Detection of nanodust in the solar system

N. Meyer-Vernet, I. Mann*, G. Le Chat, P. Schippers, S. Belheouane, K. Issautier, A. Lecacheux, M. Maksimovic, F. Pantellini, A. Zaslavsky

LESIA, Observatoire de Paris, CNRS, UPMC, Université Paris Diderot, Meudon, France
* EISCAT, Kiruna, Sweden & Physics Dept., Umeå University, Sweden

41st EPS Conference on Plasma Physics
Berlin 2014
(invited paper)

Nano dust particles

• What are they?
• What makes them different?
• How are they charged and accelerated in plasmas?
• How and where are they detected in situ?

What are they?

➢ Original definition of a nanoparticle: a particle that consists of a countable number of atoms

What are they?

➢ Size

ISO TS 27687 Nano-object: has at least one external dimension between 1 and 100 nm
What are they?

- **Nano particles**
- **Molecules**
- **Bulk matter**

<table>
<thead>
<tr>
<th>Size</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 nm</td>
<td>Nano particles</td>
</tr>
<tr>
<td>10 nm</td>
<td>Molecules</td>
</tr>
<tr>
<td>1 nm</td>
<td>Bulk matter</td>
</tr>
</tbody>
</table>

Macromolecule or nano grain?

A various fauna..

- Polycyclic Aromatic Hydrocarbons: $\geq C_{20}H_{14}$
- Fullerenes: C_{60}
- Nanotechnology
- Biology
- Insulin
- Graphene

2-D

What makes them different?

- **Large proportion of surface atoms**
 - Surface atoms have too few bonding partners
 - \rightarrow free radicals = surface "dangling bonds"
 - Mean-square displacements of surface atoms are relatively large
 - Melting point & latent heat decrease
 - Diffusion coefficient increases
 - Optical properties change
 - Much chemical activity at surface
 - Surface reconstruction
 - Coagulation decrease in surface energy

Most atoms lie at the surface

Radius (nm) vs. Frequency of atoms

- Size smaller than basic scales
- De Broglie wavelength $\hbar/m_\text{e}v$ (Quantum confinement)
 - Heisenberg: $\Delta x \Delta p = \hbar/2\pi$
 - Electron confined in nanograin of radius a: $\Delta x \sim a \rightarrow \Delta p = \hbar/(2\pi a)$
 - Confinement energy: $E_0 \sim \Delta p^2/2m_\text{e}$
 - Affects optical & electrical properties when $E_0 \geq k_B T$ [e.g. Li 2004]
 - Equivalent to $a \leq \hbar/m_\text{e}v$ with $v \sim (k_B T/m_\text{e})^{1/2}$
 - Concerns nanodust if $T < 300 K$
What makes them different?

- **Size smaller than basic scales**

 - **Electron free path in solids**
 - ~ 1 nm for $E < 100$ eV
 - atomic scale: $2r_B$
 - \Rightarrow electron secondary emission increases
 - [Draine & Salpeter 1979; Chow et al. 1993]

 - **Electron sticking coefficient decreases** if $a \leq l_e$

- **Photon scales**
 - Photon attenuation length $\sim 10 - 100$ nm
 - Photoelectron escape length $l_e \sim 0.5 - 5$ nm
 - \Rightarrow Photoelectron yield increases if $a \leq l_e$
 - photoelectrons have a better chance to escape
 - [Watson 1972; Draine 1978]
 - \Rightarrow can be counterbalanced by:
 - Increase of electron removal energy:
 - work function $+ \left[\frac{3}{2}(\frac{e^2}{4\pi\varepsilon_0a}) \right]$
 - photon absorption cross-section $\sim \frac{a}{\lambda}$ (Rayleigh)

- **Plasma Landau radius**
 - $r_L = \frac{e^2}{4\pi\varepsilon_0k_BT}$
 - $r_{L\text{ nm}} = 1.4 \sqrt{T_eV}$
 - Concerns nanodust if $T < 2$ eV

- **These effects change their electric charge in plasmas**

 - **Their electric charge plays a major role**
 - Dynamics and pick-up in magnetized plasmas
 - Dusty plasma effects
 - Electrostatic disruption: stress $\sim (q/a^2)^2$
 - makes grain explode
 - may determine minimum size
Basics of electric charging in space

- Charging governed by incoming plasma electrons until grain **negative** charge repels them sufficiently to balance other currents (e.g., Whipple 1981)
- Charging governed by escaping photoelectrons until grain **positive** charge binds them sufficiently for escaping photoelectrons to balance other currents

Electric charging in space dusty plasmas

\[n_d \text{ grains/m}^3 \cdot n_e (n_i) \text{ electrons (ions)/m}^3 \]

\[L_D = \left[4\pi r_i(n_e+n_i) \right]^{-1/2} \]

\[\Phi = 4\pi n_d a L_D \]

- If \(P > 1 \), Debye sheaths overlap
- Plasma electrons depleted
- Reduces grain's charge

[Havnes et al. 1984, Whipple et al. 1985]

- If \(P >> 1 \): \(Z \approx a \left(P r_i \right) \cdot 1 \)
- Limit to el. depletion: \(n_i/n_e \approx 1/\mu \)

[Mendis & Rosenberg, 1994; Mendis 2002]

Electric charging in space

- Important limitations for nanodust
 - Long charging time scales:
 \[\tau \sim RC \sim (d/l)(\Phi) \cdot C \sim \left(4\pi n_ar_i J/e \right) \]
 \[\tau \sim \left((2\pi a)^{3/2} r_i L_i J \right)^{-1} \]

- Field emission limits negative charge:
 - Limiting electric field for (electron) field emission: \(\Phi/a \sim 10^9 \text{ V/m} \)
 - Maximum number of electrons on a nanograin:
 \[|Z_{\text{MAX}}| \sim 1 + 0.7 a^{2/3} \text{ (nm)} \]
Charging in cold dusty space plasmas

Nanodust: \(a < \ell_i \sim 1.4/T_{\text{eV}} \) nm

Two major consequences:

1. Approaching charges are strongly attracted by induced dipole.
 - Potential energy \(e^2/(4\pi\varepsilon_0 a) \gg k_B T \)
 - Increases currents
 - Decreases charging time scales
 [Natanson 1960; e.g. Draine & Sutin 1987; Rapp & Lübken 2001]

2. Grain’s number of charges \(|Z| \sim \eta a/\ell_i \gg 1 \)
 - Statistical treatment: \(f(Z)J_e(Z) = f(Z+1)J_e(Z+1) \)
 - Average charge state: \(\langle Z \rangle = \sum Z f(Z) \)
 - Probability for charge state \(Z \)

\[n_e/n_i = 0.1 \]
\[n_e/n_i = 0.01 \]

\[\ell_i \sim 1 \]

\[\text{H}_3\text{O}^+ \text{ions} \]

Approximation neglecting field emission

- Average number of charges on a grain
- No longer proportional to grain size
- \(\langle Z \rangle \neq a \)

\[\langle Z \rangle \approx 1 \]

Nanodust produced in the solar system

Nanograins have large charge-to-mass ratios

- Example: for \(a = 5 \) nm, \(q/m = 10^4 e/m_p \) in the solar wind
- Lorentz force plays a major role
- Charged grains follow magnetic field lines if \(r_{gyr} < B \) scale
- Gyradius: \(r_{gyr} = |(v-v_{\text{plasma}})/eB_s| \), \(eB_s \sim m/q \)

\[B \text{ (mG) } \]

Interstellar nanodust cannot enter the heliosphere

Heliosphere dust density (10 nm) relative to value in ISM [Slavin et al. 2010]

Nanodust produced in the solar system
Dynamics in magnetized space plasmas

Nanodust produced in inner solar system where dust concentration is large

- B: Parker spiral
- For nanodust: Lorentz force >> gravitational force $r_{gr} < B$ scale → Nano dust picked-up & accelerated

Solar wind

$V_{SW} \times B$ outwards for Jupiter & Saturn if $q > 0$

Grains are accelerated and ejected at speed:

$v_{ej}^2 \sim (MG/r_0)[2 F_E/F_G - 1]$

acceleration starts

\Rightarrow nanodust speed $\sim 300 \text{ km/s for } a \approx 10 \text{ nm}$

How and where are they detected in situ?

- Planetary environments
 - Polar mesosphere in summer: coldest place on Earth
 - *Smoke particles*: a few 0.1 nm to a few nm (from condensation of meteoritic matter)
 - *Charged aerosols*: a few nm to 100 nm [e.g., Friedrich & Rapp 2009]

 $T <$ water vapor frost point:
 - Large quantities of charged nanodust (ice): up to a few 10^3/cm3

Dynamics in magnetized space plasmas

Nanodust produced in inner solar system where dust concentration is large

Nano grains trajectories projected in solar equatorial plane

Nanograins accelerated to plasma drift velocity:

$v_0 = -(V_{SW} \times B) \times B / B^2$

\Rightarrow nanodust speed at 1 AU $\sim V_{SW}/2^{1/2} \approx 300 \text{ km/s for } a \leq 10 \text{ nm}$
How and where are they detected in situ?

- **Planetary environments**
 - Polar mesosphere in summer: coldest place on Earth
 - **Nanodust produces:**
 - NoctuLescent Clouds (ground obs.)
 - Polar Mesospheric Clouds (SC obs.): ice grains \(a > 20 \text{ nm} \) scatter light
 - Decreases in electron density \(n_e \) associated to increases in (negatively charged) dust density \(n_d \)
 - Polar Mesosphere Summer Echoes: strong backscatter of radio waves (50 - 10^3 \text{ MHZ}) [e.g. Rapp & Lübken 2004]

- **Planetary environments**
 - Titan atmosphere
 - [Coates et al. 2007, 2009]
 - Enceladus plume
 - Cassini/CAPS (Plasma Spectrometer) serendipitous detection (charged nanodust of energy/charge in the range of the instrument)
 - Dust detectors on spacecraft Ulysses/Galileo/Cassini: serendipitous detection outside calibration range

- **Comets**
 - Dust impact ion mass spectrometers on Giotto & Vega-1: serendipitous detection; \(m \sim 10^{-21} \text{ kg} \) at \(10^6 \text{ km} \) from nucleus of Halley [Ullateb & Kissel 1990; Sagdeev 1985, 1989]
How and where are they detected in situ?

Interplanetary medium

Nano grains accelerated by the magnetized solar wind as predicted by theory

STEREO spacecraft: serendipitous detection (voltage pulses from high-speed (~300 km/s) dust impacts on spacecraft

Confirmed by 5 years of data [Le Chat et al. 2013]

In situ detection with WAVE instrument!

Example: Ulysses in the solar wind

1 AU

How are they detected in situ via waves?

Context: passing-by plasma particles produce electric potential fluctuations detected by electric antennas

Power spectrum:
peak at the plasma frequency (~ n_0)
whose shape reveals the temperature and suprathermal particles [Meyer-Vernet & Perche, 1989]

Wave instruments on space missions measure plasma properties via spectroscopy of plasma QT noise [Meyer-Vernet et al. 1998]

How are they detected in situ via waves?

Impact of fast dust particle

Vaporized & ionized produces expanding plasma cloud

Released charge Q \propto m^{3.5}

10 nm grain at 300 km/s produces 10^7 electrons similar charge as 0.2 \mu m grain at 20 km/s

Charge separation or recollection produces electric pulse detected by the radio receiver

... and power spectral density

\[\Delta V = Q/C \]

Spacecraft capacitance
How are they detected in situ via waves?

STEREO/WAVES at 1 AU

Electric pulses produced by destabilization of photoelectrons surrounding antenna

[Pantellini et al. 2012, 2013]

Two different wave instruments:

- time domain sampler (TDS)
- frequency receiver (LFR)

Nanodust impacts

[Le Chat et al. 2013]

ster 10 kHz

- nanodust impacts
- plasma QT noise

How are they detected in situ via waves?

Two different wave instruments:

- Cassini RPWS
- 1 AU

Saturn

Electric pulses produced by recollection of electrons of the nano dust impact plasma

[Schippers et al. 2014]

Near Jupiter

Detected nanodust flux similar to value measured on STEREO

Detected nanodust [Meyer-Vernet et al., 2009] simultaneously to detection of Jovian nanodust by conventional detectors

Flux from nanodust to large bodies near 1 AU

Cassini RPWS

Nanodust

Model (dust) Grün et al. 1985

Model (small bodies) Ceplecha et al. 1998

a = 10 nm

a = 5 km

10^{-13}

10^{11}

10^{9}

10^{7}

Solar radio emissions

Nanodust Impacts

Limited surface larger than STEREO by factor of 10

SC frequency (kHz) 10

[Le Chat et al. 2013]

nanodust impacts

[Zaslavsky et al. 2012]
Open questions

- Size distribution? smallest nanoparticle?
 - may be determined by electrostatic disruption

 \[E = \frac{q^2}{a^2} \]

 disruption if electrostatic stress \(\varepsilon E^2 > \) tensile strength \(S \)

 \(a_{\text{min}} > 1 \text{ nm} \) if tensile strength \(S < 10^9 \text{ N/m}^2 \)

 \(S \) badly known for nanodust (uncertain transition between microscopic & macroscopic)

- Composition & physical structure?

Beware of nanodust particles

- Ubiquitous
- Physical properties different
- Were detected serendipitously in most environments ...

Will crop up when you don’t expect them

With thanks to the International Space Science Institute, and

- Andrzej Czechowski
- Hsiang-Wen Hsu
- Geraint Jones
- Vasili Kharchenko
- Yuki Kimura
- Harald Krueger
- Nicholas Lewkow
- Aigen Li
- Frank Postberg
- Peter Wurz
- Arnaud Zaslavsky

Supplementary material

What are they?

- The size may determine the structure

\[\begin{align*}
\text{Number of atoms or molecules} & \\
\text{Radius (nm)} & \\
10^3 & \\
10^2 & \\
10 & 0.5 \quad 1 \quad 10 \quad 100
\end{align*} \]

- Cluster of \(H_2O \) molecules
- disordered structure
- compact spheres
- Smallest ice crystal
- 90 – 115 K
- 1.3 nm

(Pradzynski 2012)

Note: other plasma scales

- a << L \Rightarrow \text{grain's capacitance } C = 4\pi\varepsilon_0 a
- a << \text{free path} = [n_e r_e^2 \ln(1/\Gamma)]^{1/2}

In general

Plasma coupling parameter

1 nm

[H_2O clustering on ice

Gumbel & Megner 2009]

Energetic preference for condensation

G_0 = 4\pi a^2 N k_B T \ln(S)

\sim a^3

Nucleation: charged grain attracts molecular dipoles \rightarrow decreases free energy

Coulomb term

Energy to form surface

Can suppress barrier of potential

Examples of trajectories [Soraya Belheouane PhD Thesis]

Projective perpendicular to solar equatorial plane

\[q/m = 10^8 e/m_p\]

\[w_{gyr} = qB/m\]

Larmor frequency

\[\Phi/a \sim 10^9 V/m\]

Field emission limit

Ejected electron near surface of grain of charge Ze < 0 subjected to electric field amplitude \[(Z+1) e / 4\pi\varepsilon_0 a^2\]

Limiting electric field for (electron) field emission: \[\Phi/a \sim 10^9 V/m\]

Maximum number of electrons on a nanograin:

\[|Z_{MAX}| \sim 1 + 0.7 a^2_{(nm)}\]
Electric charging in dusty plasmas

\[n_b \text{ grains/m}^3 ; n_e (n_i) \text{ electrons (ions)/m}^3 \]

\[L_D = \left[\frac{4 \pi}{\pi} r_L (n_e+n_i)^{1/3} \right]^{1/2} \]

Densities inside dusty plasma

Fraction of charges carried by grains = \(Z n_d / (n_e+n_i) = \eta P \)

\[P = 4 \pi n_d a L_D^{-2} \]

\(P \neq \text{"Alfvén parameter" which refers to } n_b \text{ outside a "dust cloud" [Havnes1987, 1989; Goertz 1989]} \)

Density measurement with QTN

- Measurement of frequency
- Limitation: frequency resolution of receiver
- Requires antenna length \(L > L_D \) (since Langmuir wavelength \(\gg L_D \))

Meyer-Vernet and Perche (1989) J. Geophys. Res. 94 2405

Temperature measurement with QTN

\[V_T^2 = \frac{d^2}{2 \pi^2 c^2} \int d^3 k F(k) \frac{d^3 \sigma f_V (\omega) k (\omega k + \omega) \nabla |k|}{|k|^2 |k(\omega k + \omega)|^2} \]

\(F(k) \) depends on antenna geometry for example if wire dipole antenna \(k \times x \):

\[F(k) = \left(\frac{4 \pi^2 \sigma f_V (\omega) \omega k}{k^2} \right)^2 \]

Meyer-Vernet et al. (1998) AGU Monograph 103 205

Velocity distributions

- Suprathermal particles are collisionless
- Non-thermal processes \(\Rightarrow \) Kappa-like velocity distributions should be ubiquitous in space plasmas
Fast (∼300 km/s) nanodust streams
- accelerated by corotation electric field of Jupiter
 \[\text{[Zook et al. 1996]} \]

Dust detectors on Ulysses/Galileo/Cassini: serendipitous detection outside calibration range

Original results from calibration
\[\text{From dynamics, } \begin{array}{l}
V \sim 20-56 \text{ km/s} \\
V \sim 200 \text{ km/s} \\
V \sim 200 \text{ km/s}
\end{array} \]
\[\begin{array}{l}
m \sim 10^{-19} - 10^{-16} \text{ kg} \quad \text{[Grün et al. 1992]} \\
m \sim 10^{-21} \text{ kg} \quad \text{[Zook et al. 1996]} \\
m \sim 10^{-21} \text{ kg} \quad \text{[Krüger 2003; Hsu et al. 2012]} \\
\end{array} \]

closed field lines ⇒ ejection requires \(r_{\text{gyr}} > B \) scale