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intergalactic magnetic fields that these fields should not perturb them. Their
arrival directions should thus point back to their sources in the sky, which does
not appear consistent with the available observations. All these difficulties are so
serious that they pose a challenge to standard particle physics and cosmology [4].

8.2.2 Rudiments of the acceleration of particles

Let us examine how the particles may be accelerated. A basic requirement for
particles to be accelerated to energies much above thermal is that the energy
be not shared between all constituents of the medium. Namely, collisions and
other equilibration mechanisms must be rare. This usually requires the medium
to be dilute. Plasmas, however, share two properties that facilitate particle
acceleration:

• the particles carry an electric charge and are thus subject to the electro-
magnetic field,

• the collisional free path is proportional to the energy squared and thus
extremely large for energetic particles.

Since the subject of particle acceleration in plasmas may fill several volumes,
we only consider a few basic acceleration mechanisms.

First of all, because the Lorentz force (Section 2.2) does not change the
energy of a particle if the electric field vanishes, any acceleration mechanism
relies ultimately on the electric field.

Consider the simple case of a static electric field. If the electric field am-
plitude is such that the energy gained by a particle of charge e over a mean
collisional free path eE × lf is greater than the thermal energy, then since the
free path increases rapidly with speed, all the suprathermal particles of the ve-
locity distribution (whose free path is still greater) will be accelerated without
any impediment, and will thus run away from the bulk of the distribution. Be-
cause large-scale electric fields of large amplitude are rare in plasmas because of
their large electrical conductivity, this acceleration process works generally only
at small scales, for example at sites of magnetic field reconnection.

In practice, particles are generally accelerated by varying magnetic fields,
which produce electric fields via Maxwell’s equation ▽ × E = −∂B/∂t. They
are ubiquitous in the Universe on large scales, and on small scales too, due to
MHD waves and turbulence.

Rigidity and radius of gyration

We saw in Section 2.2 that the dynamics of charged particles in a magnetic field
is governed by two basic parameters:

• the rigidity R = pc/q = (v/c) (W/q) = (v/c) [(W/e) /Z],

• the radius of gyration rg ∼ p/qB = R/Bc,
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where v is the particle speed, W is the energy, p = vW/c2 the relativistic
momentum, Z = q/e the number of elementary charges and B the magnetic
field strength. In practical units, for a particle made of A nucleons, this may be
written

R ≃ v

c
× A

Z
× W/e

A
≡ v

c
× A

Z
× energy per nucleon (in eV) (8.5)

rg ∼ R

Bc
∼ energy per nucleon (in eV) × v

c
× A

Z
× 3 × 10−9

B(T)
m. (8.6)

Particles of different charges and masses but with the same rigidity have the
same dynamics in a given magnetic field configuration (Section 2.2). If two par-
ticles have the same velocity, and therefore the same Lorentz factor γ, they have
the same energy per nucleon (W/A ≃ γmpc

2), and their rigidity depends only
on their mass to charge ratio A/Z; whereas A/Z = 1 for protons, we have seen
that for most heavy elements stripped of all their electrons, A/Z ≃ 2, so that
all completely ionised elements have the same value of A/Z to a factor of two.

The gyroradius depends on the ratio of the rigidity to the magnetic field
strength. It determines the minimum scale of a magnetic field structure capa-
ble of affecting the dynamics of the particle. From this argument, the galactic
magnetic field B ∼ 10−10 T of spatial scale about 1019 m is expected to confine
the bulk of cosmic rays of energy at least up to the ‘knee’ of Fig. 8.3; some
observations are consistent with the production of these cosmic rays by shocks
produced by the remnants of explosions of massive stars (the so-called super-
novae; see Fig. 8.11 below) in the Galaxy, by a mechanism we shall examine
later.

Betatron acceleration

Consider a particle in a uniform magnetic field, and let the magnetic field in-
crease slowly compared to the particle gyration, so that the magnetic moment
of the particle (the first adiabatic invariant) is conserved (Section 2.2). The
momentum perpendicular to B thus increases as p2

⊥ ∝ B, whereas the parallel
momentum p‖ remains constant, so that the total particle energy increases.

This betatron acceleration, however, is a reversible process. Sooner or later
the magnetic field should decrease, and when it returns to the initial value, the
particle loses its energy gain. Assume, however, that before this happens, some
irregularities scatter the particle faster than the gyration so that the magnetic
moment is not conserved, whereas energy is conserved. This tends to isotropise
the velocity distribution, making the parallel energy increase at the expense
of the perpendicular one. If the magnetic field now decreases and returns to
its original value, the perpendicular energy decreases accordingly, but the par-
ticle keeps the parallel energy gained during the stochastic part of the cycle,
producing a net energy gain during the cycle.

This basic acceleration process appears under many guises, and is known
as magnetic pumping. It is an instructive example of the interplay between a
reversible effect and stochasticity.
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Figure 8.6 Fermi acceleration of a particle trapped between two magnetic mir-
rors (left), and the equivalent acceleration of a particle upon head-on reflection
by a moving mirror (right).

A simple form of betatron acceleration occurs in planetary magnetospheres,
when time variations enable particles to move from a large distance where the
planetary magnetic field is small, to a small distance where it is large. This may
increase the particle perpendicular energy by a factor of the order of the ratio
of the magnetic fields, i.e. the cube of the size of the magnetosphere expressed
in planetary radius.

Magnetic pumping is expected to take place at small scales, in low-frequency
waves.

Fermi acceleration

Fermi acceleration, originally proposed by Fermi in 1949 to explain the acceler-
ation of cosmic rays, is at the basis of most acceleration mechanisms thought to
act in astrophysics; as the betatron mechanism, it requires a stochastic process
to act. Fermi acceleration is based on the scattering of particles on large clumps
of plasma that distort the magnetic field, producing magnetic mirrors which
reflect the particles. The particle’s energy is not changed in the mirror’s rest
frame, but if the mirror is moving towards the incident particle, the particle
gains energy upon reflection, just as does a tennis ball pushed by a racket. Re-
peated scattering of the particles by randomly moving ‘mirrors’ (irregularities of
the turbulent magnetic field) produces a net transfer of energy from the moving
irregularities to the individual charged particles.

Let us study this in more detail. Just as betatron acceleration, Fermi ac-
celeration may be understood from the conservation of an adiabatic invariant
(Section 2.2), in this case the second invariant. Consider a particle trapped
between two magnetic mirrors, which may be formed by plasma clouds of large
magnetic field (Fig. 8.6, left), and of mass much greater than the one of the par-
ticle itself. Let the distance L between the mirrors decrease slowly compared
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to the particle parallel motion, so that the second adiabatic invariant is con-
served. The parallel momentum thus increases as p‖ ∝ 1/L, making the total
energy increase. Note that, as in the case of magnetic pumping, this acceleration
cannot proceed indefinitely unless some isotropisation process acts, because the
increase in p‖ decreases the pitch angle of the particle, so that sooner or later
it will no longer be reflected by the magnetic mirrors. Another difficulty is that
the mirrors cannot approach each other indefinitely. If the mirrors are moving
away instead of approaching each other, L increases, making p‖ ∝ 1/L decrease
and return to its initial value after a cycle. A gain in energy thus requires the
intervention of a stochastic process.

The acceleration by a magnetic mirror moving towards the particle is similar
to that of a tennis ball by a racket. Consider the simple case of a particle of speed
v impinging normally on a mirror (assumed infinitely massive) moving at speed
V ≪ c towards the particle in the same direction (Fig. 8.6, right). Assume first
the particle to be non-relativistic, so that in the frame of the mirror its speed
is simply v + V . Upon elastic reflection, the particle’s speed just changes of
sign in this frame, becoming − (v + V ). Transforming back to the observer’s
frame, the particle’s new speed is − (v + V )−V = − (v + 2V ). The particle has
thus gained the speed ∆v = 2V upon reflection. Generalising the calculation to
relativistic particle velocities, we find that upon head-on reflection, a particle
of momentum p (at normal incidence) gains the energy ∆W ≃ 2V p for V ≪ c.
Using p = vW/c2, and generalising to different velocity directions, we find that
the relative energy gain is

∆W/W = −2 (v · V) /c2 (8.7)

since only the projection of v on V plays a role. This energy variation is positive
for a head-on collision, and negative for a following collision, just as for a tennis
ball.

This would be great, were it not for a severe problem: the particle sees
mirrors that are moving towards it and away from it, which at first sight should
cancel the effect. This is not exactly so, however, because, just as you get
more rain on the front windscreen of your car than on the rear one, there are
slightly more head-on reflections than tail-on ones. To calculate the balance, we
note that the probabilities are proportional to the relative velocities of approach
of the mirror and the particle, which are greater for head-on than for tail-on
reflections. For V ≪ v, the relative excess of head-on collisions over tail-on
collisions is 2V/v, so that the net relative energy gain per reflection is in average
(considering reflection at normal incidence only)

〈∆W 〉
W

≃ 2V

v
× 2vV

c2
= 4

V 2

c2
. (8.8)

This energy gain is of second order in the small parameter V/c, whence its name:
second-order Fermi acceleration, so that the acceleration rate is in practice very
small. It is generally much smaller than the escape rate of the particles from
the scattering region, making this acceleration process rather ineffective.
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V1 V2

Figure 8.7 First-order Fermi acceleration of a particle near a (quasi-parallel)
shock.

First-order Fermi acceleration at shocks

The original Fermi acceleration process is very slow because of the averaging
between head-on and tail-on reflections, with only a small excess of head-on
reflections, so that it is of second order in the small parameter V/c. The process
would be much more effective if there were only head-on reflections. This is
exactly what happens at shocks under adequate conditions [1]. The trick is
that the medium undergoes a speed decrease from upstream to downstream
at the shock, so that from the point of view of the medium on each side of
the shock, the other side is moving towards it, whereas both the upstream
and downstream regions are full of irregularities that scatter the particles and
isotropise the velocity distributions in each frame.

To understand this, consider a plane shock, in which the velocity decreases
from V1 upstream, to V2 = V1/n downstream, in the frame where the shock
is at rest (Fig. 8.7). For a strong shock of adiabatic index γ = 5/3, we have
seen in Section 2.3 that n = 4. In the frame of reference of the upstream
medium, in which the velocity distribution of the particles is isotropic, the down-
stream medium (and its scattering irregularities) are coming head-on at speed
V1 − V2 (the velocity difference between the scattering centres upstream and
downstream); likewise, from the point of view of the downstream medium, the
upstream medium (and its scattering irregularities) are coming head-on at the
same speed. Therefore, each time an average particle (of velocity randomised
by scattering on the irregularities) traverses the shock, it sees the plasma irreg-
ularities on the other side coming head-on at speed V1 − V2 in average. This
is the basis of the diffusive acceleration at shocks, which is expected to have a
great importance in astrophysics given the ubiquity of shocks in the Universe.

As an average particle of speed v traverses the shock downstream and back
upstream, the total relative energy gain is given by twice the value given in
(8.7), with the velocity V = V1 − V2, and (v · V) = −vV cos θ, θ being the
angle of incidence of the particle to the shock, which satisfies 0 < θ < π/2. For
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ultra-relativistic particles (v ≃ c), this yields

∆W

W
≃ 4

V1 − V2

c
cos θ. (8.9)

We must average this expression over the directions of incidence. Since the rate
of arrival of the particles to the shock is proportional to the normal component
of the velocity (∝ cos θ), and the energy gain (8.9) is itself proportional to cos θ,
we must average cos2 θ, which yields a factor 〈cos2 θ〉π/2

0 = 1/3. Hence, for a
round trip across the shock and back again, the fractional energy increase of the
particles is finally, on average

〈∆W 〉
W

≃ 4

3

V1 − V2

c
≃ 4V1

3c
× n − 1

n
(8.10)

where n = V1/V2 is the shock compression ratio. To work out the resulting en-
ergy distribution of the accelerated particles, we must estimate their probability
of escape from the shock. Ultra-relativistic particles of number density nCR ar-
rive on the shock at the rate nCR × c/4 (the factor 1/4 comes from averaging
over the directions of arrival, as found in Section 7.2.2). On the other hand,
the rate at which they are swept away from the shock (without returning) is,
since this occurs downstream, nCRV2 = nCRV1/n. The escape probability of
particles is thus (V1/n) / (c/4) = 4V1/nc. The ratio of the timescales of energy
release and acceleration is therefore

4V1/nc

〈∆W 〉/W
≃ 3

n − 1
(8.11)

where we have substituted (8.10). We deduce (Problem 8.4.2, or using the
reasoning of Section 4.5.3) that the differential energy distribution is given by
(4.35), at high energies, i.e. dN/dW ∝ W−(κ+1) with κ = 3/ (n − 1), i.e.

dN/dW ∝ W−(n+2)/(n−1). (8.12)

The particles thus emerge from the acceleration site with a power law spec-
trum, whose index depends on the shock compression ratio, and not on the shock
speed, nor on the detailed geometry or the scattering process, as long as the
shock may be considered as plane.5 This makes this acceleration process univer-
sal.6 For a strong shock with adiabatic index γ = 5/3, we have n = V1/V2 ≃ 4,
so that the high-energy spectrum has the form dN/dW ∝ W−2, which agrees
well with the observed cosmic ray spectrum (above 1 GeV and below the ‘knee’
of Fig. 8.3), when due account is made of particle propagation in the interstellar
medium.

Three important comments are in order. First, the accelerated particles are
expected to be confined within some distance from the shock, with a concentra-
tion that decreases farther away. Second, this mechanism requires the particles

5Namely, the radius of curvature of the shock must be much greater than the other scales.
6However, the timescale of acceleration does depend on the diffusion process.
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to make multiple shock traversals. The scale of diffusion (and the particle gy-
roradius) must therefore be greater than the shock thickness. Since the shock
thickness is of the order of magnitude of the gyroradius of the particles of the
ambient medium, this condition means that the particles must already move
faster than average, in order to pass freely between the upstream and down-
stream sides and be significantly accelerated.7 Third, the average magnetic
field has been implicitly assumed to be quasi-parallel to the shock normal (a
so-called quasi-parallel shock; see Fig. 6.14, left).

Shock drift acceleration

In the opposite case, when the magnetic field makes an appreciable angle to the
shock normal (a quasi-perpendicular shock; see Fig. 6.14, right), the motion of
the plasma across the magnetic field produces an electric field −V × B (con-
served upon shock traversal) in the frame of the shock. Furthermore, particles
drift along the shock surface along B×▽B for positive charges (and the opposite
for negative charges), perpendicular to both the magnetic field and its gradient
(Section 2.2). Since we have seen that B increases upon traversing the shock
from upstream to downstream (Section 6.3), the drift is in the same sense as the
shock electric field for positive charges (and the opposite for negative charges),
so that the particles are accelerated by the shock electric field whatever the
sign of their charge. We shall see an application of this shock drift acceleration
below.

A review of the physics of particle acceleration at shocks may be found in [13].
These mechanisms are responsible of a large part of particle acceleration in the
Universe, from solar, heliospheric and planetary shocks, to distant astrophysical
objects.

8.2.3 Modulation of galactic cosmic rays by solar activity

Galactic cosmic rays entering the heliosphere are subjected to:

• scattering by magnetic field irregularities due to turbulence, and by larger
transient structures as the solar mass ejections,

• drifts due to the magnetic field gradient and the curvature of the field
lines, determined by the three-dimensional structure of the heliospheric
magnetic field, including the current sheet separating opposite magnetic
polarities,

• outward convection and adiabatic deceleration as they follow the large-
scale magnetic field of the expanding solar wind.

As a result, theoretical models have to consider the detailed structure of
the magnetic turbulence, which we have seen to be far from understood, the

7These particles, however, may simply be the fast-speed particles of an ambient near-
equilibrium velocity distribution.
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