Charging of nanograins in cold dusty plasmas: from noctulescent clouds to Enceladus plume and cometary environments

Nicole Meyer-Vernet

LESIA, Observatoire de Paris, CNRS, UPMC, Université Paris Diderot, Meudon, France

@AGU FALL MEETING

San Francisco 9-13 December 2013 (invited talk)

<u>nicole.meyer@obspm.fr</u> <u>www.lesia.obspm.fr/perso/nicole-meyer/</u>

Nano grains

- What are they?
- Where are they found?
- What makes them different?
- How are they charged in cold plasmas?
- ... and in dusty plasmas

Original definition of a nanoparticle: a particle that consists of a countable number of atoms

The size may determine the structure

Cluster of H₂0 molecules disordered structure

n=123

> Interstellar space

far UV extinction

Inferred from:

- $a < \lambda/2\pi \approx 10 \text{ nm}$ [Weingartner & Draine 2001]
- IR emission [Sellgren 1984; Draine & Li 2001] due to stochastic heating (PAH's)

Interstellar nanograins cannot enter the heliosphere

except embedded in larger grains

Presolar TiC nanocrystal

dust density (10 nm) relative

Planetary environments

Polar mesosphere in summer:
coldest place on Earth

- "Smoke particles": a few 0.1 nm to a few nm (from condensation of meteoritic matter)
- Charged aerosols: a few nm to 100 nm [e.g. Friedrich & Rapp 2009]
 - T < water vapor frost point:
 - Large quantities of charged nanodust (ice): up to a few 10³/cm³

> Planetary environments

Polar mesosphere in summer:
 coldest place on Earth

Nanodust produces:

- NoctuLescent Clouds (ground obs.)/
 Polar Mesospheric Clouds (SC obs.):
 ice grains a > 20 nm scatter light
 - Decreases in electron density n_e associated to increases in (negatively charged) dust density n_d
 - Polar Mesosphere Summer
 Echoes: strong backscatter of
 radio waves (50 10³MHZ) [e.g; Rapp & Lübken 2004]

Cassini/CAPS (Plasma Spectrometer)

serendipitous detection (charged nanodust of energy/charge in the range of the instrument)

Planetary environments

o Enceladus plume

[Jones et al. 2009]

Cassini/CAPS (Plasma Spectrometer)

serendipitous detection (charged nanodust of energy/charge in the range of the instrument)

Planetary environments (and farther out)

- Fast (~300 km/s) nanodust streams
 - ...accelerated by corotation electric field of Jupiter
 - ... and Saturn [Kempf et al. 2005]

Dust detectors on Ulysses/Galileo/Cassini: Se

serendipitous detection outside calibration range

Original results from calibration V ~ 20-56 km/s m ~ 10^{-19} - 10^{-16} kg [Grün et al. 1992]

 From dynamics
 Image: Provide the state of t

[Krüger 2003; Hsu et al. 2012]

Comets Ion mass spectrometers on Giotto & Vega-1: serendipitous detection: m ~ 0.5 10⁻²¹ kg at 10⁶ km from nucleus of Halley [Utterback & Kissel 1990 Sagdeev 1985, 1989]

Interplanetary medium

Nano grains accelerated by the magnetized solar wind

STEREO/WAVES: serendipitous detection (voltage pulses from highspeed (~300 km/s) dust impacts on SC)

Transition between molecular and bulk properties

Consensus on nanoparticles: their properties are different from those of bulk material

Large proportion of surface atoms

Surface atoms have too few bonding partners

- \rightarrow free radicals = surface "dangling bonds"
- \rightarrow mean-square displacements of surface atoms are relatively large

Welcome Quantum confinement

Heisenberg: $\Delta x \Delta p = h/2\pi$

electron confined in nanograin of radius a:

 $\Delta x \sim a \rightarrow$ momentum: $\Delta p = h/(2\pi\Delta x)$

- \rightarrow confinement energy: $E_0 \sim \Delta p^2/2m_e$
 - ► Quantized energy levels $E_n = n^2 h^2 / [8m_e (\Delta x)^2]$

Affects optical & electrical properties [e.g. Li 2004]

Size compared to basic scales

\rightarrow electron secondary emission increases

[Draine & Salpeter 1979; Chow et al. 1993]

\rightarrow electron sticking coefficient decreases if a \lesssim I_e

- Size compared to basic scales
 - ✓ Photon scales
- Photon attenuation length $\sim 10 100 \text{ nm}$
 - Photoelectron escape length $I_e \sim 0.5 5$ nm
 - **>** Photoelectron yield increases if $a \leq I_e$

photoelectrons have a better chance to escape [Watson 1972; Draine 1978]

can be counterbalanced by:

Increase of electron removal energy:
 ~ work function + (3/8) (e²/4πε₀a)
 [Wong et al. 2003] Image charge contribution

Note: for $a > l_e$: yield when a \searrow [de Heer 1993; Abbas et al. 2007]

- Photon wave length (UV) $\lambda > a$
 - \rightarrow photon absorption cross-section/(πa^2) $\propto a$ (Rayleigh)

- High charge-to-mass ratio
 - Dynamics and pick-up in magnetized plasmas
 - Dusty plasma effects
- Further charge effects of relative importance
 A as a
 A

$$G_{0} = 4\pi a^{2}\sigma \cdot Nk_{B}T \ln(S) - Coulomb term$$

$$\uparrow \quad \propto a^{3} \wedge Energetic \ preference for \ condensation$$

Can suppress barrier of potential

 $\begin{array}{c} \searrow & \text{Electrostatic disruption: stress} \propto (q/a^2)^2 \end{array} \begin{array}{c} 0.2 & 0.4 & 0.6 & 0.8 \\ \hline & & & & \\ \hline & & & & \\ \end{array} \\ & \rightarrow & \text{makes grain explode} \rightarrow & \text{may determine minimum size} \end{array} \end{array}$

Q: grain's charge; Φ : grain's potential relative to ambient plasma

- Charging governed by incoming plasma electrons until grain negative charge repels them sufficiently to balance other currents [e.g. Whipple 1981]
- Charging governed by escaping photoelectrons until grain positive charge binds them sufficiently for escaping photoelectrons to balance other currents

Electric charging

Beware: tricky cases

$$n_{d} \text{ grains/m}^{3} ; n_{e} (n_{i}) \text{ electrons (ions)/m}^{3} \qquad \textcircled{}^{\ddagger a} \\ L_{D} = [4\pi r_{L}(n_{e}+n_{i})]^{-1/2} \qquad (T_{e} \sim T_{i}) \qquad \overbrace{\Delta r \sim n_{d}}^{-1/3} >> a$$

Fraction of charges carried by grains = $Z n_d / (n_e + n_i) = \eta P$

 $P = 4\pi n_d a L_D^2$

- If P > 1, Debye sheaths overlap
- \rightarrow electrons depleted
- \rightarrow reduces grain's charge

[Havnes et al. 1984, Whipple et al. 1985]

• If P >> 1: Z ~ -a/(P r_L) <<1

limit to el. depletion: $n_e/n_i \sim 1/\mu$ [Mendis & Rosenberg, 1994; Mendis 2002 1 $\mu = (s_e/s_i)(v_{the}/v_{thi}) \sim (m_i/m_e)^{1/2} \gg 1$

Electric charging in **dusty** plasmas **‡**a << L_□ n_d grains/m³; n_e (n_i) electrons (ions)/m³ **Beware!** $L_{\rm D} = [4\pi r_{\rm L}(n_{\rm e} + n_{\rm i})]^{-1/2}$ $\Delta r \sim n_d^{-1/3} >>a$ Densities inside dusty plasma Fraction of charges carried by grains = $Z n_d / (n_e + n_i) = \eta P$ [Meyer-Vernet 2013] $P = 4\pi n_d a L_D^2$ 10^{0} n /n. = 180 μ = Z r_L/a (H_2O^+) P ≠ "Alfvén parameter" 10^{-1} which refers to n_e outside n_e/n_i a "dust cloud" [Havnes1987, 1989; -3 Goertz 1989] 10⁻² -1/P 1/μ

P³

2

Electric charging

Important limitations for nanodust

- Field emission limits negative charge:

Limiting electric field for (electron) field emission: $\Phi/a \sim 10^9$ V/m

Maximum number of electrons on a nanograin:
$$|Z_{MAX}| \sim 1 + 0.7 a_{(nm)}^2$$

> Nanodust: $a \leq r_L \approx 1.4/T_{(eV)}$ nm

Examples:

- Earth's ionosphere: $r_L \approx 5 100 \text{ nm}$
- Jupiter/IO torus: r_L ~ 0.1 1.5 nm (Te from [Bagenal 1994]; [Moncuquet et al. 1995])
- Saturn (3-10 R_S): $r_L \sim 0.3$ 3 nm (Te from [Sittler et al. 2006; Schippers et al. 2013]
- Comet plasma tail: $r_L \sim 1 \text{ nm}$ (Te from [Meyer-Vernet et al. 1986] measure in situ of Giacobini-Zinner plasma tail by ICE/radio instrument: $n_e \approx 10^3$, $T_e \approx 1 \text{ eV}$)

> Nanodust: $a \leq r_L \approx 1.4/T_{(eV)}$ nm

Two major consequences:

 Approaching charge is strongly attracted by induced dipole Potential energy e²/(4πε₀a) ≥ k_BT → increases currents → decreases charging time scales
 [Natanson 1960; e.g. Draine & Sutin 1987; Rapp & Lübken 2001]

> 2. Grain's number of charges $|Z| \approx \eta/a/r_1 \gg 1$

 \rightarrow statistical treatment: f (\underline{Z}) $J_i(Z) = f(Z+1) J_e(Z+1)$

[Draine & Sutin 1987] deduce moments, as: average charge state: $\langle Z \rangle = \sum Z f(Z)$ probability for charge state Z

Examples:

Probability distribution of Z = q/e at equilibrium

Variation of grain's potential with time

Inhomogeneous Poisson process approach

Saturn's magnetosphere

Average number of charges on a grain

without field emission

no longer proportional to grain size

Conclusions

Beware of nanograins:

- Ubiquitous
- Physical properties different
- Secondary emission → multiple states
 → nasty for numerical simulations
 → nasty for numerical simulations
- In cold (a ≤ r_L) dense plasmas, nanograin carries |<Z>| ~ 1 electron → q/m ∝ a⁻³ (instead of a⁻²)

Were detected serendipitously in most environments ...
 Will crop up when you don't expect them