficulty of the 
measurement 

Definition of the signal-to-noise ratio : S / N = TA(source) / TN

Similarly, we define :      PN = k TN  = "Noise power" 
and :               SN = 2 k TN / A = 2 k (TS + TF) / A (bτ)1/2  =  Smin 
minimum detectable unpolarised flux density (S/N = 1) 

If the source radiation is polarised ≡ antenna :   Smin = SN / 2

σ  =  (TS+TF) / √(bτ)  =  TN   
= definition of  "Noise temperature" TN



Example :

Example : Nançay decimeter radiotelescope : 
 Flat reflector  Aeff  ≈ (200 × 35 m2) × 0.8  ≈  5600 m2 
        ⇓ 
   focal antenna efficiency (matching, losses) 
 Observation at 1420 MHz (λ = 21.2 cm) with  b = 5 MHz, τ = 10 s 
 TS = 25 K, TF ~ 3 K,  1 polarisation detected 
 ⇒ TN = TS / √(bτ)  =  4 mK 
 Smin = 2 k TS / Aeff √(bτ)  =  2 mJy



Confusion = spatial noise (imagery) 
⟹ empirical formulas 

σc [mJy/beam] ~ 0.2 ( ν / GHz)-0.7 (θ / arcmin)2

σc [K] ~ 0.07 ( ν / GHz)-2.7

[Condon 1974, 2002, 2005, 2012 ; Cohen, 2004]

• Confusion

Survey VLA 1.4 GHz at 5" resolution

~Isotropic source distribution in 
NVSS (NRAO VLA Sky Survey) 

δ>75°, S > 2.5 mJy

lo
g(

N
 >

 S
)

log (S [Jy])



• Primary calibration of radio astronomical measurements

Thermostated resistor (TR) connected to an antenna placed  
in an isotropic radiation field at T (black body) 
P(ν) [R→antenna] = k TR 

P(ν) [transmitted by the (polarised) antenna →R] = k T 

Energy exchange balance : ΔP = k ⎟T-TR⎟ 
equilibrium for  T = TR

⇒ New definition of the antenna temperature of a radiation field : TA = TR 
                                                 ⇓ 
            temperature of a resistor delivering the same spectral power as the antenna

⇒ radio astronomy measurement standard: black body and thermostated standard with known 
variable T  (antenna or simple resistor in an enclosure at T) 
→ T is adjusted to balance the signal  ⇒ T = TA (source)



• In practice, secondary standards are used:

 - well-calibrated radiosources (e.g. LOFAR flux calibrators)

- noise sources (diodes) calibrated on reference radiosources

 - radiosource catalogues (global sky models) : 
 VLSS (VLA LF -74 MHz- Source Survey) 
 MSSS (LOFAR’s Multi-Snapshot Source Survey 
        150 MHz, 60 MHz) 
 NED (NASA Extragalactic Database)



•  Introduction (history, interest, specific features) 
• Waves & Polarisation 
• Plasmas & Propagation (cutoff, dispersion, Faraday effect, 
scintillations) 

• Coherent Signal Detection (measurement theory, antenna temperature, 
calibration, noise) 

• Receivers (heterodyne, system temperature, filtering, gain, RFI 
mitigation) 

• Basics of Radio Astronomy Antennas: Single antennas 
• Basics of Interferometry and Aperture Synthesis (phased arrays, 
electronic pointing, imaging, correlation, coherence, VLBI) 

• Observation methods 
• Large present & future ground-based radio arrays 
• Basics of Space radio astronomy



Spectrometry :  Spectral power density    I (f,t) 

Polarimetry :  Stokes parameters I,Q,U,V (t) 

Imaging (e.g. interferometric): Radio image  I,Q,U,V (θ, φ) 

Phase addition / Beamforming : 

   Formation of N 'independent' beams      I,Q,U,V (f,t) 

Waveform :  Amplitude and phase of E versus t

• Types of receivers: measurement of S (or I), Q, U, V as a function of t, f, θ, φ

Combination of modes: 

Ex: Multi-beam radio imager with N spectral channels

} «Intelligent» Receivers
Interference processing (RFI) 

Dedispersion pulsars, detection of fast signals ...



<      >

• Narrow-band spectrometry  ⇒  Heterodyne receiver



<      >

→  broadband incoming  E ⇒  Vin  broadband too 

→  HF filtering ⇒ band selection  νo ± b/2 

→  1st amplification (low noise) 

→  × LO (local oscillator) 

           ⇒ νo- νOL ± b/2 = νMF ± b/2 (same fluctuations spectrum) 

→  MF filtering 

→  Detection, integration ...

} Reverse order a HF

• Narrow-band spectrometry  ⇒  Heterodyne receiver



Gain 
→ Input power is generally very low

If you want to measure V ~1 mV  at  50 Ω,  you need an output power : PS = V2 / 50 = 2×10-8 W 
⇒ Gain required > ×1010      ( G(dB) = 10 log10(PS/Pe) = 100 dB )

 Notes : 
- In a receiver, gain is provided by the amplifiers; all other stages create losses. 
- The linear operating range is the range where G does not depend on input power.

Friis formula for n stages of gain Gi with noise temperature Ti

Only the first stage (G1,T1) should be ultra-low-noise 
Gi must be high enough for Ti (i>1) be negligible ⇒ in general  G1 ≥ 30 dB is required

T1

G1

T2 Tn

G2 Gn

Multi-stage receiver :   <VS>  ∝  Gn ( ... G2 ( G1 ( TA + T1 ) + T2 ) + ... + Tn )  ~  ΠGi (TA + TS) 

TS

After detection (quadratic) and integration :   <VS> ∝ PS ∝ G Pe 

For a real receiver :  <VS>  = α G k b  (TA + TS) 
                        ⇓ 
     can be calibrated with a reference source

Example : TA = 10 K  in  b = 10 kHz     ⇒ Pe = k TA b = 1.4×10-18 W



Stability

⇒ Fluctuations :  Δ <VS>/<VS>    =   Δ(TA + TS)/ (TA + TS)  +  ΔG/G  
  if  TA << TS                 ≈   ΔTS/TS  +  ΔG/G  ≈   1 / √(bτ)  +  ΔG/G 

Theoretical sensitivity TS/√(bτ)  is only achieved if the relative stability of gain / t  
ΔG/G <<  ΔTS/TS  =  1/√(bτ)

→ Solutions used : 

- quality of components used 

- thermal regulation & receiver power regulation 

- differential   ON / OFF   or   sky / calibrator   measurements :  
   rapid permutation  >> 1/ΔtGain 
   simultaneously in multiple beams 
   or at slightly different frequencies (spectral measurements)

LNA

integrated circuit 
(0,63×0,73 mm²)

discrete 
components

If G fluctuates too much (thermal fluctuations, power supply ...), its fluctuations may 
mask those of TA due to a possible source.

Example : if  ΔG/G = 0.1%  with  τ = 100 sec,  b = 1 MHz 
 ⇒   ΔG/G = 10-3   >>   ΔTS /TS  =  1/√(bτ) = 10-4 
 If TS = 150 K,  ΔTG = 0.15 K   >> TS/√(bτ) = 0.015 K   hence   TA-min ≈ ΔTG



→ Measuring receiver stability 

The "Allan variance" describes the competitive behaviour of statistical functions with 
different spectra involved in real measurements 
= Variance of a series of N measurements Viτ of integration time τ (total duration = N×τ) 
as a function of the value of τ :    σ2(τ) = (1/N) Σ (Viτ - <Viτ>)2

It can be shown that if the spectrum of the measured signal is : P(ν)  ∝  νβ  then    σ2(τ)  ∝  τ -β-1 
   β = 0     ⇒ P(ν) = Ct   (white noise)    ⇒  σ2(τ)  = Ct / τ 
   β = -1    ⇒ P(ν) ∝ 1/ν  ("1/f" noise)  ⇒   σ2(τ)  = Ct 
   β = -2    ⇒ P(ν) ∝ 1/ν2  (noise ↑ at LF)  ⇒  σ2(τ)  = Ct × τ   ⇒   ↑ with τ 
                       (generally due to the slow drift of the system’s gain)

⇒ σ2(τ)  characterises the receiver's stability and is used to select the optimum operating range 
= min(σ2(τ)) which gives the maximum time during which the receiver can be used without recalibration



Filtering

• Low pass (LP) : cuts  ν > ν2 

• High pass HP) : cuts  ν < ν1 

• Band pass (BP) : cuts  ν < ν1  and  ν > ν2 

• Rejection : cuts  ν1 < ν < ν2

∀ filter shape, we can define an equivalent band : beq  =  +∞∫-∞ P(ν) dν / P(νo) 

→ It can be measured via :  beq  =  <VS>2 / σ2 τ  = NEB (Noise Equivalent Band) 

  ( b3 dB  < NEB )

ν1 and ν2 define the bandwidth, generally at - 3 dB :      b3 dB  =  ∫P(ν)≥P(νo)/2 P(ν) dν / P(νo)

ν1 ν2



Filtering

A filter is necessary : 

 - before a mixer: elimination of the image band 

 - at each stage: reduction of the band that contains noise  

⇒ dynamic range increase + noise/RFI filtering 

- before LNA in LF (elimination of noise picked up by the antenna) BUT not in HF because  

  losses increase TS (-0.5 dB ↔ TS + 35 K !) unless superconducting filter+cryogenics are used

Characteristics :  

- ripple in the frequency band 

- in-band delay or phase shift (important for interferometers and phased arrays) 

- out-of-band rejection value 

- selectivity = slope of transition zone between passband and rejected band 

- losses

Insertion losses of a filter(5,2×2,3 mm²)



Mixer = non-linear element giving an output frequency  ν = νMF = ± m×ν ± n×νLO 
- if we keep            νMF = ν + νLO   the receiver is called supradyne 
- if we keep             νMF = ν - νLO     or     νLO - ν depending on whether   ν > νLO or ν < νLO    

       the receiver is called infradyne

νMF νMF

=|νRF-νLO|

→  Mixer (×)  and local oscillator (LO)

Reminder :         TF[ E(t) ] = E(ν) 
        TF[ E(t).cos(2πνLOt) ] = ½ [ E(ν-νLO) + E(ν+νLO) ] 

E(-ν) = E(ν)*   ⇒   P(-ν) = P(ν)

Frequency transposition

We also have : |φMF| = |φo-φLO| 

Notes :  
- the same MF frequency can be given by    νMF = ν1 - νLO = νLO - ν2   = folding 
- if the 2 RF frequencies are used (which then overlap and are indistinguishable), the 
indistinguishable) the receiver is "double side band" (DSB). 
- in general, only one is used (single side band = SSB) ; a distinction is made between upper side 
band = USB and lower side band = LSB.

LSB USB



Super-heterodyne receiver : 2 frequency changes (2 LO) 
1) transition to HF : ν → νLO1-ν (steeper anti-aliasing filtering possible), νLO1 can be variable 
2) transition to MF :   → νLO2-(νLO1-ν)= ν-(νLO1-νLO2),

Local Oscillator (LO) 

- fixed or adjustable (at least one adjustable stage s required to bring a broadband signal to a 
fixed νMF)

- must be very stable : 
 → in single dish : minimum spectral resolution required 
    (Ex:  Δν = 10 Hz   with νLO = 10 GHz ⇒ stability 10-9) 
 → in interferometer and phased array : must preserve phase and coherence 
    ⇒ much more severe constraints 
    ⇒ LO time reference based on atomic clock 
  (Rubidium : ≈ 5×10-12, Cesium : ≈ 10-12, Hydrogen Masers : ≈ 10-13/-14)



< f2(t) >/2

f(t)

Detection, integration



-νo            -νo/2          0              νo/2           νo                 3νo/2         2νo       . . .

Analog → Digital conversion

Classic sampling : νsampling ≥ 2 νmax       (Shannon)  

What sampling actually does :  E(t) → E(t-nto) = E(t) × δ(t-nto)   n = -∞,+ ∞ 
     E(ν) → E(ν) ⊗ δ(ν-nνo)    with  νo = 1/to 

  = E(ν) + E(ν - νo) + E(ν + νo) + E(ν - 2νo) ...

ν

Nyquist Zones : I II III IV  V          . . .

E(ν)

E(ν-νo)



I

ν

νo

0     ν              νo-ν         νo+ν           2νo-ν        2νo+ν       . . .
Nyquist Zones : I II III IV  V          . . .

⇒ Spectrum folding

⇒ Subsampling possible  
⇒ Analog input filtering required to avoid aliasing

ex: LOFAR

Analog → Digital conversion

Classic sampling : νsampling ≥ 2 νmax       (Shannon)  

What sampling actually does :  E(t) → E(t-nto) = E(t) × δ(t-nto)   n = -∞,+ ∞ 
     E(ν) → E(ν) ⊗ δ(ν-nνo)    with  νo = 1/to 

  = E(ν) + E(ν - νo) + E(ν + νo) + E(ν - 2νo) ...



Discretises an analog signal into k = 2N levels (for binary coding)

• discretisation noise 
   (S/N ≈ 3 or 6 dB × Nbits → see dynamics) 
• noise due to clock jitter 
• non-linearities ...

Signal → ADC → Signal + noise and spectrum duplications

Analog → Digital conversion



• Parameters defining receiver efficiency

→ Spectral resolution (absolute, relative) : δf  (≈ or ≠ b),  δf/f 
    ⇒ Nfreq = Δf / δf  number of frequency channels (per spectrum) 

→ Temporal resolution : δt  between 2 successive measurements  
    at the same frequency  (i.e. from one spectrum to the next) 
    ⇒  δt ≈ Nfreq × τ  (swept-frequency receiver)  
     or  δt ≈ τ  (multichannel) 

⇒ Data rate  =  Nbit × N freq / δt (bits/sec) 

→ Maximum continuous observation time : Δt

→ Overall / instantaneous spectral band covered : Δf

Limited by the « front end » 
(input electronics) 
Ex: - Nançay RT : 1,06 GHz - 3,5 GHz 
      - LOFAR : 30 - 90 MHz et 110 - 250 MHz 
      - SKA-mid : ~300 MHz - 20 GHz

Fixed by MF & analysis means 
Ex: - Nançay RT : 4 ×50 MHz max. 
      - LOFAR : 2 ×48 MHz 
      - SKA : 200 MHz a qq GHz



→ Noise temperature : TN = K TS / √(bτ)     with K ~ 1

Ex : SKA sensitivity = Ae/TS = 20 000 m²/K 
 Specification : TS = 50 K 
 If we manage to reduce TS  to 45 K, we obtain the same sensitivity 
  for Ae = 9×105 m²   instead of 106 m²  ⇒ large cost saving !

Ex: TS = 290 K  ⇒  F = 3 dB 
 TS = 75 K    ⇒  F = 1 dB 
 TS = 50 K    ⇒  F = 0,7 dB 
 TS = 7 K      ⇒  F = 0,1 dB

The state of the art (cryogenics) is TS ≈ 1-2 K / GHz

NF of an integrated LNA for SKA

Noise factor (NF)    =    10 log10 (TS/To + 1)  (in dB) 
with by definition :   To = 290 K



→ Dynamic range : 

    Analog : D = Tmax/Tmin measurable without distortion  
                      (limited upwards by saturation and downwards by noise) 
    Digital : D = Nbit × 3 dB for a quadratic receiver 
      TdB = 10×log10(Tmax/Tmin) = 10×log10(Vmax/Vmin) 
              Nbit × 6 dB for a linear receiver  
      TdB = 10×log10(Tmax/Tmin) = 10×log10(V2max/V2min) = 20×log10(Vmax/Vmin) 

If TN is sampled on > 1 bit, better dynamic resolution at low levels, but reduced dynamic range 
If TN is sampled on << 1 bit, discretisation error and lower sensitivity at low levels.

Linearity : 

- Constant gain in the linear range 
drops off at saturation 
- Compression point at - 1dB, 
where gain drop = 1 dB 
⇒ D = P-1dB / kTS b G

1dB

Pout (dBm)

Pin (dBm)

Compression point at -1dB

Slope of  1dB/dB

Pin

Pout

Zone of saturation

Zone of 
linearity

Ex : Input stage of Embrace (SKA demonstrator) : 
 - LNA with an equivalent noise band : NEB = 700 MHz, G = 18 dB, TS = 50 K 
   P-1dB = 0 dBm = 1 mW ⇒ D = 75 dB



 D Δf δf, δf/f Nfreq δt Δt Rate Remarks
Filter bank (multichannel) − dozens + heavy, cumbersome, 

not flexible, expensive
Frequency scanning spectrum 
analyser (SFA, SFR)
= (Super-)heterodyne receiver 
with variable O.L.

+

≥ 60 
dB

+

~f

+

≤%

+

~Δf/δf

−

δf×τ »1 
⇒

δt »N/δf 
~sec

+ ~ ko/s stability Ok, low t-f 
plane coverage, 
sensitivity ∝ 1/N

Acousto-Optical Spectrograph 
(SAO)

−
≤ 25 
dB

+
~f, up to 1 

GHz

+
~%

+
hundreds

+
msec

− 01-1 Mo/s low stability (~min), 
compact, complete 
coverage of t-f plane

• Correlators (digital): TF 
spectrum of the autocorrel 
function (Wiener-Khintchine)
• TF receivers (digital - FFT, 
Welch estimator)
• Polyphase filters

++
Nbit, 

≥65 dB

+
ALMA  
2 GHz,  
GBT  

800 MHz

+
≤%

+
thousands

+
msec

− a few × 
Mo/s

flexibility in band 
selection and 
resolution, stability

Waveform sampler Nbit ≤fsampling./2 
~100 MHz

++
only limit : δf×δt »1

− − a few 
100s Mo/s

snapshots

• Types of spectrometers



• Autocorrelation spectrometers

Discrete calculation of  Cxx(τ) = <x(t).x(t-τ)>        Δt between 2 samples 
 ⇒ Cxx(n×Δt) =  1/(n+1)  k=0Σn x(k×Δt).x((k-n)×Δt) 

then of the spectrum  P(f) [WHz-1] = TF(Cxx(τ))    [Wiener-Khintchine Theorem] 
 ⇒ P(p×df)  = k=0Σn-1 Cxx(k.Δt)×exp(-i2πf.k.dt)           with  p = 0, 1, ..., n-1 
                                f = p×Δf ,   Δf = 1/(n×Δt) = Fsampling/n    

Correlation rate of 2 analog signals
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lsDigital vs. analog correlation : 

- Depends on signal discretisation at correlator 
input (Number of levels & Fsampling) 

- 1-bit correlation (2 levels): only the sign of the 
signals is retained during digitisation

- Van Vleck correction to linearise autocorrelation result before FFT



• Direct TF spectrometers

- Spectral response (Power Spectral Density) = |FFT|2, depends on the weighting window used 
which modifies the width of the lobe at half power, the level of the secondary lobes and the gain.

Rectangular (porte) :   h(t)=1     for  t∈[0,T]    ⇒   h(f) ~ sinc(x)     with     x = πfT 

Triangular (Bartlett): h(t)=2t/T         for  t∈[0,T/2[      ⇒    h(f) ~ sinc²(x/2) 
  h(t)=2(T-t)/T   for  t∈[T/2,T] 

Hann: h(t)=0.5-0.5×cos(2πt/T)     for  t∈[0,T] 
Hamming: h(t)=0.54-0.46×cos(2πt/T)  for  t∈[0,T]     ⇒    broader, no secondary lobe 

Blackman-Harris:  h(t)=0.42-0.5×cos(2πt/T)+0.08×cos(4πt/T)  for  t∈[0,T]    ⇒    intermediate, steeper 

Time profile of window Spectral profile of window
lin

ea
r

dB

Window Level of secondary lobe (dB) Slope (dB/octave) Bandpass (bins)
Rectangular -13 -6 1.21
Triangular -27 -12 1.78

Hann -32 -18 2.00
Hamming -43 -6 1.81

Blackman-Harris -67 -6 1.81



• Direct TF spectrometers
For a time sequence of kN samples, the PSD on N channels is the average (weighted & 
normalised) of the (2k-1) FFTs generated with 50% overlap of sample intervals.

PSD1

PSD2

PSD3

PSD2k-1

kN 

PSDi = 1/NTe|TeΣwk.xk.exp(-j2πfkTe) |²  for  k = 0 to k = N-1 
PSD = 1/ (2k-1)(Norm) Σ DSPi   for  i = 0 to 2k-1,   with Norm = Te/N Σ wm²  for  m = 0 to N-1

 → N channel spaced by  Δf = 1/2NΔt

- equivalent to an M-channel FFT with an n.M-point weighting window 
          &      to a bank of M discrete digital filters (with optimised calculations) 
   n coefficients / filter ⇒ total of n.M coefficients 
- Outputs Xi(nMΔt) are the time series of  
   samples from the M spectral channels (i=0, M-1)

• Polyphase filter spectrometers

→ Independent adjustment of side 
lobe rejection and channel width.



• Evolution of spectroscopy of Jupiter's decametric emission over ~35 years

SFR (1980’s)

AOS (1990’s)

FFT (2000’s)
LF waveform (2000’s)

HF waveform (2010’s)



• Spectroscopic measurements

(1) wide-spectrum "continuous" sources, ~constant or slowly varying (over Δt >> τ) 
   ⇒ measurements with large τ flux in narrow δf bands 
   → swept-frequency spectrum analysers (+ filter banks)

(2) emission/absorption spectral lines 
  + offset (Doppler), broadening (Doppler, collisional), splitting (Zeeman) 
   ⇒ need for spectral resolution (δf << f) and sensitivity 
   → multichannel receivers, correlators, FFT spectrographs

(3) rapidly changing spectra / t (δt ≤ or << 1 sec) 
     + fine spectral structures (δf << f) on broad bands (Δf ≈ f) 
     = "dynamic spectra" (solar & magnetospheric planetary emissions) 
   ⇒ need for spectral resolution (δf << f) and temporal resolution (δt ≤ or << 1 sec) 
   → multichannel receivers, SAO, FFT spectrometers, polyphase, waveform samplers

BEE2

• Combination of techniques (DDC, Polyphase, FFT): 
   Ex: SETI spectrometer with 128 million channels 
   Analysis bandwidth: 200 MHz, frequency resolution: 2 Hz



• Polarimetry:        determination of Stokes parametres S (or I), Q, U, V

Measurement of the electric fields Ex and Ey in two perpendicular directions normal to the 
direction of propagation (antenna giving both linear polarisations): Ex(t) et Ey(t) 
    Ex = excos(ωt+φx) et Ey = eycos(ωt+φy) 

S = <Ex²(t)> + <Ey²(t)> 
Q = <Ex²(t)> - <Ey²(t)> 
U = 2 <Ex(t).Ey(t).cos(φx – φy)> 
V = 2 <Ex(t).Ey(t).sin(φx – φy)> 

Measurement of auto-correlations  Ex²(t) and Ey²(t) allows to compute S and Q 
Measurement of cross-correlations Ex(t).Ey(t) and Ex(t).Ey*(t) allows to compute U and V 

Linear polarisation fraction:     (Q² + U²)½ / I 
Circular polarisation fraction:  V / I 
Total polarisation fraction:          (Q² + U² + V²)½ / I 
Linear polarisation angle:                ½  tan-1(U / Q)



• Interference (RFI) mitigation

→ Intermittent RFI :  

- "Waveform blanking" before detection (in 
real time) = interruption of waveform 
capture based on a pre-defined criterion 
(usually intensity threshold). 

- Statistical analysis of dynamic spectrum 
and masking (t,f) in real-time or after 
detection 

→ Continuous RFI : Estimation, reduction/
cancellation or nulling (imaging) 

→ + legal protection



% unpolluted channels vs. spectral resolution

90% availability in the band : 
•  35-45 MHz, requires 6.25 kHz resolution 
•  25-35 MHz, requires 1.6 kHz resolution 
•  15-25 MHz, requires 190 Hz resolution



Statistical analysis of dynamic spectrum and masking (t,f) in real-time or after detection, 
before further integration

RT : Iridium Satellites

[Offringa, 2012]



• Pulsars dedispersion 

→ detection, timing

FFT 2D FFT 2D

Example of a time-frequency topological criterion

• Detection of fast bursts 

→ high-speed recording



•  Introduction (history, interest, specific features) 
• Waves & Polarisation 
• Plasmas & Propagation (cutoff, dispersion, Faraday effect, 
scintillations) 

• Coherent Signal Detection (measurement theory, antenna temperature, 
calibration, noise) 

• Receivers (heterodyne, system temperature, filtering, gain, RFI 
mitigation) 

• Basics of Radio Astronomy Antennas: Single antennas 
• Basics of Interferometry and Aperture Synthesis (phased arrays, 
electronic pointing, imaging, correlation, coherence, VLBI) 

• Observation methods 
• Large present & future ground-based radio arrays 
• Basics of Space radio astronomy



• Definitions :

An antenna is a device that transmits energy between a wave propagating in free space and a 
power transmission line.

Reciprocity theorem applied to antennas (Carson's theorem): The properties of an 
antenna can be indifferently used, defined and evaluated in transmission or reception.

3 radiation zones : 
• Rayleigh zone (near field) 
• Fresnel zone (intermediate) 
• Fraunhoffer zone (far field) : E,B in 1/r, S in 1/r2 

  ⇒ rmin > 2D2/λ  with D the size (diameter) of the antenna

Ex: Nançay Decimeter Radiotelescope : D = 200 m  at  λ = 0,21 m ⇒ rmin = 380 km 
 Nançay Radio Heliograph : D = 10 m  at  λ = 1 m ⇒ rmin = 200 m



Spectral power received from (θ,ϕ) in dΩ : 
dPν(θ,ϕ) = Pν(θ,ϕ) dΩ = dSν(θ,ϕ).Aeff(θ,ϕ)  [W.Hz-1]

with  Aeff(θ,ϕ) = η A p(θ,ϕ) 
A = Physical area    ⇒  η A = Geometrical effective area 
η = efficiency ≤ 1 (antenna illumination, energy not intercepted, surface defects, losses) 
p(θ,ϕ) = directional sensitivity (normalised : pmax = 1)

hence   dPν(θ,ϕ) = Pν(θ,ϕ) dΩ = Bν(θ,ϕ) . Aeff(θ,ϕ) dΩ  [W.Hz-1]

• Antenna in reception  → Effective area

NB : we have seen that the spectral power received by an antenna can be written as : 
 Pν = Bν ΩA Asource-seen-by-antenna = Bν Aantenna/d2 Asource-seen-by-antenna  
       = Bν Aantenna ωsource-seen-by-antenna = Sν Aantenna  
  hence  :   Sν = Bν ωsource-seen-by-antenna = Bν min(ωsource, Ω) 
  which generalises as :  Bν(θ,ϕ) = dS(θ,ϕ)/dΩ       or       dS(θ,ϕ) = Bν(θ,ϕ) dΩ

Ex: 2D Airy figure for a circular reflector  
   or p(θ,ϕ) = 1 for an isotropic antenna 
            (impossible to build in practice)



hence whatever the antenna, regardless of its nature, we obtain :  ∫4π Aeff(θ,ϕ) dΩ = λ2

NB : A is not necessarily the geometrical area of the collector, but its "effective" area (or 
collection surface) = "effective cross-section" of the radiotelescope with respect to the incident 
radio radiation (taking losses into account ...).

Antenna of effective area Aeff in equilibrium in an isotropic blackbody radiation field at 
temperature T : 

Bν(θ,ϕ) = ½ × 2kTB/λ2    &  Pν-tot = k TB  

⇒     Pν(θ,ϕ) dΩ = Bν(θ,ϕ) . Aeff(θ,ϕ) dΩ = k TB / λ2 . Aeff(θ,ϕ)dΩ 

∫4π Pν(θ,ϕ) dΩ = k TB / λ2  ∫4π Aeff(θ,ϕ)dΩ   = Pν-tot = k TB 



Pν-total injected at terminals  ⇒ dPν = fraction emitted in dΩ in the direction (θ,ϕ) 

dPν(θ,ϕ) = Pν(θ,ϕ) dΩ = (Pν-total/4π) × g(θ,ϕ) dΩ 

with g(θ,ϕ) = antenna radiation pattern or directional gain or directivity 
(=1 for an isotropic antenna) 
⇒ g(θ,ϕ) = 4π/Pν-total × Pν(θ,ϕ) 

hence     ∫4π g(θ,ϕ) dΩ = 4π/Pν-total ∫4π Pν(θ,ϕ) dΩ = 4π/Pν-total ∫4π dP(θ,ϕ) 
⇒       ∫4π g(θ,ϕ) dΩ = 4π     by definition of g

→ Directional antenna : all energy is emitted in Ω (main lobe), with a ~constant gain 
(or p =  pmax = 1) on Ω 

 ∫4π p(θ,ϕ) dΩ = Ω 
 ∫4π g(θ,ϕ) dΩ = 4π 
⇒ gmax(θo,ϕo) ≈ g ≈ Ct = 4π/Ω 
g ↑  when  Ω ↓ 
g = 4π Aeff / λ2   ⇒   Aeff . Ω = λ2 
     ⇓ 
   effective area in the direction of the main lobe 

• Antenna in emission →  Gain 

 Reciprocity theorem : p(θ,ϕ) = g(θ,ϕ) / gmax = Aeff(θ,ϕ) / η A 
∫4π Aeff(θ,ϕ) dΩ = λ2    and   ∫4π g(θ,ϕ) dΩ = 4π    ⇒  g(θ,ϕ) = 4π Aeff(θ,ϕ) / λ2



The antenna receives radiation from the source at TB 

⇒ in dΩ from the direction (θ,ϕ), the received power is : 
Pν(θ,ϕ) dΩ = k TB / λ2 . Aeff(θ,ϕ) dΩ = k TB /4π × g(θ,ϕ) dΩ

For any TB(source), not necessarily uniform : 

  Pν(θ,ϕ) dΩ = kTB(θ,ϕ)/4π × g(θ,ϕ) dΩ  

⇒ ∫4π Pν(θ,ϕ) dΩ = Ptot = k TA = k/4π ∫4π TB(θ,ϕ)× g(θ,ϕ) dΩ  

⇒ TA = 1/4π ∫4π TB(θ,ϕ)× g(θ,ϕ) dΩ

For a finite-dimensional source, the antenna temperature of the source writes : 
  TA = 1/4π × ∫source T(θ,ϕ) × g(θ,ϕ) dΩ   
                 ⇓        ⇓ 
    characterises the source     characterises the antenna

• Antenna temperature



→  Consequences :

1) ωsource > Ω (antenna lobe) and T(θ,ϕ) ≈ Ct  on  Ω 
 if we only receive energy from the source (and not from the secondary lobes) 
⇒ T  and  g ≠ 0  only in  Ω) 
⇒ TA = 1/4π × ∫source T(θ,ϕ) × g(θ,ϕ) dΩ 
    = T(θ,ϕ)/4π × ∫lobe g(θ,ϕ) dΩ 
    = T(θ,ϕ)/4π × (∫4π g(θ,ϕ) dΩ) 
⇒ TA = T(θ,ϕ)

2) ωsource << Ω (main lobe, >> secondary lobes) 
if we only receive energy from the source ⇒ g(θ,ϕ) ≈ Ct ≈ g = 4π/Ω 
⇒ TA = g/4π × ∫source T(θ,ϕ) dΩ = <T>source ωsource / Ω



• Radiation diagram

Representation of   g(θ,ϕ)  or  g(θ,ϕ)/gmax   as a function of θ and/or  ϕ in polar or rectangular 
coordinates, in 2D or 3D



g(θ,ϕ) is expressed in dBi (dB / isotropic) = 10 log10(g(θ,ϕ)) 
      or in dBc (dB / maximum gain) = 10 log10(g(θ,ϕ)/gmax) 

Ex: - for the Nançay radiotelescope, with Ae = 5600 m2 at 21 cm, gmax = 62 dBi 
 - for a uniformly illuminated rectangular aperture ( g(θ)∝ sinc(πDθ/λ)2 ), the 1st secondary 
lobe is at -13,26 dBc) 
 - for a uniformly illuminated circular aperture ( g(θ)=[2J1(πDθ/λ)/(πDθ/λ)]2 ), the 1st 
secondary lobe is at -17,6 dBc

Characteristic features of the g(θ,ϕ) diagram :  
- main lobe 
- secondary lobes 
- rear lobes 
- half-power width (= lobe aperture at maximum-3 dB)



• Practical design

No radio lens → Reflector necessary, or directly collecting antennas 
λ ↑ ⇒ D ↑, very large collector areas required, but with limited surface precision 
(~λ/10 - λ/20) 
Geometry often ≠ parabola for technical reasons (mechanical ...)

Nançay dm radiotelescope = 
Meridian instrument : pointing in 
declination (δ) by a plane mirror 
200×35 m2 + focusing by a 
spherical mirror of radius R  
⇒ focus on the sphere R/2 
⇒ tracking via movable focal 
system for 1h around the meridian

Ex : Dmax = 100 m for the largest steerable dish (Effelsberg / Bonn) 
⇒ A ≈ 7850 m2



Largest instruments dm-cm = Fixed antenna :  
- Arecibo : ∅ ~ 300 m (collapsed in 2020) 
- FAST : ∅ ~ 500 m (300 m used instantaneously) 

Reflector shaped in a natural bowl (limited motion of the focus)



For a uniformly illuminated aperture in phase and amplitude: Ae = A (physical area) 

General case : Ae = η A with efficiency  η = ηillumination × ηnon-intercepted energy  × ηsurface irregularities

→  η = ~ 0,7 for a good parabolic antenna

« Spillover »

Primary focus : high TA-ground

Cassegrain focus : lower TA-sky

exp[-(4πσRMS/λ)2]
For a circular aperture

u=πDθ/λ



no sensitive surface (focal antenna = horn or dipole = 1 pixel) 
Dipole or horn ⇒ receives energy from diffraction pattern of collector → detector  
⇒ instantaneous imaging difficult with a single antenna 
Since 2010’s, Focal Plane Arrays = focal antenna arrays (cf. + below)

• Focal systems

Focal antennas are generally polarised (linearly or circularly) 
Linear focal antenna orientation / E ⇒ antenna polarisation 
(Horizontal & Vertical polarisations are often used) 

⇒ each polarisation receives/transmits S/2 for a non-polarised incident signal S

Yagi-Uda Antenna
Helix Crossed dipoles



Main planes ⊥, = E and B (or H) for a linearly polarised antenna: 
radiation pattern generally different in these 2 planes 
⇒ response generally ≠ in the 2 polarisations

Corrugated horn 
⇒ low cross-talk 

Polarisation cross-talk : response of an antenna to 
polarisation ⊥ to its nominal reception polar.

Operating band: limited by variations in g(θ,ϕ) with frequency ⇒ often ≤ 1 octave

Broadband antennas : 
 - short dipole L<λ/10 (active if integrated preamplifier) 
 - « log-periodic » antennas

Log-periodic 
spiral antenna 

(Nançay 
decameter 

array)

3 SKALA ANTENNA DESIGN 

The SKA-AAlow will be an interferometer formed of 
hundreds of stations each one containing up to at 
least 2,000 elements [7]. Electromagnetic simulation 
tools capable of simulating arrays of this size are 
currently under development [8, 9]. Also, irregular 
array configurations such as random arrays [10] are 
being studied due to its good side lobe properties. As 
shown in [11], mutual coupling effects in random 
arrays randomize out, which allows the designer to 
create a first design of the antenna based on single 
element simulations.   

In order to maximize A/T across the frequency 
band and field of view different antenna elements 
were considered. Bow-tie antennas [12] were very 
promising but failed to show the desired performance 
in a dual polarization configuration. Finally, a log-
periodic antenna element (see Fig. 1) produced the 
best results. A LPDA can easily provide gain values 
as low as 6-7 dBs and half power beam width 
(HPBW) around 70 degrees across band, but it also 
has good flexibility to optimize these 2 parameters by 
trading off between them. For the SKA one would 
like as high gain as possible at all angles within the 
+/- 45 degrees region (it doesnZt mean that we need 
HPBW of 90 degrees) and that was the target of the 
design. Insensitivity to ground effects (e.g., noise 
from the ground) is other desirable property for a 
SKA antenna, which as well facilitates the matching 
with the LNA to obtain low receiver noise. 

The original antenna is formed by 4 arms (2 per 
polarization) with 9 wide dipoles per polarization. 
The arms of both antennas (of each polarization) are 
interleaved. The footprint of the antenna in Fig. 1 is 
1.3 x 1.3 m and it is 1.6 m in height. The distance 
from the bottom of the larger dipole to the ground is 
30 cm. The footprint can be reduced, by reducing the 
size of the largest dipole at the bottom of the antenna, 
at the expense of worse noise matching with the LNA 
at the low-end of the band. The sky noise tends to 
dominate the noise performance at frequencies below 
200 MHz [4, 13]. This allows having smaller 
elements without losing much sensitivity. The 
opening angle of each arm with respect to the vertical 
(see Fig. 1) is 10 degrees. Controlling this parameter 
one can optimize the pattern beam-width (field of 
view) at the expense of worse cross-polarization. 
Large sky coverage (+/- 45 degrees) with moderate to 
high gain was one of the key design drivers for this 
antenna. The number of dipoles, antenna height and 
distance to ground, footprint and the scaling factor 
were optimized to maximize the gain in the +/- 45 
degrees region while keeping a flat impedance 
response and low cross-polarization. 

 

 

Figure 1: Original SKALA antenna model. 

 

Figure 2: Original SKALA feeding model. 

The feeding of the antenna (see Fig. 2) in 
simulations consisted on 2 differential ports (100 � 
reference impedance). Simulations with 2 single ports 
per polarization (50 � reference impedance) and a 
common ground matched the differential simulations.  

4 SKALA PERFORMANCE 

Figure 3 presents the impedance plot for the original 
design of SKALA simulated with CST [14] over an 
infinite ground plane. The impedance is generally flat 
with a dominating real component oscillating around 
100 �. This impedance is suitable for matching with 
a differential LNA made of two 50 � transistors. 

Simulated A/T plots are presented here (see Fig. 4) 
for 500,000 SKALA elements (500,000 times the 
A/T of one element). Small deviations of these curves 
are to be expected at frequencies from 100 to 250 
MHz for different irregular array configurations [15]. 
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calibration, noise) 

• Receivers (heterodyne, system temperature, filtering, gain, RFI 
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• Large present & future ground-based radio arrays 
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2’

visible radio

Jupiter

40”

0.001”

High angular resolution required on Jupiter, Sun, RadioGalaxies, Quasars...

+ Possible existence of spatially coherent sources (e.g. 
Jupiter, Masers...), linked to non-thermal coherent 
mechanisms.

• Maximum resolution of single antennas ~ λ / Dmax ≈ 1' 
• To increase angular resolution ⇒ Interferometry



• Point source (in the direction θ)

Antennas with ≠ gains : E12 = g1 Eo2 & E22 = g2 Eo2  

⇒  P⊕ = E12 + E22 + 2E1E2cosψ 
⇒  |V| = 2(g1g2)1/2/(g1+g2)

Identical & omnidirectional antennas :  
E1 = Eo exp(i2πνt)     E2 = Eo exp[i(2πνt-ψ)] 
E⊕ = Eo exp(i2πνt) [1 + exp(-iψ)]  
     = Eo exp(i2πνt-iψ/2) [exp(iψ/2) + exp(-iψ/2)] 
     = 2Eo exp(i2πνt-iψ/2) cos(ψ/2) 
⇒  P⊕ = E⊕ .E⊕*  
   P⊕ = 2 Eo2 (1+cosψ) = 4 Eo2 cos2(ψ/2) = 4 Eo2 cos2(πdθ/λ) 

Contrast |V(d,θ)| = (P⊕max - P⊕min) / (P⊕max + P⊕min) = 1

Relative phase shift : 
  ψ  =  k . x 
    =  2πd sinθ /λ 
    ≈  2πdθ/λ    for θ small

2-antenna array (or interferometer) in sum (Σ)

1 2



For non-omnidirectional antennas :  

⇒  Diagram multiplication theorem :  
If g(θ,ϕ) represents the radiation pattern of an antenna A, and R(θ,ϕ) the radiation 
pattern of an array R of isotropic antennas, the radiation pattern of an array R made 
up of these antennas A is (in the far field) :         F(θ,ϕ) = g(θ,ϕ) × R(θ,ϕ)

Eo → Eo(θ) = antenna diffraction pattern  
= interference pattern envelope 

e.g. for 2 rectangular 1D apertures :  
P⊕ → P⊕ × sinc2(πDθ/λ)



We define the complex visibility : V(d) = exp(iψ) 
with modulus = the fringe contrast of the interference pattern (=1 for a point source),  
and phase = the position of the central fringe relative to a path difference = zero

d

2-antenna interferometer in product (Π) or correlation 

Identical antennas : P⊗ = E1.E2* = Eo2 exp(iψ) 
Re(P⊗) = Eo2 cosψ 
Antennas with ≠ gains : P⊗ = E1.E2.exp(iψ)

Re(P⊗) can be obtained directly in digital, or in analog by phase modulation : 
Re(P⊗) = 1/4 (P⊕ - PΘ) = 1/4 [ (E12+E22+2E1E2cosψ) - (E12+E22+2E1E2cos(ψ+π)) ] 
     = E1.E2.cosψ                    ⇓                  ⇓ 
                           sum in phase              sum in phase opposition



NB:  
- the response of an interferometer in product is ≠ power 
- in all cases, we have |V| = 1 
- in fact, we calculate responses (in Σ or Π) as < E1(t).E2*(t)>|Δt >> 1/ν 

                                or < U1(t).U2*(t)>|Δt >> 1/ν

For a 2-antennas interferometer: the central fringe is ~λ/d, but the relative contribution 
of sidelobes ↑ when λ/d ↓ ⇒ compromise resolution/sensitivity/... ?



Composite interferometers (X, T …) : composed of any, non-identical antennas

UTR-2/Kharkov array

D2/4

If the 2 antennas have distinct phase centers (here separated by D2/4): 
 P⊗ = E1.E2. exp(2πD2θ/4λ) 
         Re(P⊗) ∝ sinc(πD1θ/λ) × sinc(πD2θ/2λ) × cos(πD2θ/2λ) 
      ∝ sinc(πD1θ/λ) × sinc(πD2θ/λ) 
(same lobe as symmetrical antenna D2, but sensitivity ÷2)

Linear composite interferometer :    

E1 ∝ sinc(ψ/2)        E2 ∝ cos(ψ/2)       with      ψ  =  2πdθ /λ 

⇒ Re(P⊗) = E1.E2.cosψ   ∝  sinc(ψ/2) cos(ψ/2) cosψ ∝ sinc(2ψ) 
⇒ same as antenna with length 2d (but lower sensitivity)

Mills cross

If the 2 antennas are symmetrical with respect to their common phase 
center(X) : 
        Re(P⊗) = E1.E2.cos(ψ) 
 ψ = 0  ⇒ Re(P⊗) = E1.E2 ∝ sinc(πD1θ/λ) × sinc(πD2θ/λ)

D1

D2



N-antenna interferometer in sum (all in phase) 
Phase shift between 2 antennas : ψ = 2πdθ /λ 

E = Eo Σk=0N-1 exp(ikψ)   × sinc(πDθ /λ) = Eo (1 - exp(iNψ)) / (1 - exp(ikψ))  × sinc(πDθ /λ) 
                            = Eo exp(i(N-1)ψ/2) × [sin(Nψ/2) / sin(ψ/2)]   × sinc(πDθ /λ) 
⇒ P⊕ = Eo2 [sin2(Nψ/2) / sin2(ψ/2)]      × sinc2(πDθ /λ) 
⇒ better angular resolution and reduced sidelobes ⇒ S/N ↑

~

Optimising the radiation pattern: 
N ↑ ⇒ λ/Nd ↓ so resolution ↑ 
d ↓ ⇒ λ/d ↑ so fewer side lobes 
limit = single antenna: N→∞, d→0



• Phased array 

= N-antenna interferometer in sum 
⇒ synthesis of a narrow beam, total flux measurement

Electronic pointing of a phased array :  
Principle with 2 antennas ⇒  response R ∝ cos(ψ/2) 

If the antennas are in phase ⇒ R maximum for θ = 0 ⇒ central fringe in the bisector plane of 
the 2 antennas 
If we introduce a phase shift φ of antenna 2 / antenna 1 
⇒  response R ∝ cos((ψ + φ)/2) = cos((2πd sinθ /λ+φ)/2)  
      maximum for   θo = arcsin( -λφ/2πd ) ≠ 0 ⇒ shifted central fringe 

NB: for a small FoV :  R ∝ cos((2πd θ /λ + φ)/2)   maximum for   θo = -λφ/2πd 

⇒ same formulas apply for a N antennas array 
A relative phase shift allows to point without mechanical movement

The benefits of electronic pointing : 
→ rapidity (< 1 sec) 
→ fiability (no moving parts) 
→ flexibility (simultaneous ON/OFF, e.g. at UTR-2)



16 antennas, θ = 10°, d/ λ = 1,9

Array (linear, 1D) with N (isotropic) antennas :  
⇒ we introduce a constant phase shift φ between 2 successive 
antennas to point in the direction θo :  
      ψ = 2πd sinθ /λ + φ = 2πd sinθ /λ - 2πd sinθo /λ 
⇒ P⊕ = Eo2 [sin2(Nψ/2) / sin2(ψ/2)] 
Periodic main lobes = array lobes,  for ψ multiple of 2π

Planar array (rectangular, 2D) with Nx × Ny antennas (isotropic) : 
⇒ P⊕ = Eo2 [sin2(Nxψx/2) / sin2(ψx/2)] × [sin2(Nyψy/2) / sin2(ψy/2)]

θ = 60°, d/ λ = 0,475
Choice of the distance between antennas such that no 
grating lobes appear when pointing in the  θo direction :  
ψ > -2π  pour  θ = -π/2   ⇒    d < λ/(1+sinθo) 
       d < λ       for a pointing to the zenith  
       d < λ/2    ∀ pointing

o

θ=-π/2



Dense array: elements very close to each other, Ae ~ A 
Sparse array: elements widely separated, Ae << A 
Aperiodic array : non-regular grid to suppress array lobes

Ex: Nançay Decameter Array : phased array in Σ,  
compact ("filled aperture", space between antennas < λ) 
     φ  between blocks of 8 antennas (9 blocks / array / circular  
polarisation) introduced by "delay lines"    

Additional degree of freedom: distribution of the gains of the N antennas for the best compromise 
Ex: in-phase antennas λ/2 apart

(Uniform distribution) (Binomial distribution) (Optimal «Dolph-Tchebychev» distribution)

Ex: LOFAR-LBA field: phase array in Σ, random 
distribution ~Gaussian, overlap Aeff ~20% 
   φ  between antennas introduced numerically by 
channelisation + phase shifts    



Beam formed at θ = 30°, with 16 
isotropic antennas, d=λ/2

Same with a zero instead 
of the 2nd secondary lobe 

at θ = 11,3°

Determining the gains and phase shifts to be applied to each antenna  
⇒ beamforming 

• main lobe width 
• array lobes suppression 
• position of zeros (deterministic nulling /  

                   adaptative in real-time) 
• secondary lobes level

Delay lines : φ = 2πντ ⇒ ψ + φ = 2πd sinθ/λ + 2πcτ/λ = 0  
for    θ = arcsin( -cτ/d )  independent of λ 
⇒ achromatic pointing 

Phase-shifting circuits : ψ + φ = 2πd sinθ /λ + φ = 0 
for    θ = arcsin( -λφ/2πd )  dependent of λ 
⇒ chromatic pointing



SKA Vivaldi antennas

LOFAR LF Dipoles LOFAR HF Dipoles

• Field of view (=FoV)

The narrow lobe formed by the array has as its envelope the lobe of each constituent element of 
the array (consequence of the diagram multiplication theorem). 
→ FoV generally defined by the -3 dB lobe of an element 
  FoV (sr) = ∫0θ3dB/2 2π sinθ dθ = 2π (1 - cos (θ3dB/2) )  ≈ π θ3dB2 /4

Ex :   For a 6m diameter dish at 1 GHz : FoV ≈ 9°2 
 For a 1m × 1m tile at 1 GHz :        FoV ≈ 350°2

• Multi-beam systems 
Focal Plane Arrays - Horn arrays (1 / beam) 
              - Focal phased arrays 
Direct sampling of the incident wavefront by a dense phase array 
(Aperture Array) 
NB : with phased arrays, all elements contribute to all beams



• Antennas in imagery

→ Intuitive approach to the Visibility as a function of the dimension of an extended source 
     An extended source drifts in front of the instrument (2-antenna interferometer) → θ(t)

- for a point source (∅ << λ/d), I(θ(t)) is simply  
  the response of the instrument R(θ)

- for an extended source of ∅ < λ/d, the response 
  of the interferometer never falls to 0, 
but there are still fluctuations in I(θ(t)) 
(I = convolution of R by the brightness distribution of the source) 

⇒  contrast is defined as the amplitude of the modulation: 
|V(d)| = [Imax(θ) – Imin(θ)] / [Imax(θ) + Imin(θ)] 
|V|=1  for a point source,  
↓ when the source size ↑

- for an extended source of ∅ ≥ λ/d, the response 
  of the interferometer is reduced to the diffraction pattern of  
each telescope 
   ⇒  no fringes are observed anymore: |V|=0 
   ⇒  resolution of interferometric observations is lost

⇒   a 2-antenna interferometer is only sensitive to angular resolutions  
~λ/d  (the "useful" information is the measurement of the contrast V, in amplitude and phase)

θ

θ
∅ << λ/d 

∅ < λ/d 

∅ ≥ λ/d



• Imagery of an extended source

2-antenna interferometer in sum (Σ)    [ identical & omnidirectional antennas ] 

E⊕ = exp(i2πνt) ∫source E(θ) [1 + exp(-iψ)] dθ     (in 2D  dθdφ) 
⇒  P⊕ = < E⊕ .E⊕* >|Δt >> 1/ν 

     = ∫source 2 E(θ)2 [1 + cosψ] dθ 
     = ∫source 2 E(θ)2 dθ + ∫source 2 E(θ)2 cosψ dθ 
     = 2 ∫source TA(θ) dθ + 2 ∫source TA(θ) cosψ dθ 
  P⊕  = 2 <TA>|source + 2Re( ∫source TA(θ) exp(iψ) dθ )

We define the complex visibility:  
V(d) = ( ∫source TA(θ) exp(iψ) dθ ) / ( ∫source TA(θ) dθ ) 
V(d) = ( ∫source TA(θ) exp(iψ) dθ ) / <TA>|source 

⇒  P⊕ = 2 <TA>|source [ 1 + Re(V(d)) ]

2-antenna interferometer in product (Π) or correlation   [ identical & omnidirectional antennas ] 

P⊗ = < E1.E2* >|Δt >> 1/ν = ∫source E(θ)2 exp(iψ) dθ = ( ∫source TA(θ) exp(iψ) dθ ) 
hence 
P⊗ = V(d) <TA>|source   or   V(d) = P⊗ / <TA>|source

  ψ  =  2πd sinθ /λ 
    ≈  2πdθ/λ

TA(θ) ≈ E(θ).E(θ)* 

     ≈ |E(θ)|2



• Notion of spatial frequency

θ  (or sinθ)  and  x/λ  are conjugate variables 
u = x/λ  is the spatial frequency associated with the characteristic angular scale θ = u-1 
In two dimensions (u,v) are the spatial frequencies, defined on the pupil plane (the aperture), 
conjugated to the angular coordinates (θ,ϕ) 
(u = x/λ, v= y/λ)  are expressed in [rad-1] or [°-1], with (x,y) = coordinates in the pupil plane 
⇒ E(θ,ϕ) = F.T. [E(u,v)]  ⇔ E(u,v) = F.T.-1 [E(θ,ϕ)]

More generally (in 2D) complex visibility therefore writes: 
V(u,v) = ( ∫source TA(θ,ϕ) exp[i2π(uθ+vϕ)] dθdϕ ) / ( ∫source TA(θ,ϕ) dθdϕ ) 
⇒ V(u,v) = tA(u,v) / <TA>|source

Zernike-Van Cittert Theorem : the complex visibility (or coherence factor) is the Fourier 
Transform of the source's spatial intensity distribution normalised by its mean intensity.

As:  V(u,v) = P⊗ / <TA>|source   ⇒    V(u,v) = < E(0,0).E(u,v)* > / <TA>|source 
the complex visibility is measured as correlations on the aperture (to a constant factor)

Reminder: for a ray from a direction θ ray passing through the aperture at M a distance x from O, the phase shift is: 
     ψ = k.x = 2π x sinθ / λ  ≈ 2π x θ / λ 
the corresponding wave (passing at M) writes:  E = Eo exp[i(ωt - ψ)] = Eo exp(i2πνt) exp(-i2π x θ / λ) 
The amplitude received in the direction θ is : 
     E(θ) = ∫aperture Eo exp(i2πνt) exp(-i2π x θ / λ) dx = Eo exp(i2πνt)  +∞∫-∞ f(x) exp(-i2π x θ / λ) dx 
              with   f(x) = 1 for  x ∈ aperture,  f(x) = 0  elsewhere 
     E(θ)  = TF(E(x)) where  E(x)= [ Eo exp(i2πνt) ] × f(x)   is the amplitude distribution over the aperture



An antenna g(θ,ϕ) pointing in the direction  (θo,ϕo)  to observe a source of brightness 
distribution T(θ,ϕ) produces an image 
 ⇒  TA(θo,ϕo) = 1/4π × ∫source T(θ,ϕ) × g(θo-θ,ϕ o-ϕ) dΩ  = 1/4π × [ g ⊗ T ] (θo,ϕo)

The object T(θ,ϕ) can be decomposed by 2D spatial 
(angular) Fourier Transform 
T(θ,ϕ) = F.T. [t(u,v)]   ⇔  t(u,v) = F.T.-1 [T(θ,ϕ)] 

⇒  tA(u,v) = G(u,v) . t(u,v) 

with TA(θ,ϕ) = F.T. [tA(u,v)] ⇔ t(u,v) = F.T.-1 [T(θ,ϕ)] 
and  G(u,v) = 1/4π × TF[g(θ,ϕ)] = "transfer function" of the antenna 
                              ⇓ 
                   "antenna impulse response"   [ t(u,v)=1  for  T(θ,ϕ)=δ ] 

The antenna is a complex linear filter of the source's spatial frequencies.

NB : G(0,0) = 1/4π × ∫ g(θ,ϕ) e-iuθ e-ivϕ dΩ  =  1/4π × ∫ g(θ,ϕ) dΩ  =  1 
corresponds to the fact that the antenna goes into thermodynamic equilibrium with an 
extended source (for ωsource > Ω, main lobe → TA = Tsource)

• Imaging an extended source with any antenna (or array of antennas)



How to calculate G(u,v) ? 

For a point source : T(θ,ϕ) = δ(θo,ϕo)   ⇒  TA(θ,ϕ) = 1/4π × g(θo,ϕo)  
              t(u,v) = 1   ⇒   tA(u,v) = G(u,v)

And we have seen that for a point source:  
        E(θ,ϕ) = F.T. [E(u,v)] = F.T. [ Eo exp(i2πνt) ] × f(u,v) ] 
          ⇓         ⇓ 
field distribution at ∞      field distribution on the antenna

TA(θ,ϕ) = E(θ,ϕ).E(θ,ϕ)* = |E(θ,ϕ)|2      (radiation diagram in power) 

⇒   tA(u,v) = G(u,v) = E(u,v) ⊗ E*(u,v)

The Fourier Transform of the image of a point source is the transfer function of the instrument = 
autocorrelation function of the field distribution over the aperture = autocorrelation of the pupil. 

The image of a point source (the PSF) is the Fourier Transform of the pupil autocorrelation.

Temporal (electronics, 1D) Spatial (optics, 2D)
Temporal frequency ν Spatial frequencies (u,v)
Low-pass filter Single dish
Band-pass filter 2 antennas interferometer
Transfer function Point Spread Function

• Comparison of temporal and spatial domains : 



Ex: Circular aperture

D

~λ/D~λ/D

1.22 λ/D

g(α) = [2J1(πDα/λ)/(πDα/λ)]2   with    α = (θ2+φ2)1/2

D/λ

cutoff frequencyG(u,v) = 2/π [arccos(r) - r(1-r2)1/2]  with  r = (λ/D) (u2+v2)1/2

E(u,v) = 1  for  (u2+v2)1/2 ≤ D/2  ,  = 0  elsewhere
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• Binary star :   

Brightness distribution : T(θ) ∝ δ(-α/2) + δ(α/2) 
  ⇒ spectrum : t(u) ∝ cos( π α u)

Visibility function of 2 antennas separated by d : 
  G(u) = δ(u) = δ(d/λ) ⇒ tA(u) ∝ V(u) = V(d/λ) = cos(π α . d /λ)

|V(u)|  for  d // α :
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Illumination Transfer function            
G(u)

Radiation diagram        
in power g(θ)





• Measurement of the complex visibility tA(u,v) ∝ V(u,v)

Complex visibility (or spatial coherence factor) is expressed as the correlation rate between the 
fields at the two points (1 & 2) defining the base (u,v): 
V(u,v) = Corr(E1(t),E2(t)) = < E1(t).E2*(t) > / (<|E1(t)|2>. <|E2(t)|2>)1/2 
with < … > = < … >|Δt >> 1/ν 
V(u,v) = P⊗ / E1.E2 ≈ exp(iψ)  for each point of the source

Analog measurement provides   Re(P⊗ / E1.E2) ≈ cos(ψ) = Pc⊗ 
and, after insertion of an additional phase shift (cable length) λ/4 on the path from the 2nd 
antenna to the correlator, we obtain (successively or simultaneously with 2 correlators) 
Re(P’⊗ / E1.E2) ≈ cos(ψ+π/2) = sin(ψ) = Ps⊗ 
from which we derive :   P⊗ = Pc⊗ + i Ps⊗



Digitally, we can directly measure P⊗ (amplitude and phase of the correlation). 
We have seen that we can limit ourselves to a 1-bit correlation (sign of E1(t) and E2 (t)) for 
signals with low dynamic range. 
⇒  Pc⊗1-bit(t) = 1-2ψ/π → estimator of Pc⊗(t) = cos(ψ)

NB :  
- if the gains (gi) and phases (ϕi) of the interferometer antennas are not identical, we 
actually measure   g1g2.exp[i(ϕ1-ϕ2)] × tA(u,v) 
⇒  need to calibrate / t  the  gi et ϕi   by observing « reference" radiosources (intense, 
known - ex: Cyg A)



• Time coherency

The preceding calculations assume monochromatic signals.  
For a finite spectrum of width Δν, Eo changes into a variable amplitude :  
Eo(t) = Eo × TF(E(ν)) = Eo × sinc(πt Δν)      e.g. for a rectangular spectral band 
τ ~ 1/Δν = characteristic duration of a coherent wave packet

To limit the loss of coherence, and therefore the decrease in the 
correlation coefficient, "delay lines" (cable lengths) that are 
multiples of λ are inserted to approximately compensate for the 
difference in rate cτ : 
τ → τ'= τ-nT = τ-nλ/c ~ 0 
and remain in the regime where c(τ') ≈ 1

→ equivalent to the electronic pointing of the central 
fringe of the interferometer ~ in the direction of the 
source = "fringe stopping" during source tracking.

E1 = Eo(t) × exp(i2πνt)   E2 = Eo(t-τ) × exp[i(2πν(t-τ))] = Eo(t-τ) × exp[i(2πνt-ψ)] 
with  ψ = 2πν τ  and   τ = d sinθ / c 
whence  P⊗  = < E1.E2* > = < Eo(t).Eo(t-τ) > × exp(iψ) = Eo2 exp(iψ) × c(τ) 
with c(τ)     the  "coherence function" 
Ex: c(τ) = ( ∫ E2(ν) exp(i2πντ) dν) / ( ∫ E2(ν) dν ) = sinc2(πτ Δν) for  Δν  rectangular



• Aperture synthesis

A linear interferometer (1D) provides a cross-section through the (u,v) plane of the 
source's spatial frequencies,  parallel to the direction of its projected base on the sky 

Multiple 2D bases are thus required to image a two-dimensional source 
→ good sampling of complex visibility measurements tA(u,v) 
⇒ reconstruction of an "image" T(θ,ϕ) by TF

The information on the source structure is contained in each non-zero component of tA(u,v) 
⇒  the important thing is the coverage of the (u,v) plane, redundancies are useless (except for SNR).

With a filled aperture, low frequencies are favoured over high frequencies (images with greater 
contrast at low frequencies than at high spatial frequencies).

⊗
Synthesised aperture

D

d

+D/λ-D/λ

+D/λ-D/λ-d/λ +d/λ



Aperture Transfer function

9 spatial 
frequencies 
measured

« Golay 6 »
15 spatial 
frequencies 
measured

Non redundancy

N(N-1)/2 independent baselines



→ Real 2D configurations :      « Y »  (ex: VLA, 27 antennas × 25 m ∅, dmax ~ 25 km) 
                     «  O » 
                     «  T »   (ex : Nançay RadioHeliograph)

VLA

A 2D interferometer has only a limited number of baselines (e.g. ~350 for the VLA). 
+ incomplete knowledge of complex visibilities 
+ measured visibilities affected by instrument & propagation effects (gi, ϕi) 
+ problem of short bases, necessarily > ∅ 
+ problem of secondary lobes 
⇒ image reconstructed by Fourier Transform has artefacts 
⇒ need for a posteriori processing of the tA(u,v) map to correct these effects  
        (see "Observation methods" chapter).



Nançay Radioheliograph array configuration

« Est-West » antennae  
 150-450 Mhz  1 polarisation

« North-South » antennae  5 m diameter 
150-450 MH z     2 polarisations

« Est-West Extension » ant. (Ext0) 
« North-South Extension » ant. (NS24) 

7 m diameter   150-450 Mhz   2 polarisations

« Est-West Extensions » ant. (Ext1, 2)  10 m 
diameter  150-450 Mhz   2 polarisations

« Anti Aliasing » antennae  
Log Periodic  150-450 Mhz 
2 polarisations

Ext2Ext1Ext0

H1H2H7H8H16

NS1
NS2

NS12

NS23

North

South

1600 m 1600 m

1248 m

NS8
A0 A1 A2 A3

NS24

1200 m



Autocorrelation

• Optimisation of the configuration of an interferometer

→ depends on the type of observation / desired (u,v) coverage 
Direct trial-and-error approach very costly and inefficient (≠ ideal solution?) 

⇒ Example of inverse approach: Boone algorithm [A&A, 2001, 2002] 
  = iterative displacement of antennas with       Di = γ Σi=1N-1 M(AH,δ,λ) P(ui,vi) 
  γ = gain, M = matrix of passage (u,v) → ground plane (via source coordinates AH,δ and latitude λ of the array) 
  P(u,v) = ∇(G(u,v)-Gm(u,v)) analog to a pressure force, resulting from the gradient between  
                  actual and modelled transfer function (uniform, Gaussian...)

Gm

G

u

de
ns

ite

P

(u,v) plane

For each 
antenna

configuration



configuration (u,v) plane radial density azimuthal density

NenuFAR

• Optimisation of the configuration of an interferometer



• Super-synthesis

If the observed source is stationary on a timescale of a few hours to 1 day (e.g. "quiet" Sun, 
galactic and extragalactic radio astronomy) 
  ⇒ possible use of Earth's rotation  
  ⇒ baselines rotation in the sky = ellipses in the (u,v) plane 
  ⇒ image synthesis possible with a reduced number of baselines 
    (or increased image quality for a given number of baselines)



Nançay Radioheliograph



Instantaneous in 12 h integration

https://launchpad.net/apsynsim• Aperture Synthesis Simulator :



• Sensitivity of an interferometer :   

Elementary antenna :    aeff ,   (S/B)1 

Pair of elementary antennas → 1 interferometric baseline : 2 × aeff ,    (S/B)2  =  (S/B)1 × √2 

N elementary antennas → N(N-1)/2 interferometric baseline s : N × aeff ,     

         (S/B)N = [N(N-1)/2]½ × (S/B)2  = [N(N-1)/2]½ × (S/B)1 × √2 

              ~   (S/B)1 × N     for large N 

→ similar to a single antenna of effective area :   Aeff = N × aeff 



• V.L.B.I. = Very Long Baseline Interferometry
Problem: increase d to increase maximum resolution (~λ/d) 
Real-time correlation ⇒ antennas connected via : 

- HF cables → ≤ a few km (losses) 
 - optical fibres  → ≤ a few 10-100 km 
 - HF radio link → ≤ a few 100 km (propagation effects) 
Beyond that, problems of propagation and phase preservation

⇒  VLBI technique : instead of correlating (⊗) the signals in real time, 
Offline correlation ⇒ recording of signals, possibly digitised (magnetic tape, hard disk) with an 
"accurate" time reference, then transfer to central computer for later correlation 
⇒ if S/N >1 for a given τ (corresponding to  ψ = 2π d sinθ /λ = 2πν τ), fringes are observed  
⇒  measure of tA(u,v) for the baseline considered 
⇒ Intercontinental interferometry is possible = VLBI 
On Earth, dmax ≈ 12000 km ⇒  λ/dmax = 2×10-8 rad = 4×10-3 "   at  λ = 21 cm



Measurement accuracy: a metrology problem 
→ Identical, synchronised VLBI ~ (super-)heterodyne receivers 

Precise knowledge of the phase   ψ = 2π(ν-νLO)t  of the LF signal of interest  
(of bandwidth Δν ~ ν-νLO)    with   δψ = 2π Δν δt + 2π δνLO Δt   (Δt = observation duration)

LO used : 
Rubidium gas lasers : δνLO/νLO ≈ 5×10-12    ⇒   20 sec of coherency at 10 GHz 
Cesium lasers : δνLO/νLO ≈ 10-12 
Hydrogen Masers: δνLO/νLO ≈ 10-13/-14

⇒ precision on knowledge of the baselines : baselines of ~ Earth ∅ must be known at < λ/10  ~ cm 
because we need   δψ = 2π δd sinθ / λ << 1  ⇒  δd << λ / 2π sinθ  
to be able to go back to θ (source direction)

δψ <<1    requires a clock accuracy   δt << 1/Δν  (ex: 10-6 sec for Δν = 1 MHz) 

The LO of each receiver must have a stability   δνLO << 1/Δt 
    ⇒  δνLO/νLO        <<     (νLO×Δt)-1 ~      ( ν   ×   Δt )-1 

         ⇓                              ⇓    ⇓ 
fluctuations of νOL             frequency of the radio signal    duration of observation      
(ex: δνLO/νLO  <<  10-12  for 15 minutes of observation at 1 GHz)

→ In the absence of absolute references (t of clocks, φ of LO, or dbaseline), observation of |tA(u,v)| 
during a source transit (fringe visibility for the baseline considered) gives information on the angular 
dimension of the source.



NB: VLBI very difficult at VLF (decametre range) due to inhomogeneous phase delays δψ 
introduced by ionospheric crossing ⇒ major challenge for LF interferometers (LOFAR, NenuFAR)
VLBI Terminals
History : Mark I, II, III (video, Δν = 1-56 MHz + digitisation a posteriori); Mark IV (direct 
digitisation + recording on magnetic tape); Mark V (direct digitisation on hard disk, ≥ 100 MHz)

VLBI networks include most of today's large dm-cm radiotelescopes (more difficult on meridian 
or fixed telescopes):  
MERLIN = European network (heterogeneous), VLBA = US network (homogeneous), LOFAR-Eu 
VSOP (VLBI Space Obs. Program, Japan): antenna in Earth orbit  ⇒ d ≈ 25000 km 
EHT ⇒ maximum resolution achieved ~ 10-4 "  ~ optics

→ M87 in mm VLBI with the 

Event Horizon Telescope, 10/4/2019

100’s microarcsec



•  Introduction (history, interest, specific features) 
• Waves & Polarisation 
• Plasmas & Propagation (cutoff, dispersion, Faraday effect, 
scintillations) 

• Coherent Signal Detection (measurement theory, antenna temperature, 
calibration, noise) 

• Receivers (heterodyne, system temperature, filtering, gain, RFI 
mitigation) 

• Basics of Radio Astronomy Antennas: Single antennas 
• Basics of Interferometry and Aperture Synthesis (phased arrays, 
electronic pointing, imaging, correlation, coherence, VLBI) 

• Observation methods 
• Large present & future ground-based radio arrays 
• Basics of Space radio astronomy



• Interferometry & Polarimetry:  radio imaging & Stokes parameters  (introduction & remarks)

Relation : measurements ↔ Observables 

Explicit equation linking interferometric measurements to S,Q,U,V 
   derived by  (Morris & al. ApJ, 139, p. 551, 1964) 

Basic assumption: linearity of propagation & receiver effects. 

E = (Ex , Ey)    ⇒  E’ = [J] E    (propagation) 
               V  = [J] E    (reception, with V = (Vx , Vy) ) 
[J] (ou J) is a 2×2 matrix called  « Jones matrix »

Single antenna: V = J E = (Vx , Vy) = complex voltages (amplitude & phase) measured by the 2 
polarised focal elements (here linearly), from which the "coherence matrix" can be derived : 

<V tV*>|Δt >> 1/ν =    <VxVx*>   <VxVy*> 
              <VyVx*>   <VyVy*> 

    ∝   <ExEx*>   <ExEy*>     =   1  S+Q  U+iV        =  B 
        <EyEx*>   <EyEy*>        2  U-iV  S-Q

[ ]
[ ] [ ]

More general mathematical framework proposed by Hamaker et al. (A&A Supp., 117, 137, 1996) 

→ The « Radio Interferometer Measurement Equation »   (RIME)



Interferometer : Vi = Ji E  for each element of the interferometer, from which we define the 
"visibility matrix", which gathers the measurements of a 2-antenna interferometer p,q : 

<Vp tVq*>|Δt >> 1/ν  =  <VpxVqx*>   <VpxVqy*>   =   Vpq 
               <VpyVqx*>   <VpyVqy*>[ ]



For an incident electric field E from a point source, antennas p & q measure :    
        Vp = Jp E  &  Vq = Jq E 
where Jp and Jq are the Jones matrices describing the signal transformations between source and 
receivers.

⇒  Vpq =  <Vp tVq*>  =  < Jp E t(Jq E)*> 

with  t(AB) = tB tA  and assuming that Jp & Jq are constante on < … > 
⇒  Vpq =  Jp <E tE*> tJq* = Jp B tJq* 

= « Measurement Equation »

(can also be written in circular polarisations)

If we decompose the signal transformations due to propagation and receiver into a product of 

(non-commutative) n Jones matrices, e.g. : :    Jp = Jpn Jp(n-1) ... Jp1 

it comes :    Vpq =  Jpn Jp(n-1) ... Jp1 B tJq1* tJq2*... tJqm*



J=GDCPF

The terms Jp,q can contain all the transformations undergone by the signal: 
- antenna and receiver gain :               G =   Gx  0 
                               0   Gy 

- phase shifts :                 D =  eiψ  0 
                              0   eiψ 

- rotations (of dipoles, Faraday…) :  R =  cosφ  -sinφ 
                              sinφ   cosφ 

- cross-polarisation terms (errors) :   X =  1    δx←y        ... 
                                   -δy←x   1

[ ]
[ ]
[ ]
[ ]



The modelling of a radio interferometer is the determination of the Jones matrices that describe it. 

Packages dedicated to a specific type of instrument: AIPS, AIPS++, CASA ...

Examples :

• Observation of a point source with a perfect instrument : : 
Vpq  = Dp B tDq* 
with D the Jones scalar matrix representing the phase shift due to the path difference:  
ψ  =  2πd sinθ /λ 
⇒  ψpq = 2π upq.k = 2π (uq - up).k = 2π uq.k - 2π up.k = ψq - ψp

• For any (extended) source ⇒ decomposition into elementary point sources : 
Vpq  = ∑s (Dp B tDq*) 
⇒ all results obtained for S in imaging from any source apply to the elements of B,  
     or equivalently to the Stokes parameters S, Q, U, V

Scalar case : Vpq = eiψpq  ⇒  S Vpq = eiψq S e-iψp 

M.E. :        Vpq  = Dp B tDq* 

          <VpxVqx*> = eiψq ½ (S+Q) e-iψp 



• Variable complex gains (possibly time-dependent) : 
Vpq  = Gp Dp B tDq* tGq*     with  Gp =  Gpx  0 
                               0   Gpy[ ]

• calibration of observations = observation of reference sources (known position & size) + 
interpolation/t ⇒ adjustment of antenna gains & phases 

Scalar case : gp(t) & ϕp(t), with Gp = gp(t) exp[i ϕp(t)]

M. E. : modeling of Gp and (iterative) fitting of modeled Vpq-m to observed Vpq-o : 

Dp B tDq*  or  ∑s (Dp B tDq*)   = « sky model » 

Vpq-m  = Gp Dp B tDq* tGq*   = model including  Gp eand Gq    a given iteration 

Vpq-o - Vpq-m  = residuals 

Gp-1 (Vpq-o - Vpq-m) tGq-1* = corrected residuals (by minimisation) 

→ improvement of the sky model & iteration.



Simulation of a 
periodic gain error 
of 20% (0.8-1.2) on 
each of the 14 
WSRT antennas

t

⇒ Visibility 
amplitude for a few 
baselines  (as a 
function of t)

t

Simulation of a 10 Jy unpolarised point source (known a-priori = calibrator) observed at the 
Westerbork Synthesis Radio Telescope @ 1432 MHz with gain errors



Min=-0.17 Jy        Max= 5. Jy

Raw image:  S(θ,φ),   Q,U,V = 0 Jy

Min = -0.03 Jy Max = 0.03 Jy

⇒ The source has been subtracted, but high residuals 
(variations in intensity) remain due to artificially 
introduced and uncorrected gain errors.

Residuals δS(θ,φ) before Gain calibration
Subtracting a model from the source

Simulation of a 10 Jy unpolarised point source (known a-priori = calibrator) observed at the 
Westerbork Synthesis Radio Telescope @ 1432 MHz with gain errors



t

Thanks to J. Girard

Min = -1.5 10-9 Jy    Max = 1.5 10-9 Jy

⇒ Residuals have Gaussian statistics (numerical error 
in this case)

Subtracting a model from the source
Residuals δS(θ,φ) before Gain calibration (M.E.)

Visibility amplitude for some baselines after 
source subtraction and gain calibration.

Simulation of a 10 Jy unpolarised point source (known a-priori = calibrator) observed at the 
Westerbork Synthesis Radio Telescope @ 1432 MHz with gain errors



• Calibration based on observation of the target itself (Self-Cal) ⇒ adjustment of antenna gains 
(amplitudes and phases) to correct for ionospheric propagation effects



• Dipole projection effects: described by a Jones matrix 

L(φ,λ) =  cosφ  -sinφ sinλ      with φ = azimuth,    λ=elevation 
       sinφ   cosφ sinλ 

L varies with t, with source position (large field), with antenna position (large array)  
+ antenna radiation pattern, ionosphere, pointing errors 

⇒ requires to solve the Measurement Equation per « facets » (Direction Dependent Effects)  
as visibility corrections are only valid in one direction…

[ ]



TF [ tA(u,v) / G(u,v) ] generally very noisy, as linear deconvolution adds noise due to side lobes of 

TF [ G(u,v) ] =  gD(θ,ϕ)  =  « dirty beam » ⇒ high side lobes, linked to the sparse sampling of 

G(u,v) (dirty beam is dirty !)

Incomplete (u,v) coverage + noise ⇒ restoration of  T(θ,ϕ) from non unique tA(u,v)

« Main Solution » obtained by setting to 0 unconstrained tA(u,v)  ⇒   T(θ,ϕ)ms

T(θ,ϕ)real -  T(θ,ϕ)ms  = « ghost » or « invisible » solution,

decomposing on portions of the (u,v) plane where  tA(u,v) = 0

     ⇒ use of non-linear "recipes" to improve restoration 

e.g. weighting of   tA(ui,vi) by a Gaussian (ui2+vi2)1/2 ) ⇒  reduction of sidelobes to ~1% 

gC(θ,ϕ)  = « clean beam » = Gaussian approximation of « dirty beam »

• Imaging techniques

TA(θ,ϕ) = 1/4π × [ g(θ,ϕ) ⊗ T(θ,ϕ) ]   ⇒  tA(u,v) = G(u,v) . t(u,v)  ∝ V(u,v)  

with G(u,v) = 1/4π × TF[g(θ,ϕ)]   =  E(u,v) ⊗ E*(u,v)



Aliasing : FT by FFT ⇒ requires interpolation of tA(u,v) on a regular grid
t’A(u,v) = III(u,v).[P(u,v)  ⊗ tA(u,v)  where t’A(u,v) takes its values on a regular grid (∆u, ∆v)
P(u,v) = weighting of tA(u,v)  measurements      [e.g. P(u,v) = uniform disk]
III(u,v) = ∆u .∆v × ∑i,j=-∞+∞ δ(u-i.∆u) × δ(v-j.∆v)

T'(θ,ϕ) = "dirty map" (generally low dynamics, instability wrt addition of visibility measurements)

⇒ T’(θ,ϕ) = III(θ,ϕ) ⊗ [ p(θ,ϕ) . tA(θ,ϕ) ]
If p(θ,ϕ) ≠ 0 outside the source [e.g. P(u,v) = uniform disk (u,v) ⇒ p(θ,ϕ) = J1 (Bessel order 1) ]
⇒ artificial signal folding in source image
⇒ ghost images due to « aliasing » (e.g. from unresolved intense point source)

• CLEAN : representation of T’(θ,ϕ) by a sum of point sources : 
T’(θ,ϕ) = Σi Ai gD(θ-θi,ϕ-ϕi) + tε(θ,ϕ)  with intensities Ai > 0  
Iterative decomposition from the most intense peak with a convergence factor γ (0 < γ < 1), 
converges if tε → measurement noise 
Clean Image = (Σi Ai(θi,ϕi)) ⊗ gC(θ,ϕ)   [+ residuals]

NRH @ 327 MHz
Clean imageDirty imageModel



NRH GMRT Model

NRH Clean       GMRT Clean   NRH&GMRT Clean

• Other methods: maximum entropy; phase and amplitude closure; compressed sensing ...

Combination of sets of visibilities from different instruments is possible



Emission + self-absorption :

dBν = β dr e-αr

⇒Bν = r∫0 β e-αr dr  =  β/α × (1 – e-τ)

→ Emissive & absorbing cloud with optical thickness τ and temperature T :
B = 2kT/λ2 × (1-e-τ) = BC × (1-e-τ) → BC  for an opaque medium (τ >> 1)

Absorption (photon-matter interaction) :

dBν = Bν - Boν = - α Bν dr
⇒Bν(r) = Boν e-αr = Boν e-τ (τ = optical thickness)

→ Source of brightness BS  behind an absorbing cloud of optical thickness τ : B = BS × e-τ

Real case = combination of the two:    B = BS × e-τ  + Bc × ( 1 - e-τ )
In the radio domain (Rayleigh-Jeans) : TB = TS × e-τ  + TC × ( 1 - e-τ )

Depending on the cloud's optical thickness : τ ≈ 0    ⇒  TB = TS

τ → ∞  ⇒  TB = TC × ( 1 - e-τ )
+ intermediate cases

• Spectral measurements (principle, single dish)



"ON" source :  ⇒  Tline(f) = (TS + TF) e-τ+ TC (1 – e-τ) 

"OFF" source (spectrally) : we subtract the background from the adjacent frequencies 
outside the line              Tout-of-line(f) = TS + TF 
"ON" - "OFF" : 
           ⇒  ΔTline(f) = (TC - TS - TF) × (1 – e-τ)

"OFF" source (spatially) : observation next to the continuum radiosource "S" :     TS = 0 
similarly we obtain ⇒ ΔTline(f) = (TC - TF) × (1 – e-τ) 

→ Combination of "ON" and "OFF" allows us to derive TC  et  τ.

NB : the line may appear in emission (ΔTline>0) or in absorption (ΔTline<0) depending on 
whether TC is > or < (TS + TF)

S

C
TC

Background F

raie = line

TS+TF



→ From TC the Na/Nb ratio of the transition considered is deduced by Boltzmann's Formula :  
  Na/Nb ≈ exp(-ΔEab/kTC) 
  with TC = T excitation of the cloud = T physical if the cloud is at LTE

MASER 
When a "pump" disturbs ETL and populates high energy levels (collisions / H, IR emission 
from nearby star or IS dust …) 
⇒ Na > Nb population inversion, then induced de-excitation (cascade)

Na/Nb > 1 ⇒  TC < 0  and τ ∝ (Nb-Na) < 0  ⇒  ΔTline > 0 ⇒  a MASER line is always in emission 
Exponential growth (∝ e-τ) of B and T ⇒ TC can reach > 1015 K 
Galactic Masers : L ≈ 103-6 LSun ; Extragalactic Mega-MASERs : L ~106-9 × Galactic ones 
                              →  interacting galaxies? AGN?

A few detected MASERs: 

OH  at  1.665 GHz     CH3OH   at  25 GHz 

SiS  at  18 GHz       SiO    at  43 & 86 GHz 

H2O at  22 GHz      HCN   at  89 GHz

The molecular column density  ∫line-of-sight N.dr   is deduced from 
∫profile-of-the-line ΔTline(f).df 
We show that : N  ∝  τ f2 Δfline / [ Aab (Nb/(Na+Nb)) (1-exp(-hν/kTC)) ]

probability of spontaneous transition a→b



•  Introduction (history, interest, specific features) 
• Waves & Polarisation 
• Plasmas & Propagation (cutoff, dispersion, Faraday effect, 
scintillations) 

• Coherent Signal Detection (measurement theory, antenna temperature, 
calibration, noise) 

• Receivers (heterodyne, system temperature, filtering, gain, RFI 
mitigation) 

• Basics of Radio Astronomy Antennas: Single antennas 
• Basics of Interferometry and Aperture Synthesis (phased arrays, 
electronic pointing, imaging, correlation, coherence, VLBI) 

• Observation methods 
• Large present & future ground-based radio arrays 
• Basics of Space radio astronomy



Single dishes and "historical" interferometers



Instrument & 
Localisation

Description Author & 
Year

Frequency 
range 

  (MHz)

Effective 
area 
(m2)

Lobe Polarisation

NDA - Nançay 
Decameter Array, 
France

144 antennas 
log-helicoïdal

Boischot 
1977

10 - 100 ~2 × 4000 6° × 10° 
(tracking)

4 Stokes

UTR-2 array, 
Kharkov, Ukraine

2040 dipoles in 
2 branch (EW 
& NS)

Braude 
1977

7 - 35 ~60000 
(A ~143000)

30' × 10° 
(tracking)

1 linear 
polarisation 
EW

DKR & BSA 
Pushchino, Russie

EW cylinder 
& 
dipoles

Shitov 
1974

30 - 120 
& 
109 - 113

~40000 
& 
~3000

11' × 4.5° 
&  
22' × 48'  
(16 beams)

1 linear 
polarisation 
EW

UFRO 
Floride

16 log-
helicoïdal & 
640 dipoles

Carr 
1972

18 - 40 
& 
26.3 ± 0.2

1200 
& 
20000

~20° 
& 
~5°

2 circ. polar. 
&
2 ⊥ lin. polar.

SURA 
Nizhny Novgorod, 
Russia

200 MW 
emitter + 
receiving 
dipoles

Tokarev 
1980

4.5 - 9.3 3 × 30000 ~10° ?

"Historical" low-frequency arrays



GMRT
(Pune, India)
30 parabolas of 45 m
Baseline max: 25 km
λ~1m, fmin = 153 MHz
A ~50000 m2

Westerbork
(ASTRON, The 
Netherlands)
14 parabolas of  6m
Baseline max: 2.7 km 
λ~10cm – 1m
A ~400 m2

VLA
(NRAO, New Mexico)

27 parabolas of 25 m
Baseline max: 36 km

λ~1cm – 1m
fmin = 74 MHz
A ~14000 m2

"Classical" moderns interferometers

IRAM
(Pl. Bure, France)
6 parabolas of 15m 
Baseline max: ~1 km
λ~1mm 
A ~1000 m2

SMA
(USA – Taïwan)
Hawaïi
8 parabolas of 6 m
Baseline max: 0.5 km 
λ~0.5mm
A ~220 m2



• LOFAR, LWA, MWA (≥2010)

• ALMA (≥2013)

• MeerKAT (≥2018)

• SKA (≥2027-8)

• LOFAR-on-the-Moon (?)

Large instruments in operation / construction / project



• Phase array interferometer in the Netherlands + Europe
• Diameter ~100 km, European extensions > 2000 km, 24 core stations + 14 remote stations 
+ ~15 international stations
• Frequency range = (10)30-80 & 110-250 MHz (λ=1.2-10m)
• Aeff ~ 200000 m2 (∝ λ2)
• Resolution ~ 1-10", large fields (sevaral °)
• Imaging mode, Phase array (up to 24 beams in //), Transient Buffer (waveform snapshots)
• Sensitivity < 0.1 mJy, resolutions → 1 msec × 1 kHz
• Full polarization, RFI mitigation
• First "general-purpose" LF imaging spectrometer
• ~ VLBI via Internet in near-real time
• First SKA pathfinder

 LOFAR (Low Frequency Array)



 LOFAR (Low Frequency Array)

Low-frequency band 
(30-80 MHz)

High-frequency band 
(110-240 MHz)

60 m 50 m

3 Gbit/sec link

Correlator

LOFAR station

Supercomputer B/G ≤2013 

CPU/GPU Cluster ≥2014



 LOFAR (Low Frequency Array)

The Nançay FR606 LOFAR station

LF antennas

HF antennas



 LOFAR (Low Frequency Array)

Antenna / station / array lobe

Multiples programs possible in //



 LOFAR (Low Frequency Array)

(u,v) coverage



 LOFAR (Low Frequency Array)

Ionosphere modelling

Calibration problem → solved by using multiple calibrators in each beam



 LOFAR (Low Frequency Array)

• Cosmology / Reionization, 1st stars (Groningen) 
• Deep surveys, stellar formation, AGN, clusters... (Leiden) 
• Transients = sporadic sources (Amsterdam...Meudon) 
• High-energy particles, cosmic rays, neutrinos impacting 

the Moon (Nijmegen) 
• Galactic magnetism (Bonn) 
• Solar & space physics (Potsdam, Ireland)

Key Scientific Projects (KSP)

 



 LOFAR (Low Frequency Array)
Imaging the Crab nebula (Taurus A)

Wucknitz et al., 2011Bietenholz et al., 2004

VLA 5 GHz LOFAR 250 MHz

UGC 09555 triplet

Heald et al., 2013

Discovery of a giant radio galaxy

Imaging and simultaneous fast 
dynamic spectra of the Sun
Morosan et al., 2014



 LOFAR (Low Frequency Array)

Michael Wise / Journées Radio SKA-LOFAR / February 12, 2014

LOFARLOFAR

!29

Radio Recombination Lines

LOFAR spectrum towards Cas A

Cas A

!v ~ 1-10 km/sec

Carbon 576!  
Atom size ~ 70 "m

C-RRLs actually seen throughout Galaxy! 

60 MHz

(van Weeren et al. 2014)

(Asgekar, Oonk, et al. 2013)

RRLs probe the Cold Neutral Medium (CNM)

Michael Wise / Journées Radio SKA-LOFAR / February 12, 2014

LOFARLOFAR

Michael Wise / Journées Radio SKA-LOFAR / February 12, 2014

LOFARLOFAR

!33

Joint X-ray and Radio Pulsar Monitoring

(Hermsen et al., Science 2013)

!"#$%&'(&)*+$
,--$.!/0$&1*$234

5$6$5$789$:;<7$,--=$>?@A#=$B-#C$

Simultaneous monitoring of transitions 
between bright and quiet states

X-ray dim

X-ray bright

Radio bright

Radio dim

Pulsar

        (Girard, Zarka, et al. 2016)         



 LOFAR (Low Frequency Array)

station 
beam

2000 h on 2 FoV → σ = 25 μJy, DR = 106 at 30’-60’

Epoch of reionisation signal ?



 LOFAR (Low Frequency Array)

kMS/DDf  (2016) 
→ instrumental direction-dependent effects 

     ~ digital adaptive optics (with full polarisation)



>3000 pointings, Northern 
hemisphere, Resolution ≈ 5”

Sensitivity ≈100 μJy/beam

 LOFAR Two-meter Sky Survey : LoTSS



   VLA compact, 1.4 GHz   VLA extended, 1.4 GHz

 LOFAR Two-meter Sky Survey : LoTSS



M106

Extrait d’une image 20.000 x 20.000 pixels

LOFAR, 150 MHz

 LOFAR Two-meter Sky Survey : LoTSS



GJ 1151

quiescent red dwarf, Prot~125 d, 
variable emission 120-167 MHz,. 

circularly polarized

⇒ interaction with a planet of ~2.5 ME, P ~2 j ?   … or maybe not.

 LOFAR Two-meter Sky Survey : Star-Planet interactions & exoplanets in LoTSS



 ALMA (Atacama Large Millimeter Array)

• Chili: 5000m altitude 
• 50 parabolas of 12m 
• f = [30-900GHz] 
• λ= [1 cm-0.3mm] 
• S = 5600m² 
• baselines ⇒ 14km 
• resolution ⇒ 0.007” @ 0.4mm 
(750 GHz)

⇒ Very high-resolution spectro-imaging in the mm/sub-mm range



LWA

LWA ~  LOFAR LF  (USA)

(10-88 MHz)



GLEAM

 MWA (70-230 MHz, Australia)



Galactic center

Galaxy Cluster Legacy


~1.4 GHz

 MeerKAT (1-10 GHz, South Africa)



500 m diameter, Arecibo-like 
concept
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1300

26                      27                       28                      29                       30                      31

AD Leo

Temps [s] depuis le 2/12/2021, 20:52 TU

Radio bursts (AD Leo, FRB…)

 FAST (70 MHz - 3 GHz, China)



          New extension in Nançay upgrading LOFAR

 NenuFAR (LOFAR Super Station)







LOFAR back-end 

• HBA 

• LBA 

• NenuFAR/LSS
~ 

40
0 

m

• NenuFAR 
Beamformer

• NenuFAR 
Imager

96

19

4-8

• NenuFAR Waveform 
(Transient) buffer

HBA
110-250 MHz

LBA
30-80 MHz

4 instruments 1n 1: Beamformer / Imager / Waveform / LSS

• Large, compact array sensitive to (very) low frequencies

• Large field of view, multi-beam, sensitive to extended structures

• Complementary to LOFAR: high LF resolution with sensitive internatinal baselines

NenuFAR / LOFAR

NenuFAR/ LOFAR core



223

NenuFAR

NenuFAR : LOFAR Super Station



CMB

dark ages

first sources 
(stars ?)

reionisation

first galaxies

(cosmic dawn)

NenuFAR

Cosmic Dawn with NenuFAR

?
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• Radio beaming angle
• Electrons energy
• Ultra-fine structures
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Jupiter observations with NenuFAR



50% new detections < 100 MHz

Axe de rotation

Pulsar

Ligne de champ magnétique

Axe magnétique

Hautes 

fréquences

Basse
s 

fréquences

P=16.45292995419539 ms

Millisecond pulsars

Crab giant pulses

Pulsars with NenuFAR



Sun’s observations with NenuFAR



Radio recombination lines in the ISM 

! High SNR detection

Cygnus A (Folding in interval C689 … C590 alpha)

March – April

278*231*30=

=1 926 540 s

535.15 h

May

380*231*30=

=2 633 400 s

731.5 h

June

588*231*30=

=4 074 840

1 131.9 h

July

291*231*30=

=2 016 630

560.175 h

                                                Relative frequency, kHz

03-07  2022

1537*231*30=

=10 651 410 s

2 958.725 h

Cygnus A  03-07 2022

689...658

492 h

657...624

517 h

623...590

529 h

Radial velocity, km/s

! Cyg A studies
! Tau A : first detection of RRLs Sensitivity : 8 x 10-5

Line amplitude : 3.3 x 10-4

 (4σ)



Cosmic Ray showers with NenuFAR



The cost of the digital revolution :

data throughput, storage and processing

• Post-processing    (CPU/GPU cluster)

• Real-time acquisition : From Blue Gene to COBALT (CPU/GPU cluster)

• Long-term storage (LOFAR) : >30 Po, 3 sites, 10 M data files, > 1 Go/s



SKA-Low : 50-350 MHz

250000 antennas, Australia

SKA-Mid : 350 MHz - >20 GHz

200 parabolas, South Africa

 SKA (Square Kilometer Array)
http://www.skatelescope.org/

- Australia / South Africa 
- Interferometer with many thousand antennas  
- f = [50 MHz - 25 GHz] 
  λ= [6 m, 1.2 cm] 
- Aeff = 1 km² 
- resolution => 0.001” @ 1.5 cm (20 GHz) 
- FoV ~ 1° 
- Full polarisation

Colossal data rate : 
~500 PB / hour ~ 10000 PB / day 
→ raw data storage impossible 
→ calibration & real-time imaging = necessary

http://www.skatelescope.org
http://www.skatelescope.org


The Science Working Groups 

•  Astrobiology (“The Cradle of Life”) 
–  Project Scientist: Tyler Bourke  
–  Working Group Chair: Melvin Hoare 

•  Galaxy Evolution – Continuum  
–  Project Scientist: Jeff Wagg  
–  Working Group Chairs: Nick Seymour & Isabella 

Prandoni 
•  Cosmic Magnetism 

–  Project Scientist: Jimi Green  
–  Working Group Chairs: Melanie Johnston-Hollitt & 

Federica Govoni 
•  Cosmology 

–  Project Scientist: Jeff Wagg  
–  Working Group Chair: Roy Maartens 

•  Epoch of Reionisation & the Cosmic Dawn 
–  Project Scientist: Jeff Wagg  
–  Working Group Chair: Leon Koopmans 

•  Galaxy Evolution – HI  
–  Project Scientist: Jimi Green  
–  Working Group Chairs: Lister Staveley-Smith & Tom 

Osterloo 
•  Pulsars (“Strong field tests of gravity”) 

–  Project Scientist: Jimi Green  
–  Working Group Chairs: Ben Stappers & Michael Kramer 

•  Transients 
–  Project Scientist: Tyler Bourke  
–  Working Group Chair: Rob Fender 

SKAO map June 2021

 SKA (Square Kilometer Array)
http://www.skatelescope.org/

Organisation & Science Working Groups

http://www.skatelescope.org
http://www.skatelescope.org


Radioastronomy in ~2005



Radioastronomy in ~2010



MWAALMA

LWA

Radioastronomy in ~2015



NenuFAR

ALMA SKA SKA
MWA

FASTngVLA
LWA

Radioastronomy in 2020+



The end of history ?



•  Introduction (history, interest, specific features) 
• Waves & Polarisation 
• Plasmas & Propagation (cutoff, dispersion, Faraday effect, 
scintillations) 

• Coherent Signal Detection (measurement theory, antenna temperature, 
calibration, noise) 

• Receivers (heterodyne, system temperature, filtering, gain, RFI 
mitigation) 

• Basics of Radio Astronomy Antennas: Single antennas 
• Basics of Interferometry and Aperture Synthesis (phased arrays, 
electronic pointing, imaging, correlation, coherence, VLBI) 

• Observation methods 
• Large present & future ground-based radio arrays 
• Basics of Space radio astronomy



Cluster

Cassini

• Space : access to λ ≤ 0.3 mm & λ ≥ 30 m (up to ~10 km in the Earth’s vicinity)

LF- ν ≤ 10 MHz   (terrestrial ionospheric cutoff)
- most commonly used antennas: little cumbersome at launch, easy deployment, low mass
⇒ doubles-spheres (DC – ULF) Cluster, Geotail …
⇒ booms or wires (LF) WIND, Ulysses, Cassini, Stereo …

HF - overcoming terrestrial atmospheric absorption
- antennas and receivers ≈ au sol (e.g. Planck …)



• Doubles-spheres antenna

Radiation pattern of 2 spheres in phase ≡ interferometer with 2 antennas :

P(θ) ∝  sin2(π d cosθ / λ)

θ

P(θ)

d

If the spheres are in phase opposition ⇒ diagram rotates by π/2

P(θ)  ∝  cos2(π d cosθ / λ)
θ

P(θ)
d



E (transverse) in phase along the antenna
⇒ uniform j along the antenna
We measure the voltage difference between the two wires
V = heff.E = h Eo sinθ eiωt

⇒ g(θ) ∝ <V.V*> = C × sin2 θ

• Short dipole :  h << λ

3 dB aperture : g(θ) = gmax/2      ⇒    θ = 45°  ⇒ 3 dB aperture = 90°

Directivity : 1/4π × ∫4π g(θ) dΩ  =  1/4π × ∫4π C.sin2θ × 2π sinθ dθ  = 1   ⇒  C = 3/2
Effective area (lossless) : gmax = C = 3/2 = 4π/Ω = 4πAeff /λ2

⇒   Aeff = 3λ2/8π  [m2],  unrelated to the geometric surface 
Main lobe :  Ω = 8π/3  [sr]

Received flux density :  S = E2 / Zo b  [Wm-2Hz-1] 
=  V2 / Zo b h2

   with  b  the reception bandwidth
=  ½ B Ω = 4π/3 B

 (½ for the polarisation of the antenna)



Sensitivity of the observations :

(Smin Zo h2)1/2 = V / b1/2 [V.Hz-1/2] characterises the sensitivity of on-board radio receivers

→  at present  ~ 5 – 10  nV/Hz1/2 (LESIA)
⇒  Smin = 1.5 – 6 × 10-22 Wm-2Hz-1 with antenna length  h = 20 m

Sensitivity is limited at high frequencies (≥ 1 MHz) by galactic background noise

0.5 MHz ≤ f ≤ 20 MHz,   Ω=8π/3

Sg = I g f −0.52
1− e−τ
τ

⎛ 

⎝ 
⎜ ⎞ 

⎠ 
+ I egf −0.8e−τ

⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ 
×Ω ×η



• Dipole : case  h ≥ λ

Non-uniform current distribution on the antenna : I(z) = Io sin [2π/λ × (h -⏐z⏐)]

E(θ) =  ∫antenne dE(θ) (contributions of elementary dipoles)

⇒ g(θ)  ∝  [cos(2πL/λ × cosθ) - cos(2πL/λ)] / sinθ

⇒ apparition of multiple lobes



• Antenna configuration / layout

→ 3-axis stabilised spacecraft: Voyager, Galileo, Cassini, Stereo …

Tubular antennas (booms) h = 6 – 10 m
Monopoles frequently used (+ spacecraft as a reflecting surface ⇒ response ≈ dipole)
Very poor angular resolution (λ/h >>)
⇒Development of the « Direction-Finding » technique (Gonio-Polarimetry)

= determination of the k vector (+ wave polarisation)
→ restoration of ~1-2° angular resolution (requires precise calibration)

deployment 
mechanism



→ Spinning spacecraft: ISEE, Ulysses, WIND …

Wire antennas L = 30 – 90 m (centrifugal stabilization)

⇒ possibility of "Direction-Finding" (Gonio-Polarimetry) from variations in amplitude and phase 
of signal received on rotating antennas
→ restoration of ~1-2° angular resolution (requires precise calibration)



⊗
correlation
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to DPU and 
telemetryauto- and cross-correlations

measured simultaneously
(4 measurements per time step)
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• Receivers 
- in baseband : waveform + FFT or wavelets
- HF : heterodyne
- high dynamic range of LF signals ⇒ use of AGC + digitization with log coding



[ ]
[ ]

[ ]

• Goniopolarimetry (or Direction-Finding) : 
⇒ Correlation of the signal received from a point source on 2 antennas (dipoles) p,q : 
     the "coherence matrix" is measured :

<Vp tVq*>|Δt >> 1/ν  =  <VpVp*>   <VqVp*>   =   Vpq  =  Hpq B tHpq* 
               <VpVq*>   <VqVq*> 

with B = 1 S+Q U+iV & Hpq  =  hpθ  hpφ 
       2   U-iV  S-Q                  hqθ  hqφ

NB: 
- Polarisation and direction of arrival are inseparable 
   ⇒ 1°-2° precision achieved on k 
- k is determined for the dominant bright spot of each (t,f) measurement 
- Possibility of including a 7th unknown = source size σ (extended, Ex: uniform or Gaussian disk)

The resolution of this M.E. aims to determine  
k & the polarization of the incident wave : S, Q, U, V, θ, φ

hp = [ hpθ , hpφ ]   describes the antenna p  
in the reference frame of the incident wave (θ,φ),  
zw axis // wave vector k



Spinning spacecraft (at ω) :  hpθ , hpφ , hqθ , hqφ = f(ω, 2ω)
⇒ series of measurements <VpVq*> modulated at ω and 2ω ⇒ determination of S, Q, U, V, θ, φ 
from Fourier components of  <VpVq*> at ω and 2ω (minimum = 2 antennas required)

3-axis stabilised spacecraft :  each pair of antennas provides 4 independent measurements : 
<VpVp*>, <VqVq*>, Re(<VpVq*>), Im(<VpVq*>) 

⇒ need 3 antennas (2 pairs) to obtain > 6 independent measurements (e.g. 7 with 2 pairs of 
antennas including 1 common, e.g. Cassini)
⇒ instantaneous Goniopolarimetriy

With 2 antennas : Goniometry (S, V, θ, φ) under an hypothesis on U & Q (generally =0) 
        or Polarimetry (S, Q, U, V) under an hypothesis on θ & φ



STEREO/Waves

Antenna calibration

Parameters 
• orientation in space 
• effective length 

Methods 
• Electromagnetic simulations. 
• Rheometry. 
• In-flight measurements (on a known point 
source). 

you need ~1° accuracy on antenna directions 
to get 1° accuracy for goniopolarimetry.

Rheometry



A few results

Earth’s auroral radio emissions (1988)

DE-1 (localisation) 

Goniopolarimetry via 
demodulation  

of the spacecraft rotation

DE-1



Ulysses Spacecraft

Jupiter flyby by Ulysses 

Goniopolarimetry via 
demodulation  

of the satellite's rotation  

Result:  
emission at local cyclotron 

frequency

Jupiter: hectometric emission (1994) 

A few results



Saturn: 3D localisation of auroral radio sources (2009)

Cassini/RPWS 
instantaneous Goniopolarimetry

k

cone aperture (beaming angle)

A few results



• Measurements

→   Auto- and cross-correlations of voltages measured at antenna terminals : <ViVj*>

• Specific constraints on space observations

→   Lmax ⇒   inertia, deployment, optical shadowing
→   Mass ⇒   ≤ a few kg
→   Power consumption ⇒   ≤ a few
→   Size ⇒   miniaturisation, ASIC …
→   Dynamic range ⇒   2 stages : AGC + numerical analysis

       ⇓ ⇓
= gain control loop FFT or wavelets

• Noise sources

→   Quasi-Thermal ⇒   agitation of free e- libres in the vicinity of the antenna
→ e.s. noise with a peak at fpe

→   Photoelectron ⇒   electrons ejected from antenna or spacecraft by impact of 
ions or dust grains (performances of dipoles > spheres)

→   Galactic background ⇒   dominates ≥ 1 MHz
→   RFI (onboard) ⇒   synchronised power converters,

preamplifiers as close as possible to antennas 
(at the foot of the dipoles or in the spheres)



 2020+ : LOFAR-on-the-(far side of the)-Moon ?

- VLF Astrophysics TBF
- Sky mapping by space interferometry: swarms of small VLF satellites (≥8-16)
→ difficulties = omnidirectional elemental antenna, knowledge/control of baselines

- Lunar VLF interferometer: thin ionosphere, low level of RFI
→ dipoles phasing a posteriori?

Attenuation of a onde 

radio wave at 60 kHz



VLF radio interferometry in space



To be continued ...


