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We study electromagnetic wave propagation in a hypothetical cold plasma containing both
electric and magnetic charges. The waves exhibit rather unusual properties. In particular, they
can propagate below the characteristic frequencies. Reflection on a half-space and electric dipolar

radiation are discussed.

L. INTRODUCTION

Because of the duality of Maxwell’s equations with re-
spect to electric and magnetic quantities,’ a plasma con-
taining solely magnetic charges” would behave qualitative-
ly as an ordinary plasma (exchanging the roles of electric
and magnetic fields). So, we consider a plasma containing
both electric and magnetic charges.

As could be expected, such a plasma exhibits rather un-
usual properties for wave propagation. In addition to its
academic relevance for magnetic monopoles, this problem
is of pedagogical value for teaching waves in plasmas:
owing to the odd properties, erroneous results are obtained
if usual “rules of thumb”’ are applied uncritically.

In Sec. II we derive the dispersion equation for electro-
magnetic waves; then we solve two classical problems: re-
flection on a plasma half-space (Sec. I1I) and radiation of a
small electric dipole (Sec. IV).

II. DERIVATION OF THE DISPERSION
EQUATION
A. Maxwell equations

If both electric and magnetic charges are present, Max-
well’s equations have the following symmetric form:

VXE= —p,J¥ ~ 3B/,

1
VXB = pyJE + 1/¢° IE/3r; M
V-E = p®/e,,
M (2)
VB =p,p",

in SI units. Here p%(p*) and J *(J*) denote the electric
(magnetic) charge and current densities. Implicit in these
equations are the usual conservation relations
V.JIZ 4+ 3pF/ot =0,
VIM +3pM/dt=0.
To deduce the wave dispersion equation, we need the rela-

tions between the charge and current densities and the elec-
tromagnetic field.

(3)

B. Constitutive relations

The plasma is defined as containing (i) ordinary electric
charges (n; particles per unit volume, of charge e,, mass
m) and (ii) magnetic charges (n,, particles per unit vol-
ume, of magnetic charge e,,, mass m,,).

To ensure (electric and magnetic) charge neutrality, we
introduce two more species, with equal densities, and
charges opposite to the previous ones. The simplest hy-
pothesis is to assume that the masses of these latter species
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are sufficiently large to render their movement in the fields
negligible at the frequencies considered.

We assume that there are no static fields; in addition we
use the cold plasma approximation, i.e., the particles are at
rest at equilibrium. We also use a classical, nonrelativistic
approximation, and linearize the equations.

Thus the electric (magnetic) charges velocities v& (v
satisfy the equations

my AvE /0t = e E, my, V™ /3t =eyB, (4)

where the terms e vZ X B (e,,v* X E/c?) have been neglect-
ed in the linearization.

If there are no exterior sources, the total current densi-
ties are

™)

JE=n,e vE, JM =nye,vM. (5)

C. Dispersion equation

As usual, we perform a space-time Fourier transform
defined by

ok, o) = J. d’rdt e~ p(r, t).

Equations (4) and (5) yield
JE =i Bl /o, IM=iB/ujwi /o, (6)
where we have defined the plasma frequencies
Wy = (npe/eome)'?, wy = (I‘onMei{/mM)l/Z-
Substituting Eq. (6) into the transformed Egs. (1)~(3) yields
kXE = oBe,, kXB= —wEe,/c’, (7)
kE=0, €,kB=0, (8)

wheree, = 1 —w}/w’, €y =1 — w},/w? and, for brevity,
the symbols E, ... stand for the Fourier transforms E(k, @).
Thus the fields satisfy the set of equations

A;k, o) E;(k, @) =0 (9)
and a similar equation for B, with
Ak, 0)= k,.kjcz/cu2 + [elw) — & 2cz/(uz]&,-j, (10)

where €(w) = €,€,,.

The dispersion equation

det(A;) =0 (11)
factorizes into the following two equations:

(i) €(w) =0, which splits in turn into two equations.
There is a longitudinal electric field oscillation at v = @,

with kX E = 0, B = 0. This is the analog of the ordinary
plasma oscillation. There is also a longitudinal magnetic
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field oscillation at @ = w,, with kXB =0, E=0. In the
special case where @ = w, = @, there is a longitudinal
oscillation of both E and B. We do not comment further on
these solutions; like the usual plasma waves,” they propa-
gate if the plasma is warm.

(ii) €(w) = k %c*/w*. This corresponds to transverse elec-
tromagnetic waves with k-E = k-B = 0. '

D. Electromagnetic waves

The transverse electromagnetic waves have the disper-
sion equation

ki/o*=(1 - a),f/a)z)(l — w3 /), (12)
which yields the phase velocity
v, =w/k=c[(l — 02/’ — &} /e*)] (13)
and the group velocity
v, = 00/3k =kc*/ [0l — @i /0)]
= (k/k Jv,. (14)

These waves propagate without attenuation either above
both @, and w,,, or below both @, and w,,. In the special
case where w, = w,,, the waves can propagate at any fre-
quency.

The high-frequency propagation can be understood
heuristically as for a normal plasma: since charged parti-
cles with response time 1/w, (1/@,,) cannot keep up with
the change in the electromagnetic field at the frequency w,
they do not compensate it exactly.

On the other hand, the low-frequency propagation ap-
pears more unusual. It may be understood from the fact
that, while each charge species, if alone, could follow im-
posed low-frequency fields, so as to compensate them, this
is not possible when both species are present, owing to the
peculiar coupling displayed in Egs. (7). In the low-frequen-
cy range, the waves have an unusual property: as shown in
Egs. (7), when both €, and €,, are negative, the orthogonal
set of vectors E, B, k, has a handedness that is opposite to
the usual one. In other words E X B has a direction oppo-
site to k. This is in agreement with the fact [shown in Eq.
(14)] that in this frequency range, the group velocity has a

direction opposite to k. ) ) )
Similar unusual features sometimes appear in ordinary

plasmas: for example, in a warm plasma with a static mag-
netic field, the group velocity of the plasma wave may make
an obtuse angle with the wave vector k*; similar features
appear in some crystalline media.* But, contrary to the pre-
sent problem, such situations are generally associated with
anisotropy and/or dissipative effects, yielding more com-
plicated equations or concepts..

Sections III and IV show an application to two classical
problems.

IT1. REFLECTION ON A PLASMA HALF-SPACE

Let a plane electromagnetic wave [wave vector k, = (w/
c)e,, where e, is the unit vector in the z direction] be inci-
dent normally from vacuum on a half-space (z > 0) of such a
plasma, and let us calculate the reflection coefficient.

Applying Stoke’s theorem to Eqs. (1) and (2) shows that
the tangential components of E and B are continuous in the
absence of surface currents, as in the usual case. On the
other hand, the remaining boundary conditions, which
may be deduced from Eq. (7), are different from the usual
ones.
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Owing to the symmetry of the problem, the wave vector
k of the wave transmitted in the plasma is also parallel to
Oz. Its direction is determined so as to ensure that the
group velocity be in the z direction. Thus, using Eq. (12),

k = koe'/? sgn(1 — 0} w}, /). (15)
Thus, at low frequencies, k is in the direction opposite to k.

The boundary conditions (continuity of E and B, which
are tangential to the separation surface, and relations
between E and B given by Eqs. (7) with, in vacuum, ¢,
= €, = 1) yield

E. +E =E,

E, —E, = (K/Ko)E, /€,
where the subscripts i, 7, and ¢ stand, respectively, for the
incident, reflected, and transmitted quantities. Inserting
Eq. (15) in Egs. (16) gives the reflection coefficient

E, |*_ ’ 1—(e,/€x)"* |2
E, 1+ (€,/€x)""?

If w,, = 0, this reduces to the usual result.

Note, that setting carelessly k in the Oz sense as usual,
makes R > 1 in the low-frequency range!

Equation (17) shows an interesting property: if 0, = @,,,
then R = O for any w; the electromagnetic wave is entirely
transmitted into the plasma at all frequencies.

(16)

R= (17)

IV. ELECTRIC DIPOLAR RADIATION

We set an infinitesimal electric dipole in an infinite plas-
ma of this type, and calculate the radiation resistance.
The dipole is defined by its current distribution

Jo(r) = e, 2L,L5(r).
Applying Parseval’s theorem, the time-averaged power ra-

diated by the electric current J% ~ ** is given by
P= —|Re f E(r)-J**(r)d *r
1
=—-———RefEk-J"“k 3k, 18
207 (k)-J°*(k)d (18)

where E(r)e " is the field in the presence of the electric
current J%r)e ~**, and E(k), J%k) denote the corresponding
spatial Fourier transforms. Since J%(k) = 2zI,L, this yields

P= — DL ge f E, (K)d °k. (19)
(27)
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The behavior of Bloch electrons in a uniform electric field is considered from first principles with
the result that the crucial significance of certain mathematical and conceptual difficulties, which
have been the source of considerable debate in the literature, becomes apparent. For several
typical configurations, it is shown that the choice of boundary conditions has a drastic effect on
the density-of-states function D (€). For certain configurations, D (¢) will execute an unacceptable
and discontinuous behavior as the electric field is varied. Conversely, when compatible boundary
conditions are used, D (¢) varies smoothly over all electric field values, converging uniformly as the
field becomes vanishingly small. Special problems concerning the order of taking the limits
&—0, L— o are brought out. The energy eigenstates will not generally converge to the zero-field

Bloch-type states in the limit as £—0 (unless special precautions are taken).

L. INTRODUCTION

Students of solid-state physics should be thoroughly ex-
posed to the fundamental mechanisms of electrical conduc-
tion in solids. Unfortunately, conduction involves so many
complex processes that any direct approach at modelling
this phenomenon is virtually impossible for the numerous
configurations employed. Since closed-form solutions exist
for only a few, simple macroscopic cases (i.e., Ohm’s law) it
is necessary for the student to explore various general
methods of approximation that will yield tractable solu-
tions. It is expedient, therefore, to develop approximate
approaches that can reduce unmanageable problems to
manageable, simple, special cases which should provide
global insights into the processes of conduction and the
limitations of the physical structures themselves.

Although the behavior of an electron moving under the
simultaneous influence of a lattice potential and a uniform
applied electric field has been studied extensively,' the
subject is still controversial'®'" even though five decades
have now passed since Bloch first published his classical
paper on the subject.'2 Major controversies include the fol-
lowing subjects: (i) the existence of Stark ladders, (ii) Bloch
oscillations, and (iii) the validity of infinite versus bounded
lattices.? Stark ladders have been postulated as quantized
energy levels in solids with a spacing that should be propor-
tional to a superimposed, constant electric field'*>'* similar
to Landau level modification in a magnetic field. Bloch
oscillations are thought to exist when an electron in a lat-
tice with well-separated bands oscillates in a superimposed,
constant electric field. The existence of such oscillations
has been questioned. ">’

Ideally, one would hope to obtain an exact solution to
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Schrédinger’s equation for the complete system of an elec-
tron that is free to move under the influence of a lattice
potential and an applied electric field. It is not a trivial
problem, however, being so complicated that one is forced
to consider numerical solutions. Such solutions provide
some perspective but they do not lead to the cause-and-
effect insights that closed-form solutions might.

With the vast amount of controversy that exists, it is
essential to identify certain critical factors. In this regard,
we feel it is instructive to treat two physical situations: one
in which the electric field is suppressed and the other in
which the lattice potential is suppressed. Study of one or
the other of these two cases yields considerable insight into
the general problem. Since the null-field case has been am-
ply treated in the literature, and since it is the presence of an
electric field and its unique contribution to the problem
that is responsible for much of the controversy, we choose
to emphasize that aspect of the problem. We believe it is
essential to concentrate on examples where the electric
field dominates and the lattice is assumed to be null. (These
cases are significant, for example, in the study of ultrathin
semiconductor structures where surface boundary and
field intensity effects are more dominant than the lattice
potential.'®

The crucial influence of boundary conditions will be-
come obvious when viewed from the perspective of this
fundamental approach. This has a direct bearing on the
approach one should take in the more general situation
where both the lattice potential and the impressed field act
upon the electron. In fact, if this had previously been em-
phasized in introductory solid-state conduction, then per-
haps the present dilemmas and controversies appearing in
the major physics journals could have been avoided. To
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