because there are an infinite number of additional states
with almost the same energy for the successively larger
values of n,, ng and |m|. The limit of the one-dimensional
hydrogen atom 6,=0 is expected to be valid only for the
m=0 states, since according to Eq. (12) the probability
amplitude for the other m states vanishes.

The discussion of the previous paragraph has been re-
stricted to the low-lying states of the hydrogen atom, i.e.,
finite values of its quantum numbers. Going back to the
paragraph of Eq. (14) we can consider some complemen-
tary and alternative situations in which the atom can be
ionized for finite positions of the conical boundary. First,
v— oo can be obtained for finite values of A and n,— .
Second, within the original assumption of A — o and finite
n,, the energy threshold is reached by taking the states with
high polar excitation n, equal to the least integer that is
greater than or equal to A—|m|—~1, A—|m| -2, ..., for
which the conical boundaries are far from 6,=0. In any
case, the general conclusion is that the presence of the
conical boundary cannot by itself ionize the hydrogen atom
in low-lying states; it can produce ionization of states that
are highly excited radially or polarly.

We close this discussion by pointing out that the model
studied in this paper is the limiting situation of the model
of the hydrogen atom in a semi-infinite space limited by a
hyperboloidal boundary’ when the focal distance of the
latter tends to vanish. Both models share the dynamical
and geometrical properties studied in Sec. II and discussed
in this section. The model with the conical boundary is

Aspects of Debye shielding

Nicole Meyer-Vernet

obviously much simpler and its study may open a door for
the ir}tgrested reader to some of the physics of surface ef-
fects. ™
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The Debye shielding is derived in a simple way without assuming Boltzmann’s equilibrium. The
conditions under which it applies and some of its consequences are discussed at the elementary

level.

I. INTRODUCTION

One of the most basic ideas of plasma physics is Debye
shielding, first recognized' when the plasma did not even
have a name.” Yet, elementary textbooks discuss it rather
briefly and in virtually the same way, and one is accus-
tomed to take it for granted. Thinking more deeply about
it, however, raises some questions and reveals a few sur-
prises.

At first sight, the concept seems rather trivial. Since
electric charges attract oppositely charged particles and
repel the others, ionized matter tends to maintain electrical
neutrality; but the thermal agitation counteracts this ten-
dency. Loosely speaking, the Coulomb attraction keeps op-
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posite charges together, whereas the particle agitation
tends to separate them; the balance allows the existence of
nonneutral regions whose scale—the so-called Debye
length, increases with the thermal agitation—i.e., the tem-
perature, and is an inverse function of the density (since
increasing the density of charge carriers favors the shield-
ing). Neutrality is not perfect at the Debye scale but is
effective farther out, so that any charge has a dress of size
the Debye length which makes it “invisible” from larger
distances.

This loose argument, however, as the classical Debye—
Hiickel derivation that can be found in virtually any text-
book, is based on thermal equilibrium. But many plasmas,
and in particular most space plasmas, are collision-free,

© 1993 American Association of Physics Teachers 249



and not in equilibrium. Does the Debye shielding still take
place in this case, and what is the shielding length? The
usual derivation also assumes that the problem is linear,
which is seldom true in practice; how are real objects
dressed? And how is a particle shielded when it is moving,
which is after all the usual situation? These questions are
not trivial, and their complete solution requires concepts,
mathematics, and even numerical computations which are
difficult to grasp at the elementary level. The present paper
is an attempt to discuss these points and some of their
consequences in a simple way.

I shall assume that the collisions and the ambient mag-
netic field are both negligible; this requires that the
particle-free paths between collisions and their radii of gy-
ration in the magnetic field be large compared to the other
scales.

II. DEBYE SHIELDING WITHOUT BOLTZMANN’S
EQUILIBRIUM

Consider a medium made up of n-free electrons of mass
m,, charge —e, and n positive ions of mass m,, charge +e
per unit volume. Consider two such particles approaching
each other with relative velocity v. They interact via their
Coulomb field and when they come close enough that their
potential energy becomes larger than the kinetic one, they
undergo a strong perturbation not unlike a collision in an
ordinary gas. This happens when they come closer than the
distance r, where ¢*/4meyo~mv® (m being roughly the
mass of the lighter particle). For such events to be rare,
this “close encounter” radius 7, must be much smaller than
the mean distance between one particle and its nearest
neighbor, which is of order n~"°. With mv>~m. this
gives the approximate condition

ro~e/4megmpin™ >, (1)

In this case,’ a given plasma particle is mostly driven by
the combined small effects of distant Coulomb encounters;
these can be described by a mean electric field. Conversely,
each particle produces a field which is modified by the
presence of other particles: In this sense, it is dressed.

We also assume that the plasma is collision-free, i.e., that
the particle-free paths between collisions are large enough.
An upper limit to the free path can be obtained by assum-
ing the particle effective interaction distance to be r, which
gives a collision cross section ~ 1. In this case, a particle
traveling a unit distance crosses a volume equal to w7} and
thus encounters n r2 electrons and ions. Hence, the mean-
free path between such encounters is equal to 1/ narrs. This
figures does not take into account the numerous encounters
at a distance larger than r,, and is thus an overestimate.

Since the collision-free plasma is not in equilibrium, the
particle velocity distributions need not be Maxwellian, but
I shall assume, for simplicity, that they are sufficiently well
behaved and isotropic, i.e., the number of particles having a
certain velocity v depends only on the modulus v.

A. Shielding of a point charge at rest

Let us put a pointlike charge ¢ at the origin in such a
plasma. It attracts charges of opposite sign and repels the
others, so that the density of particles changes around it
and the electric potential ®(r) will no longer be g/4eyr as
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‘in vacuo. Suppose that it perturbs slightly the particles, i.e.,

that the magnitude of their potential energy |ed®(r)| is
much smaller than their kinetic energy.

1. Boltzmann’s equilibrium

Let us recall what would happen in thermal equilibrium
at temperature T.* The particles would obey Boltzmann’s
law, namely would be distributed in proportion to e~ £/%7,
E being their energy (kinetic plus potential). Thus at point
r their volume density within a velocity interval dv would
be n(r)f(v)d3v with d*v=4m’dv and

f(v) <exp(—mv*/2kgT)
(Maxwellian velocity distribution), (2)

n(r)/n=exp(—W/kgT), (3)

with m=m, or m; and the potential energy W= —e®(r)
or +e®(r) for electrons and ions, respectively [with the
normalization [d®vf(v)=1].

If | W| <k T, the exponential in (3) can be expanded in
a series, giving the density at point r: n(r) =n+dn(r)
with

‘Sne(r)/n’: +e<1>(r)/kBT,
Snry/n=—e®(r)/kgT, (4)

for electrons and ions, respectively.
The potential is then deduced from Poisson’s equation,
with the charge volume density e(n,—n,) =e(8n;—8n,):
Vb= —e(8n;—bn,)/ € (5)

Substituting the electron and ion density perturbations
(4), one obtains

V2@ —@/L3,=0, (6)
where the Debye length L is defined by

1/LLY=1/L%,+1/L3%, (M
with

L%,= L% =€k gT/ne. (8)

The solution of Eq. (6) with the charge g at the origin is
the classical Debye potential ®(r)=ge"”22/4meyr. The
Coulomb field is exponentially screened by a charge layer
of density e(8n,—8n,) = —2ne’®(r)/kyT [from (4)], of
scale length L j and whose volume integral is —g.

Note that this reasoning still holds if the charge g has a
different symmetry, being for example an infinite plane or
wire. The potential has then a different form, but keeps the
same exponential shielding.

Fig. 1. Sketch of the path of a charged particle showing the impact
parameter p and the distance of closest approach r.
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2. Without Boltzmann’s equilibrium

Now what happens when the medium is collision-free?
Consider electrons arriving (isotropically, i.e., without pre-
ferred direction) at velocity v from the unperturbed plasma
at “large distance,” where the potential is zero and the
density n, and assume that they are slightly perturbed by
the charge’s potential. In practice, this “large distance”
must still be smaller than the free paths, in order that the
particles do not suffer any collisions during their trajectory.
In this case their total energy (kinetic plus potential) is
conserved, so that the modulus of their velocity at point r
is v(r) =v+bv with

8(mp*/2) =mpbv=ed(r),
or
Sv/v=e®(r)/muy*. 9

This velocity perturbation is associated with a density
perturbation. If, for example, the electrons are attracted
(ie., if ®>0), their trajectories are bent toward the
charge, which tends to increase the density. But since their
velocity increases, they spend less time within a given re-
gion, which tends on the contrary to decrease the density.
The resulting effect is easily deduced if the particles are
conserved between large distance and position 7.

Imagine a fictitious spherical collector of radius » which
would collect electrons arriving on its surface [with density
n,(r) and (isotropic) velocity v(r)]. Since for a given in-
finitesimal surface element, n,(r)/2 particles per unit vol-
ume are incident from one side and their average perpen-
dicular velocity is v(r)/2, the number of particles collected
per second on the surface 477 is

N(r)y=n,(r)v(r)mr. (10)

Now consider those hitting the collector at grazing inci-
dence as in Fig. 1. Their impact parameter p is deduced by
noting that their angular momentum is just rm.v(r) and is
conserved .along the trajectory so that

pv=rv(r). (1)

In order that a particle reach the collector (at any inci-
dence), its impact parameter must be less® than P, so that
the number of particles collected per second corresponds to
those arriving from large distances in a cross section mp?,
ie.,

N(r)=nv7rp2. (12)

Comparing with (10), we have nvp2=n,_,(r)v(r)r2; with the
aid of (11) we deduce n,(r)/v(r) =n/v, whence

én./n==5v/v. (13)
Substituting the velocity perturbation (9), we obtain
Sn/n=ed(r)/ma’. (14)

In general, the electrons do not have the same initial ve-
locity v and we have to average over their initial velocity
distribution. The ion density perturbation is similar
(changing —e to e and m, to m,). Finally,

8n, _e®d(r) . bn;_—e®(r)

n m, n m;

(U_2>,~, (]5)

where the brackets denote a mean over the electron and ion
velocity distributions in the unperturbed plasma:®
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wH= f d*v f—f}? .

The potential is deduced as previously from Poisson’s
equation. With the density perturbations (15) instead of
(4), we find the same result as with Boltzmann’s equilib-
rium, except that the quantity m/{(v~2) replaces the ther-
mal energy kT, so that the Debye length is defined from’
now with

L3, = (eym/ne) /(v L= (emy/né)/ (w2,
(16)

Let us see what happens in the particular case where the
distributions in the unperturbed plasma are Maxwellian at
temperature 7. In this case, we have

<U—2> =m/kBT,

so that Egs. (15) reduce to the result with thermal equi-
librium and yield the classic Debye length (although we
have not assumed thermal equilibrium near the charge).
With a Maxwellian distribution, one can also find the den-
sity perturbations by using linearized hydrodynamic equa-
tions (balancing the electric force by a pressure gradient),
and assuming that the pressure and density variations are
related by an equation of state. The pressure, defined as the
force exerted on a wall per unit area — is P= nm{v*) /3.
With a Maxwellian distribution, the mean (v*) =3k gl/m
has the same order of magnitude as the quantity 1/(v™2),
so that in that case the pressure and the Debye length are
closely related.

But imagine a rather odd distribution consisting of two
Maxwellians with half of the particles at temperature T4,
the others being much hotter (at 7). The particles of
low velocity bring the dominant contribution to w2
which is thus roughly equal to half the value corresponding
to a single Maxwellian at T4, so that (15) gives én,/
n~e®/2kyT 4. Let us now calculate the pressure. Since
the particle of large velocity bring the dominant contribu-
tion to (v?), it is roughly equal to half the value corre-
sponding to a single Maxwellian at T),,, so that
P~nkgTy./2. We see that the cold particles determine the
density perturbations and the Debye length, whereas the
hot ones determine the pressure. The pressure is just the
momentum flux of particles, but there is no collisional cou-
pling so that if for some reason the velocity of a particle
increases, the energy will not be shared with the neighbor-
ing particles, and in general there is no equation of state.

We have seen that the concept of Debye shielding does
not require thermal equilibrium near the charge, nor even
Maxwellian distributions at large distance. In the general
case, the temperature is replaced by a quantity which in-
volves the mean inverse squared velocity. This point is
worth emphasizing since elementary derivations of the De-
bye shielding are based on Boltzmann’s equilibrium.

However, our derivation is based on the relation (13)
between the density and velocity perturbations, which de-
pends on the symmetry of the problem. What happens if
one replaces the point charge by an infinite plane or wire,
the undisturbed plasma still being isotropic in three dimen-
sions? We have also assumed the perturbations to be small;
what happens if this is not so?
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B. One- or two-dimensional charges

Consider a wire of infinite length charged uniformly.
The density perturbation is given by a similar reasoning as
in three dimensions, just replacing the spherical collector
of radius 7 by a cylindrical one. Putting » for the velocity
component in a plane perpendicular to the wire axis, and
r and p for the radius and impact parameter in this plane,
we now have pv=rv(r), but nup=n(r)v(r)r (since the
surfaces now vary as 7 and p instead of 72 and p?). This
gives n,(r)=n and also holds for ions so that

Thus the plasma is not perturbed at all. This surprising
result comes about because in two dimensions, the density
change due to the deflection of the particles just balances
that produced by their acceleration (see Ref. 10). With
6n=0 for both species, there should be no shielding at all.
Actually this is not necessarily so, because in this case the
potential would be the same as in vacuo and would vary
logarithmically with distance to the wire axis; it would
thus increase indefinitely with distance, so that the deriva-
tion, which assumes the potential to be small, is inconsis-
tent.

Let us see whether the same difficulty arises in one di-
mension. Consider a charged plane, so that the potential
depends only on the distance z to the plane, and only the
component v, of the particle velocity does change as they
approach the plane. The corresponding density perturba-
tion is given by writing particle flux conservation in one
dimension: n(z)v,(z) =nv, or

én/n=—bv,/v,

for both electrons and ions, which is just the opposite of the
point-charge result. This comes about because, considering
for example the attracted particles, the density decreases as
they speed up, and this is not counterbalanced by a con-
centration of particles bent toward the charge as in two or
three dimensions. Since 8(v?) =2v,8v,, we have instead of
(9,

80,/v,=e®(2)/m 2, (17)
for electrons (and the same expression, substituting
—e—e, m,—»m,; for ions). Thus we now find a density
decrease if ®>0, i.e., for attracted particles, and an in-
crease if ® <0, i.e., for the repelled ones, which is the op-
posite of the three-dimensional result. However this does
not shield the potential; thus it does not tend to zero at
large distance nor is a constant, so that the derivation is not
fully consistent.

Such problems are not uncommon with charges at infi-
nite distance, and anyway, with infinite wires or planes, the
imposed perturbation has a different symmetry from that
of the unperturbed plasma, which we have assumed to be
isotropic in three dimensions.’

This behavior contrasts with the classical case of Boltz-
mann’s equilibrium, for which one obtains the usual Debye
shielding in the linear approximation whatever the dimen-
sions of the problem.8 However, it is known (see for ex-
ample Ref. 9) that, even at equilibrium, the nonlinearity
reveals some surprises. What happens in the present case?
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C. Nonlinear shielding

Assume that the particle potential energy is not small
compared to their initial kinetic energy. Particles arriving
at velocity v from the unperturbed plasma (where ®=0)
have an energy equal to mv*/2, which is conserved along
their trajectory, i.e.,

mv*(r)/2+e|®(r) | =mv*/2>0

(for repelled particles), (18)
mv’(r)/2—e|®(r) | =mv*/2>0
(for attracted particles). (19)

The repelled particles are turned back before reaching po-
sition r if they have an initial kinetic energy mv*/2
<e|®(r)| (or a similar inequality with the relevant ve-
locity component for a wire or a plane). Thus the
conservation relations written above do not hold for them.

In this nonlinear case, the density of repelled particles
strongly decreases near the charge because some of them
have not enough kinetic energy to overcome the potential.
This happens whatever the geometry. In particular, with a
Maxwellian distribution at large distance, one can show
that the density of repelled particles just follows the Boltz-
mann’s exponential decrease whatever the dimensions of
the problem (although we have not assumed thermal equi-
librium near the charge).

This is not so for the attracted particles, and for them the
conservation relations previously derived still hold, namely
we have for particles of velocity v: #/v= constant, n=
constant or nv,= constant with distance, in, respectively,
three, two, or one dimension. Thus the density of attracted
particles increases (as does the velocity) near a point
charge; however, with for example a Maxwellian distribu-
tion at large distance, one finds'” that this increase is much
more gentle than the exponential Boltzmann’s law. Near a
charged wire the density of attracted particles does not
change at all, whereas it decreases near a charged plane.
These results are very different from the exponential in-
crease of Boltzmann’s law. (Note that this reasoning as-
sumes that all trajectories connect to the unperturbed
plasma at large distance, which is not a trivial restric-
tion.'!)

These results hold for isotropic and sufficiently well-
behaved distributions of incident particles, Maxwellian or
not. Upon reflection, it comes as no surprise to learn that,
even with a Maxwellian distribution at large distance, the
attracted species nevertheless do not satisfy Boltzmann’s
law in the absence of collisions near the charge. The expo-
nential density increase of Boltzmann’s law for attracted
particles is due to those of low velocity that are trapped in
the potential well surrounding the charge and accumulate
there. But without collisions, there are no such particles
because at position 7 the attracted particles have a kinetic
energy larger than |e®(r)| [from Eq. (19)], and are thus
able to escape. Indeed Boltzmann’s equilibrium requires
collisional processes in which some particles can lose en-
ergy and get trapped in the potential.

Finally, therefore, in the nonlinear case the shielding is
mainly produced by a density decrease of the repelled par-
ticles, somewhat aided in this task, albeit only in three
dimensions, by a more gentle increase of the attracted ones.
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Fig. 2. Charging of an object in a plasma.

I11. DRESSING OF REAL BODIES

We have so far studied ideal points, wires, or planes. But
what happens with real objects? Is the problem linear, and
how does the ob_]ect’s size affect the dressmg”

This question is far from trivial, 1213 but one can draw a
rough picture to illustrate the physics. First of all, let us see
whether the problem is linear in practice.

Consider an object isolated in the plasma Its surface is
being bombarded by ambient electrons and ions and in the
simplest case,'* it just collects the charges of the particles
striking it. If these currents do not balance one another, the
charge will change until an equilibrium is reached when
the net current.on the surface vanishes. Let us assume from
now on that the plasma at large distances is not too far
from equilibrium. In this case electrons and ions have ki-
netic energies of the same order of magnitude, and one can
assume that they have a “typical” velocity denoted by v,
and v; for electrons and 1ons, respectively (roughly equal to
(v ”2)‘]/2 (v) or (v*)'”? which have the same order of
magnitude near equilibrium); we then have roughly [from
(16)]

L pe=(egm/ne*)"*~ L pi~ L. (20)
The electrons, being much lighter, move much quicker
than ions, so that if the object is uncharged, their flux on its
surface is much larger. The surface thus charges nega-
tively, so that it repels the electrons and less of them can
reach it (Fig. 2). Finally, it adjusts itself to a negative
potential ® (with respect to the plasma at large distance)
which strongly repels the electrons in order that their flux
become sufficiently small to just balance the ion flux. Thus
@ is of the order of a few times the typical electron kinetic
energy:

—e®/m evﬁ =

7> 1. (21)

(In practice, 7, is roughly equal to 3.) Thus the problem is
nonlinear.

We have seen that in this case, the density of the repelled
particles, i.e., the electrons strongly decreases near the ob-
ject, whereas the ion density is less strongly changed. Thus
the object is surrounded by a sheath of perturbed plasma
with a positive space charge density. In the spirit of this
simple analysis, let us define a shielding length G so that
the total positive charge in the sheath cancels out the neg-
ative charge g carried by the object—that is to say, the
potential and the field are (nearly) zero farther out. We
shall consider very small and very large objects and see
how G is related to the Debye length.
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A. Being small

Consider a small spherical object of radius R<G,
charged at a negative potential given by (21). The (re-
pelled) electron density is very small near the object,
whereas the ion density is somewhat increased (as near a
point charge), but not too strongly changed. Very crudely,
we can view the electron density as being zero for r < G and
n farther out, whereas that of the ions remains roughly n
everywhere. This gives a total charge volume density in the
sheath of about ne. Since G>R, the sheath’s volume is
roughl¥ 47G*/3, so that its total charge iS ggemn~ 7€
X 47wG°/3, which must cancel the charge g. Now, one has
to be farther than an appreciable fraction of the sheath size
G for the electrostatic field of the object to be appreciably,
shielded. Thus the field remains nearly equal to the objects
Coulomb field out to several radii R (since R<€G), so that
the capacitance has roughly the value in vacuo: q/P
=4meyR. Substituting ¢ ~ — gpearn, We find

G~ Lp,(39.R/Lp)"? R<G. (22)

Therefore, for very small objects, the shielding distance
may be smaller than the Deb ye length, but not much more
so since it varies only as R!°. This variation follows from
the assumed charge density perturbatlon in the sheath to
be about ne whatever the potential, instead of being pro-
portional to it as in the linear case. Since, however, the
density of attracted particles somewhat increases with @,
the above result is just a rough estimate.

B. Being large

Consider now a very large object with R> G, so that the
geometry is roughly plane. Let ions entering the sheath
with initial velocity v; arrive onto the object; conservation
of flux (in plane geometry) and particle energy gives:

nv;=n(R)v(R),
mp/2=mp*(R)/2—e|D|.
Eliminating v(R), we find the ion density near the surface
n(R) = n/ 20,41 ~ n/ |27, with
—e®/mp? ~1,.

Approximating the ion density within the sheath by this
value, since the variation is slow, the electron density still
being neglected, one obtains the charge volume density in

the sheath: ne/ \/i—n— With R>»G, the sheath’s volume is
now roughly 47R*G so that its total charge is

Gsheath ~ 4TR G X ne/ \/2_7),, which has to cancel out the
charge ¢. The electric field at the surface E=g/4me,R? is of
order /G since ® decreases at the scale G€R. Substitut-
Ing g~ —ggpearn and rearranging we deduce the order-of-
magnitude estimate

G~ Lp(1)**, R>»G. (23)

This is an approximate version of the so-called Langmuir-
Child’s law, albeit in a different context.'> Note that for the
derivation to be consistent, the electron density, which we
have assumed to be zero in the sheath, should fall faster
than the ion density as the particles enter the sheath; since
these density decreases are governed by the ratios
e|®(r)|/m, v2 ore| <I>(r) {/m v,, respectively, this requires,
very roughly, that mp? <map? (the lower the kinetic en-

N. Meyer-Vernet 253



ergy the larger the density perturbation). This very simpli-
fied version of the well-known Bohm’s criterion shows that
the picture of a well-defined sheath is too simplified: The
ions must have been somewhat accelerated before entering
the “sheath” to ensure that mp? > m 2. This requires that
the potential at the sheath edge be ®(G)=40, so that the
perturbed region is actually larger than G: the “sheath”
size given by (23) is just an estimate of the scale over
which the potential varies rapidly near the object.

Equation (23) shows that, for large potentials, the
sheath of large bodies (with the above restriction) is some-
what larger than the Debye length, but not by many orders
of magnitude for usual values of the potential.

Finally therefore, the Debye shielding length found in
the linear approximation for a point charge remains in
general roughly correct for actual finite objects. But it is
important to remember that the particles responsible for
the shielding may be distributed very differently from ei-
ther the linear result (15) or the Boltzmann’s law (3).

IV. THE DRESS OF A MOVING CHARGE

Consider now a point charge ¢ moving with velocity V
along the z axis. In order to shield the charge, the plasma
particles must be capable of reacting to its motion. One
might expect naively that if they move faster than the
charge, they can adjust to the motion and still shield it,
whereas if they move too slowly, they cannot react fast
enough and the charge’s potential remains Coutomb. But
the reality is more subtle.

To illustrate the basic physics and keep the problem
simple, we use the linear approximation and consider ei-
ther very small or very large velocities.

A. Being slow

If the charge moves slowly compared to both electrons
and ions, we expect its dressing to be roughly the normal
Debye shielding. Now, suppose that it moves much faster
than Jons, but still much slower than electrons. From the
charge’s point of view, the ions have about the velocity ¥V
instead of v, We thus expect from Eq. (15) that the ion
density perturbation is much smaller than with V=0,
roughly by the factor (v/ ¥)? so that they contribute neg-
ligibly to the shielding. On the other hand, from the elec-
tron point of view the charge barely moves, so that they
respond nearly as if ¥'=0. Hence, the shielding is due
mostly to the electrons and the Debye length is just given
by the electron contribution L, in Eq. (7). In the inter-
mediate case, when the charge moves at about the ion
velocity, the ions also contribute to the shielding; we then
expect the sheath to have a size somewhere in between L p
and L, and to be somewhat deformed by the motion.

B. Being fast

Now assume that the charge moves much quicker than
both electrons and ions, i.e.,

Vev.>v;.

Consider a potential of the form ®(r) «e*'", r being the
distance to the charge. This is a spatial Fourier component
that does not vary with time in the frame of the moving
charge. How do the electrons respond? Since the potential
varies only along the direction of k, it perturbs the electron
velocity along that direction only, by a quantity 8y given
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by: m.vy v =e® (where the symbol || refers to the direc-
tion of {() &:rom flux conservation we have 6(neu") =0, so
that the relative variation of electron density is just én./n
= —Sv“/v” (as in Sec. II B). Hence,

dno/n=—e®d/mJV}, (24)

where we have substituted vy= V) since from the charge’s
point of view, the electrons have a velocity of about V. The
same result holds for ions (replacing m, by m; and —e by
+e), and so their density perturbation is smaller by a fac-
tor of m,/m; and of opposite sign.

Writing Poisson’s equation, using V2@ = — k*®,

—kK*®=e(8n,—bn,)/¢,, (25)
and substituting the density perturbations, we find
K [1—w/ (k* V)] D=0, (26)

where
2 23172 s 2 172
@y = (@5, +wy)"? with @, ;= (ne*/€ym,;)'",

is the so-called plasma frequency, and we have written
kV =k-V. The term on the right-hand side of (26) is zero
because we have omitted the charge ¢ in Poisson’s equation
[in fact, (26) is just a dispersion equation in the charge’s
frame]. The zeros of the bracket indicate that the moving
charge is emitting waves with wave vector k, satisfying k «
V=cop. Since the distance to a fixed origin is r’ =r4 V¢, the

potential varies in the plasma frame as e* ("'~V?
=™ "= and thus at the frequency w, So does the
charge density perturbation. This means that the moving
charge is exciting electrostatic plasma oscillations along its
trajectory. This can also be viewed as a Cerenkov emission
produced by a charge moving faster than the waves in the
medium.'® Therefore the field is not shielded; but it is not
Coulomb, either: one can show that it decreases more
slowly on the rear side, due to this wave emission.'’

In summary, when the charge moves, the main change
in its dress occurs if it moves faster than the electrons: The
dress then trails a train of density oscillations whose wave-
length along the trajectory is A=2n/k,=27V/w,; this is
much larger than the Debye length which is of order
L p~v,/o, [from (20)]. This shows that the notion of De-
bye length must be used with a pinch of salt: It becomes
completely untrue for particles moving quicker than the
average electrons.

V. THE IMPORTANCE OF BEING DRESSED

Since a moving (or variable) charge produces an electric
potential which varies with time in the plasma frame, it can
exchange energy with the plasma particles. The result de-
pends on the range of influence of the charge, namely on its
dressing.

A, Braking a dressed charge

Consider a pointlike charge ¢ moving with velocity ¥V
smaller that the typical electron velocity v,. We have seen
that in this case the dressing is not too different from the
normal Debye shielding, so that the potential may be
crudely approximated by a Coulomb field for distances
closer than L (or Lp,), and zero farther out.

Let us estimate how the electrons brake the charge’s
motion. (The result is classic but the calculation will be
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Fig. 3. Diagram illustrating the small deviation 8 of the trajectory of an
electron in the field of an electric charge g.

useful later.) Consider one electron arriving with impact
parameter p (Fig. 3); since V <v,, its velocity relative to
the charge ¢ is of the order of v,. We only consider dis-
tances larger than the “close encounter” radlus where the
potential energy ge/4meyr is of order mZ, i.e.,

P>Po~ |q|e/dmegm i} (27)

Hence, the electron undergoes a small deflection, most of
which takes place near closest approach. In this region, the
force on the electron is roughly perpendlcular to the direc-
tion of approach and of order F, ~ge/4megp’. This force
acts mostly during the time taken by the electron to travel
a distance p along the approach direction on both sides of
closest approach, i.e., 52~2p/v,. The electron thus acquires
a perpendicular velocity év, ~6tF, /m,, so that its angu-
lar deflection is

0~6v, /v,~2pF, /mev§~2po/p.

( A more exact calculation turns out to give the same result
as this estimate.)

The momentum change of the charge ¢ (whose mass is
assumed »m,) along the direction of approach is just the
opposite of that of the electron, i.e.,

momentum change ~ —m,(1—cos 6)

~—2mp,(po/P)*

The particles coming from the front side brake the mo-
tion, whereas those arriving from the rear side accelerate it;
since the former are more numerous, the charge is slowed
down. The difference between the rates of front side and
rear side encounters with impact parameter between p and
p+dp is roughly dN ~nV X 2mwpdp, which gives the brak-
ing force,

F~ de Zmeve(p °)
P
d,

~47rp(2)nmere f ;p

~47Tp(2)nmere In (pmax/pmin)’ (28)

Only impact parameters between p, and L do contribute
.(since the field of the charge is negligible farther than L j),
ie.,

Dmin~Pos pmax"’LD
(see Refs. 18 and 19).

This force is roughly equal to that produced by neutral
particles impinging (with isotropic velocity v,) onto a
movm§ (and absorbing) object of geometrical cross section
~4mpy In(L p/py). This illustrates the fact that the long
range interactions give an equivalent cross section larger
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than the figure 7p3 corresponding to close encounters only,
by a factor ~4In( L ;/p,). This result also holds for ambi-
ent particles, taking the close encounter radius py~ry
(s1nce their charge is *e instead of ¢); thus their free
path?! is smaller by a factor of ~4 In( L p/r,) (generally of
the order of 100) than the overestimate 1/n7r ; made in
Sec. IL

B. Power loss of an oscillating dipole

The above results can be applied to an important case of
variable charges. Consider a small electric dipole consisting
of two point charges +¢ and —gq distant by L and oscil-
lating at the (angular) frequency w. It is well known that
it radiates electromagnetic waves at frequencies » > @, But
the dipole also loses some energy locally in Coulomb en-
counters with ambient charged particles, just as moving
charges do. Let us estimate this energy loss due to encoun-
ters with ambient electrons. This may be interesting, be-
cause this damping occurs also below the plasma fre-
quency, and is often larger than the contribution of
electromagnetic radiation.

By “small dipole,” we mean that its length L (although
larger than the close encounter radius p,) is much smaller
than the relevant scales which are here: the Debye length,
the impact parameter p of incident electrons, and the dis-
tance they travel during one period of oscillation, i.e.,

Po<L<Lp, pv/o. (29)
Now consider electrons passing with impact parameter
P<v/0. (30)

Since the encounter duration has the order of magnitude
T~p/v,, we have T < 1/w so that any such electron sees less
than one dipole oscillation. (For larger values of the im-
pact parameter, there are several oscillations during an
encounter, whose effect partially cancel out.) Thus, from
the electron point of view, the dipole behaves as two
charges +¢ and —q traveling a distance L during a half
period 7/@ with opposite velocities

V~L/(7/w)~aL/w. (31)

Since L<v,/o, we have V<€uv,, so that the dipole power loss
is roughly given by the work of the braking force (28)
acting on both charges

Pdipole~2>< VXF

~ 87Tp(2)nm Vzve In (pmax/pmin)

q2 (02 L2 2

TT ln(pmax/pmm)’ (32)
where we have substituted the expressions (27) of p, and
(31) of V.

The minimum and maximum impact parameters are es-
timated as follows. From (29) we have p_;, ~ L. The upper
limit p.,,, depends on the shielding of the dipole field,
which in turn depends on the oscillation frequency. Since
w,~v,/ L p, the electrons have enough time to travel a dis-
tance L during one period of oscillation if ® <w),, and
thus to shield the field; hence p,,,~ Lp. If, on the other
hand, o> w,, the field varies too quickly for the electrons
to be able to shield it, so that we have just from (30):
Pmax~V/@ (see Ref. 22).
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Note that if the dipole is large, i.e., L» L p~v,/0,, then
at frequencies @ ~w, we have L»v /o, i.e., V>»v, We thus
expect that, just as fgst moving charges do, it should excite
plasma oscillations near the plasma frequency. This is in-
deed true, but since the digole is not small, it no longer
behaves as outlined above.?

C. Plasma fluctuations

We have so far studied the shielding of different kinds of
charge perturbations. We have seen that the main response
to a perturbation of large amplitude is a strong depletion of
the repelled particles in a region of scale Ly In three
dimensions, this corresponds to a sphere containing a num-
ber of like charges of order A4 ~4mrn L3~ Lp/r>1 (to an
inessential numerical factor), hence a total charge of mag-
nitude .#"e which produces in that region a mean field of
order

E~We/dmeoL3, (33)

Substituting L ,~v,/w, one may verify that the electro-
static energy density €,E%/2 is of the order of the kinetic
one ~nm,./2. Under different disguises, this is the basis
of standard elementary estimates of the Debye length.

But what happens in the absence of an imposed pertur-
bation? In fact the plasma is permanently perturbing itself
with its own agitation, so that it cannot be perfectly neutral
locally. The motion of its particles produces electric field
fluctuations; 2° the mean field is zero, but the mean square
is not. If the number 4" of particles within a Debye sphere
fluctuates by \/—/l_/ , this produces a mean-square Coulomb
field of order E>~ (| #'e/4mweyL%)? which is .4 times
smaller than the square of the field (33) produced by a
large imposed perturbation. Hence, the electrostatic energy
density €,E/2 is .#" times smaller than the kinetic one.
This reasoning, however, takes only into account the fluc-
tuations at the scale L ;, and does not give the power spec-
trum. A more precise, albeit still simplified, estimate can be
made as follows.

Whenever an electron passes at a distance p< L, the
electric field increases to the value |SE| ~e/4meqp® during
the time 7~ p/v,. The time Fourier transform of the field is
roughly that of a small impulse of area 7|8E|:

|E(w)| ~7|8E| ~e/4megpu,,

for frequencies w < 1/7, and decreases at larger frequen-
cies. The power spectrum of these fluctuations is

EL~23 |E(w)]?

where the sum is over the number N of (independent)
events per unit time (and the factor 2 account for the fact
that we consider as usual only positive frequencies). The
rate at which electrons pass with impact parameters be-
tween p and p+dp is dN ~nv,X2wpdp and so

Ei~2de{E(w)|2

~

m,,colzJ J‘d_p
4megr. ) P

~_meco,2, In (‘f—@) .

(34)
47760ve Pmin
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For @ < 1/7~0,/P, Pmax i the smaller of the two scales L,
and v,/o, just as in Sec. V B. The value of p,,, is the
smallest relevant scale. To determine it we have to precise
how we measure the field. With, for example, an electric
antenna of length L, one sees the voltage power spectrum
&2 =FE2 L?if L is smaller than the fluctuation scales, i.e., if

pminzL( > 7‘0):
muo, L? ( max)
——n .
47760ve Prin

It is interesting to see how this value is related to the power
loss of the same antenna working as an oscillating dipole.
Since the instantaneous electric current is dg/dt~ qw, the
dipole power loss (32) corresponds to an electric resistance
2 2
R 2P dipole L wp In (Pmax)
~ T~y .
( 77'3 Pmin

qgo ) eove

Comparing to the voltage power spectrum (35), we find
<I>3,~ (ﬂ'2/4)mev§R, ie., (I>fu~mev§R in order of magnitude.
Therefore, the losses of the dipole antenna (represented by
its electric resistance) are directly related to the power
spectrum of the electric fluctuations that is measures in the
plasma. This is a simplified generalization of Nyquist’s
fluctuation-dissipation theorem>* ®2 ~ 4k TR which holds
at thermal equilibrium. It is obtained here without any
reference to thermodynamic concepts, but with the implicit
assumption that the plasma is isotropic, and not too far
from equilibrium in that we can define a “typical” electron
velocity.

This very simple analysis does not take into account the
electrons moving faster than average. We have seen that an
electron moving at velocity ¥3u, produces electrostatic
waves near the plasma frequency with a wavelength
~2mV/w,» Ly This gives another contribution to the
fluctuations, corresponding to plasma waves whose power
spectrum peaks at the plasma frequency. Since their wave-
length is much larger than L, these waves must be ob-
served with an antenna larger than the Debye length, just
as an oscillating dipole can excite them only when it is
larger than its Debye dress.

O~ E L~

(35)

(36)

VI. CONCLUDING REMARKS

We have seen that the concept of Debye shielding does
not require Boltzmann’s equilibrium. With a non-
Maxwellian (but isotropic) velocity distribution of plasma
particles, the shielding length is obtained by replacing the
thermal energy k T by m/{v~2) for each particle species.
This quantity involves the mean inverse-squared velocity,
which is more sensitive to the particles of low velocity than
is the value (%) determining the pressure. Indeed, parti-
cles of low velocity have a larger ratio of potential to ki-
netic energy; they are thus more perturbed by the potential
and contribute more to the shielding than the fast particles.

Even though it is a linear approximation, the concept
still holds—with some restrictions, for large perturbations
and in particular with finite charged objects. In that case
the attracted and repelled species do not play symmetrical
roles: The shielding is, in general, mainly produced by a
strong density decrease of the repelled particles, and to a
lesser extent—albeit only with a three-dimensional geom-
etry, by a more gentle increase of the attracted ones.

The Debye shielding holds not only for charges at rest,
but also for moving charges provided that they move
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slower than ambient electrons. Otherwise the plasma par-
ticles cannot react fast enough to shield the field. It is then
neither shielded nor just Coulomb: The moving charge be-
haves as a Cerenkov emitter which excites plasma waves
along its trajectory.
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