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ABSTRACT

Using simple geometrical arguments, we paint an overview of the variety of resonant structures a single
planet with moderate eccentricity (ed0:6) can create in a dynamically cold, optically thin dust disk. This
overview may serve as a key for interpreting images of perturbed debris disks and inferring the dynamical
properties of the planets responsible for the perturbations. We compare the resonant geometries found in the
solar system dust cloud with observations of dust clouds around Vega, � Eridani, and Fomalhaut.

Subject headings: celestial mechanics — circumstellar matter — interplanetary medium —
planetary systems — stars: individual (� Lyrae, � Eridani, Fomalhaut)

1. INTRODUCTION

Direct imaging of nearby stars cannot yet detect light
from extrasolar planets. However, imaging can detect cir-
cumstellar dust, and when a planet orbits inside a dust
cloud, the planet can reshape the cloud dynamically, as
Earth perturbs the solar dust cloud. Several debris disks
around nearby main-sequence stars show structures and
asymmetries that have been ascribed to planetary perturba-
tions (Burrows et al. 1995; Holland et al. 1998, 2003;
Schneider et al. 1999; Koerner, Sargent, & Ostroff 2001);
perhaps these perturbed disks are signposts of extrasolar
planetary systems.

Many of these disk features can be modeled as dust
trapped in mean motion resonances (MMRs) with a planet.
Gold (1975) suggested that as interplanetary dust spirals
into the Sun under the influence of Poynting-Robertson (P-
R) drag, planets could temporarily trap the dust in MMRs,
creating ringlike density enhancements in the interplanetary
cloud. Since then, both the Infrared Astronomical Satellite
(IRAS) and the Diffuse Infrared Background Experiment
(DIRBE) on the Cosmic Background Explorer (COBE)
satellite have provided evidence for a ring of dust particles
trapped by Earth (Jackson & Zook 1989; Reach 1991;
Marzari & Vanzani 1994; Dermott et al. 1994; Reach et al.
1995). Models of Kuiper belt dust dynamics (Liou & Zook
1999) suggest that Neptune may also trap dust in first-order
MMRs.

Other stars may host planets like Earth orNeptune. How-
ever, most of the known extrasolar planets do not resemble
Earth or Neptune: they have masses in the range of 0.3MJ–
15MJ, and they often have significant orbital eccentricities
(see, e.g., the review by Marcy & Butler 2000). Simulations
by Kuchner & Holman (2001) show that planets as massive
as these on eccentric orbits placed in a cloud of in-spiraling
dust often create two concentrations of dust placed asym-
metrically with respect to the star. Maps of the vicinity of
Vega made with the IRAM Plateau de Bure interferometer
at 1.3 mm (Wilner et al. 2002) and with the JCMT at 850 lm
(Holland et al. 1998) reveal two concentrations of circum-
stellar emission whose asymmetries can be naturally

explained by such a model, possibly indicating the presence
of a few Jupiter mass planet in an eccentric orbit around
Vega (Wilner et al. 2002). Other papers have numerically
explored the interactions of particular planetary system
configurations with a dust disk, with a view toward develop-
ing a general key for interpreting disk structures (Roques et
al. 1994; Lecavelier Des Etangs et al. 1996; Liou & Zook
1999; Quillen & Thorndike 2002).

We assemble a primitive version of such a key bymapping
the geometries of the MMRs that are likely to trap the most
dust near a planet embedded in a debris disk. We illustrate
the patterns formed by the libration centers of the trapped
particles in an inertial frame—the frame of a distant
observer. These basic patterns allow us to characterize four
structures that probably span the range of high-contrast
resonant structures a planet on an orbit with eccentricity up
to�0.6 and low inclination can create in a dust disk.

Figure 1 shows these structures here for reference; we dis-
cuss them throughout the paper, particularly in x 4. Cases I
and II in this figure represent the structures formed by plan-
ets on low-eccentricity orbits. Cases III and IV represent
structures created by planets on moderately eccentric orbits.
Cases I and III represent structures created by planets with
substantially less than 0.1% of the mass of the star; cases II
and IV represent structures created by more massive
planets.

2. PLANETS ON LOW-ECCENTRICITY ORBITS

2.1. Low-Mass Planets

First, we review some of the physics of resonant dust rings
created by relatively low mass planets, like Earth and Nep-
tune. In the rest of this paper, we generalize the discussion
to planets with mass up to �15MJ and e0 up to �0.6. The
resonant geometries we will describe apply to the general
restricted three-body problem. However, we have in mind a
source of dust, like the asteroid belt or the Kuiper belt,
which releases dust on low-eccentricity orbits at semimajor
axes, a > a0, where a is the semimajor axis of the particle’s
orbit and a0 is the semimajor axis of the planet’s orbit. We
use the convention that quantities with a subscript 0 refer to
the planet.1 Michelson Postdoctoral Fellow.
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We do not consider interactions between the dust grains,
or between dust and any gas in the disk. For example, our
approach does not apply to the gaseous, optically thick
disks found around young stellar objects. However, the
resonances we describe must underlie the basic resonant fea-
tures of the solar system dust complex and debris disks
around main-sequence stars with less than a few lunar
masses of dust.

The radiation forces on a particle are parametrized by �,
the strength of the stellar radiation pressure force on a par-
ticle divided by the strength of the stellar gravitational force
on a particle. For a spherical particle with radius se1 lm
and density 2 g cm�3 orbiting a star with mass M* and
luminosity L*,

� ¼ 0:285 lm

s

� �
L�
L�

� �
M�

M�

� �
: ð1Þ

A typical particle in the solar system may have s � 1 100
lm (Grun et al. 1985; Fixsen & Dwek 2002), or
� � 0:285 0:00285. Dust grains released at circumstellar
distance r that are too large to be ejected by radiation pres-
sure (�d0:5) spiral into the star via P-R drag (Robertson
1937; Burns, Lamy, & Soter 1979), on a timescale

TPR ¼ 400

�

M�
M�

� �
r

1 AU

� �2

yr : ð2Þ

Other drag forces, like solar wind, may also contribute to
the decay of the particle’s orbit (Banaszkiewicz, Fahr, &
Scherer 1994).

Dust spiraling inward toward a planet encounters a series
of exterior MMRs, each of which is associated with terms in
the disturbing function of the form

Rh ires¼
Gm0

a
Fð�; e; e0Þ cos� ; ð3Þ

where G is the gravitational constant, m0 is the mass of the
planet, and � ¼ a0=a (see, e.g., Brouwer & Clemence 1961;
Murray & Dermott 1999). The resonant argument, �, is a
linear combination of the orbital elements of the particle
and the planet, which can be interpreted as an angle
(Greenberg 1978). We do not discuss interior MMRs
because they cannot sustain long-term trapping (see, e.g.,
Murray & Dermott 1999, p. 381). The potential, Rh ires,
causes the argument � to accelerate. For a particle trapped
in the resonance, � librates about � � 0 if Fð�; e; e0Þ < 0
and about � � � if Fð�; e; e0Þ > 0. An MMR of the form
j : k is nominally located at a semimajor axis given by
1=� � ðj=kÞ2=3ð1� �Þ1=3.

As a particle approaches the planet from afar, it encoun-
ters stronger and stronger resonances and has a better and
better chance of becoming trapped. For particles approach-
ing Earth or Neptune, the first resonances that are strong
enough to trap substantial amounts of dust are the first-
order MMRs: resonances of the form 2 : 1, 3 : 2, 4 : 3, etc. To
first order in eccentricity and inclination, these resonances
consist of pairs of terms with arguments

�1 ¼ j�� ð j � 1Þ�0 �$ ð4aÞ
�2 ¼ j�� ð j � 1Þ�0 �$0 ; ð4bÞ

Fig. 1.—Four basic resonant structures: (I) low-mass planet on a low-eccentricity orbit, (II) high-mass planet on a low-eccentricity orbit, (III) low-mass
planet on a moderate-eccentricity orbit, and (IV) high-mass planet on amoderate-eccentricity orbit.
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where � and �0 are the mean longitudes of the particle and
the planet and $ and $0 are the longitudes of pericenter of
the particle and the planet, respectively. For Earth (e0 ¼
0:017) and Neptune (e0 ¼ 0:0086), the �1 resonance domi-
nates at all values of $ if the dust particle has even a small
orbital eccentricity, and �1 librates about �1 � �. Passage
through this resonance slowly raises the particle’s eccentric-
ity, which asymptotically approaches a limiting value, emax,
when the dynamics is followed using an expansion to second
order in e (Weidenschilling & Jackson 1993; Sicardy et al.
1993; Beauge & Ferraz-Mello 1994; Liou & Zook 1997):

emax ¼

ffiffiffiffi
2

5j

s
: ð5Þ

In the process, the particle’s orbit becomes planet crossing,
and in a matter of a few P-R times, the particle generally
leaves the resonance via a close encounter with the planet
(Marzari & Vanzani 1994) and an abrupt transition to a
new orbit with a different eccentricity and semimajor axis.
Near Earth, trapped dust populates several first-order
MMRs.

The condition that �1 librates about �1 � � provides a
relationship between � and $. Since rotations of the whole
system by 2�must not affect the dynamics, we can write that
the libration centers are located where

� � ð j � 1Þð�0 þ 2�KÞ þ$þ �

j
; for K 2 Z : ð6Þ

Figure 2 shows how this condition leads to the formation of
a density wave, using the 3 : 2 MMR as an example. Figure
2a shows a variety of elliptical dust orbits, all with the same
1=� ¼ 1:31 and e ¼ 0:8emax, but with different $-values.
According to equation (6), each one of these orbits has j ¼ 3
different longitudes that may be libration centers for a par-
ticle trapped in the �1 term. Figure 2b shows these three
locations, marked with crosses, for each of two elliptical
orbits with slightly different$-values.

Figure 2c shows the locus of the libration centers for the
whole range of elliptical orbits shown in Figure 2a. In Fig-
ure 2d, the planet has moved to a new longitude, and follow-
ing equation (6), so have the libration centers. The density
wave formed by the trapped particles resembles the pattern
formed by the libration centers, blurred somewhat by

Fig. 2.—How a planet on a low-eccentricity orbit creates density waves. (a) Several particle orbits with different $-values. (b) Libration centers of the
3j�� 2�0 �$ term on two of these orbits, indicated by crosses. (c) Locus of all the libration centers. (d ) Density wave appears to orbit at the same
angular frequency as the planet (located at the filled circle).
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libration, mostly in the azimuthal direction. Ozernoy et al.
(2000) show some examples of how libration blurs the pat-
terns formed by particles trapped in individual resonances.

Although any individual particle in Figure 2 moves stead-
ily counterclockwise, slower than the planet, the density
wave appears to rotate as a fixed pattern together with the
planet. At conjunction (� ¼ �0) the resonance condition
implies that$ � �0 þ �, so the libration centers just outside
the planet are always near apocenter. This condition creates
the signature gap at the location of the planet seen in simula-
tions of Earth’s ring (Dermott et al. 1994) and of Kuiper belt
dust interacting with Neptune (Liou & Zook 1999) and
illustrated in Figure 1 (case I).

2.2. HigherMass Planets

We can understand the range of possible resonant dust
cloud structures by understanding the density wave patterns
created by the series of MMRs that are likely to trap dust
near a planet. Table 1 lists the arguments in a series of
MMRs that figure most prominently in the sculpting of dust
clouds (ignoring the planet’s inclination, which first appears
with order inclination squared) in order by �. It also lists the
corresponding leading terms in Fð�; e; e0Þ, evaluated for
l ¼ 1=1047 (i.e., Jupiter) and �5 1. The first MMRs in the
list are the first-order resonances described above. For a
given planet/dust cloud combination, a few MMRs
generally dominate the observed resonant structure. In sim-
ulations of � ¼ 0:037 dust particles approaching Earth
(Dermott et al. 1994), the first-order j ¼ 4 10 MMRs domi-
nate the appearance of the trapped dust cloud. In
simulations of Neptune’s ring by Liou & Zook (1999), the
2 : 1 and 3 : 2 resonances ( j ¼ 2 and 3) dominate the
appearance of the dust cloud.

The factor of Gm0/a in equation (3) makes MMRs at
large a weaker and less able to trap substantial quantities of

dust. For more massive planets, however, the trapping
probability for all MMRs is higher (Lazzaro et al. 1994), so
particles approaching from afar become trapped sooner, in
MMRs with longer orbital periods and larger semimajor
axes. Likewise, close encounters with the planet more easily
scatter dust grains out of exteriorMMRs at small a, and this
effect worsens with the mass of the planet.

The MMRs near the planet also become close together
and begin to compete with one another. If l ¼ m0=M�, the
resonance overlap criterion (Wisdom 1980; Duncan, Quinn,
& Tremaine 1989) predicts that first-order resonances with
j > 0:45½lð1� �Þ��2=7 þ 1 are completely chaotic. This con-
dition appears to place an absolute limit on how far down
the chain of resonances a dust particle can be trapped. For
large particles near Earth (l � 3� 10�6), this criterion pre-
dicts that the first completely overlapped MMR is 17 : 18;
for Neptune (l � 5� 10�5) it is 8 : 9, and for Jupiter
(l � 10�3) it is 4 : 5.

As we have mentioned, many of the observed extrasolar
planets have substantially more mass than planets in the
solar system. Such massive planets quickly scatter dust from
their first-order MMRs. Thus, after the first-order resonan-
ces, Table 1 lists the n : 1 resonances, the lowest order terms
available at large semimajor axes—beyond the 2 : 1 MMR
(nominally located at a=a0 ¼ 1:59). In numerical integra-
tions, Kuchner & Holman (2001) and Wilner et al. (2002)
found that dust spiraling inward toward a massive planet
became trapped in this series of n : 1 resonances. Table 1
shows that the terms in these resonances that do not depend
on the eccentricity of the planet have the form j�� �0 �
ð j � 1Þ$. These terms must dominate when e0 is small.

The j�� �0 � ð j � 1Þ$ terms in Table 1 are mostly posi-
tive, so most of these arguments librate around �. However,
these terms all include contributions from indirect terms,
which arise from the reflex motion of the star. The indirect
contributions tend to reduce the strength of the resonance,

TABLE 1

Resonant Arguments

Resonance Nominal 1/� eforced/e0 Argument Leading Term in Fð�; e; e0Þ

6 : 5......................... 1.13 0.96 6�� 5�0 �$0 �4.44181e0
6�� 5�0 �$ 4.87053e

5 : 4......................... 1.16 0.94 5�� 4�0 �$0 �3.64001e0
5�� 4�0 �$ 4.07424e

4 : 3......................... 1.21 0.92 4�� 3�0 �$0 �2.83462e0
4�� 3�0 �$ 3.27756e

3 : 2......................... 1.31 0.87 3�� 2�0 �$0 �2.02226e0
3�� 2�0 �$ 2.48115e

2 : 1......................... 1.59 0.74 2�� �0 �$0 �1.18945e0
2�� �0 �$a 0.426628e

3 : 1......................... 2.08 0.58 3�� �0 � 2$0 0.598757e20
3�� �0 �$0 �$ �2.21298e0e

3�� �0 � 2$a �0.514804e2

4 : 1......................... 2.52 0.49 4�� �0 � 3$0 �0.244422e30
4�� �0 � 2$0 �$ 1.61636e20e

4�� �0 �$0 � 2$ �3.51697e0e
2

4�� �0 � 3$a 1.32796e3

5 : 1......................... 2.92 0.42 5�� �0 � 4$0 0.0848968e40
5�� �0 � 3$0 �$ �0.855830e30e

5�� �0 � 2$0 � 2$ 3.20820e20e
2

5�� �0 �$0 � 3$ �5.28443e0e
3

5�� �0 � 4$a 2.24457e4

a Includes contribution from indirect term.
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and in the case of the 3 : 1, this effect makes the coefficient
negative, so the 3�� �0 � 2$ argument librates around 0.

The libration centers for the terms that librate around �
are located at

� � ð j � 1Þ$þ �0 þ �ð1þ 2KÞ
j

; for K 2 Z : ð7Þ

Again there are j libration centers spaced evenly around
each elliptical dust orbit, and the locus of libration centers
appears to corotate with the planet. This time, however,
when we set � ¼ �0, we find that at conjunction, the particle
can be in one of a few different places:

$ � �0 �
�ð1þ 2KÞ

j � 1
at conjunction : ð8Þ

One can also show, following Weidenschilling & Jackson
(1993), for example, that passage through a pure j�� �0 �
ð j � 1Þ$ term raises the eccentricity of a dust particle in the
same way that passage through a j�� ð j � 1Þ�0 �$ term
does and that the limiting eccentricity is again given by
equation (5). We can generate a rough picture of the density
waves created by the dust trapped in these terms in the same
manner as Figure 2, by drawing a variety of elliptical orbits
with eccentricity e � emax at an appropriate semimajor axis
and using equation (7) (and Kepler’s equation) to locate the
libration centers on these orbits.

Figure 3 shows the patterns created by the most impor-
tant resonant terms listed in Table 1. The first column of
Figure 3 shows patterns for the terms that appear when the

planet’s eccentricity is low: the j�� ð j � 1Þ�0 �$ terms for
first-order resonances and the j�� �0 � ð j � 1Þ$ terms for
n : 1 resonances. The patterns are the locii of the libration
centers, generated in the manner of Figure 2.

3. PLANETS ON ECCENTRIC ORBITS

The patterns in the first column of Figure 3 appear in
Murray & Dermott (1999, p. 325), derived in a slightly dif-
ferent context—by tracing the path of a particle in a frame
corotating with the planet. However, the literature offers
little discussion of resonant structures created by planets on
eccentric orbits, and this case is crucial for understanding
extrasolar planetary systems. Naturally, for a planet on an
eccentric orbit, there is no simple corotating frame. How-
ever, we can deduce the resonance patterns associated with
planets on eccentric orbits by building on the arguments
used above.

3.1. Secular Effects

Besides resonant perturbations, planets introduce secular
perturbations to the orbits of nearby particles. When the
planet’s orbit is eccentric, these perturbations generally pro-
duce a correlation between e and$. We must consider these
effects when we examine MMRs with planets on eccentric
orbits.

We can demonstrate the importance of secular perturba-
tions by comparing them with radiation forces. Near a
planet, the P-R time, and thereby the trapping time, is
longer than the secular timescale for dust grains with
� < �0, where

�0 ¼ 100
M�
M�

� ��1=2
a

1 AU

� �1=2

�b13=2ð�Þl ; ð9Þ

and the Laplace coefficient (size order unity) is

bm3=2ð�Þ ¼
1

�

Z 2�

0

cosm d 

1� 2� cos þ �2ð Þ3=2
; ð10Þ

i.e., �0 � 100l. For example, �0 ¼ 0:022 for Neptune, while
�0 ¼ 0:44 for a Jupiter mass planet orbiting Vega at a ¼ 40
AU. Thus, we can expect most observable particles in the
cases we are interested in (10�5dld10�2) to suffer signifi-
cant secular evolution while they are trapped in an MMR.
Secular perturbations from planets with eccentric orbits
affect all dust particles in their vicinity, even those that are
not in strongMMRs.

In the Laplace-Lagrange description of secular perturba-
tions, valid for e; e05 1, a particle’s osculating e and $ are
expressed as a combination of constant forced elements,
eforced and $forced, and time-varying free elements, efree and
$free. Secular evolution is easily visualized in the (h, k) coor-
dinate system, where h ¼ e cos$ and k ¼ e sin$. In this
system, we write h ¼ hforced þ hfree and k ¼ kforced þ kfree.

When there is only a single perturbing planet on a fixed
orbit, the particle’s forced elements are constant, and the
osculating elements, h and k, trace out a circle centered on
(hforced, kforced) with a radius of efree. The forced longitude of
pericenter is $forced ¼ arctanðkforced=hforcedÞ ¼ $0, and the
forced eccentricity is

eforced ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2forced þ k2forced

q
¼

b23=2ð�Þ
b13=2ð�Þ

e0 : ð11Þ
Fig. 3.—Patterns formed by dust inMMRs listed in Table 1
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As a approaches a0, eforced approaches e0. Table 1 lists the
approximate value of eforced/e0 at the nominal � for each
MMR.

In a cloud of many particles, many orbits with a range of
hfree and kfree are occupied. However, all particles with a
given semimajor axis will have the same hforced and kforced.
For example, if all particles are released on circular orbits
outside the planet’s orbit and outside of any MMRs, then
the Laplace-Lagrange solution prescribes that at any given
time all the particles with a given semimajor axis will occupy
a circle with radius efree centered on the point (hforced, kforced)
in the (h, k)-plane. Dermott et al. (1985) and Wyatt et al.
(1999) showed that a set of orbits occupying such a circle in
the (h, k)-plane form a cloud that is roughly circular, but the
center of the cloud is offset from the star a distance e0a0
along the planet’s apsidal line in the direction of the center
of the planet’s orbit. Hence, the background dust cloud in
the vicinity of a large planet should often appear circular in
the absence of MMRs, although if the planet’s orbit is
eccentric, the center of the circle will be offset from the star.

When the perturber has higher eccentricity, or when a
particle is in an MMR, the particle’s secular trajectory
changes somewhat: the orbit no longer traces an exact circle
in the (h, k)-plane, even when the librations are averaged
away (Wisdom 1983). However, the character of the aver-
aged secular motion often remains the same: h and k follow
a simple closed loop around (hforced, kforced). We will retain
the spirit of the Laplace-Lagrange approximation for the
secular motion of the particles for the remainder of this
paper, and we will refer loosely to free and forced elements,
even when we are discussing resonant orbits. We find that
this approximation suffices for our broad exploration of
planetary signatures in debris disks.

3.2. MeanMotion Resonances

When a particle is trapped in an MMR with a planet on a
circular orbit, the resonant argument that only depends on
$, not on $0, dominates the particle’s motion. The other
terms in the resonance have coefficients Fðe; e0Þ that are
zero when e0 is zero. However, when a particle is trapped in
anMMRwith a planet on an eccentric orbit, resonant argu-
ments that depend on$0 may come into play.

To leading order, the averaged disturbing function for an
MMR with a planet on an eccentric orbit is the sum of two
or more terms:

Rh ires¼
Gm0

a

X
�

F�ð�; e; e0Þ cos�� ; ð12Þ

where, as Table 1 shows, �1 ¼ p�� q�0 þ ðp� qÞ$ and
�� ¼ �1 þ ð� � 1Þð$�$0Þ. Following Wisdom (1983), we
can reexpress this sum as

Rh ires¼
Gm0

a
F 0ð�; e; e0; $;$0Þ cos�0 ; ð13Þ

where

�0 ¼ �1

þ arctan

Pp
�¼2 F�

�� �� sin ð� � 1Þð$�$0Þ þ ��
� �

F�
�� ��þPp

�¼2 F�
�� �� cos ð� � 1Þ $�$0ð Þ þ ��

� �
( )

ð14Þ

and

F 0ð�; e; e0; $;$0Þ ¼
( X

�

F�ð�; e; e0Þ sin��

" #2

þ
X
�

F�ð�; e; e0Þ cos��

" #2)1=2

: ð15Þ

The quantity �� ¼ � for F� < 0 and �� ¼ 0 otherwise. We
define F0 to be always �0, so on resonance, the new argu-
ment, �0, librates around �0 � �. Equation (14) shows
explicitly that the differences among the terms only appear
on a secular timescale, as$�$0 precesses.

At any moment, the particle’s orbit may be viewed as
undergoing libration about �0 ¼ �. This change in the effec-
tive resonant argument can change the constraints on the
orbital elements of resonant objects, which can result in
dramatically different looking clouds of trapped particles.
Often one term dominates, in the sense that �0 � �� or
�0 � �� þ �. This circumstance depends on e, e0,$,$0, and
the details of trapping, but we can appeal to numerical simu-
lations and use what we know about the secular evolution
of dust particles to help decide which terms are likely to be
most important.

3.3. High-Mass Planets

It is easier to consider high-mass planets first because the
n : 1 resonances that dominate the appearance of dust clouds
containing a massive planet are farther from the planet than
the first-order resonances that dominate in the case of a
low-mass planet. Particles released on circular orbits
approach a planet with efree � eforced, so they reach the n : 1
MMRs with e ranging from 0 to eforced þ efree. As Table 1
shows, eforced � e0=2 near the lowest order n : 1 MMRs.
When $ � $0 þ �, all the terms become degenerate, in the
sense that all of their libration centers occur at the same lon-
gitudes. At the other end of the range of secular motion,
$ � $0 and e � e0, so according to equation (14), the term
with the largest coefficient in Fð�; e; e0Þ will dominate the
motion of the particles.

The arguments that match the terms with the largest coef-
ficients in Fð�; e; e0Þ (see Table 1) share a second common
form: j�� �0 �$0 � ð j � 2Þ$. Numerical integrations
(Wilner et al. 2002) confirm that these terms dominate the
resonant dynamics over a wide range of planet eccentric-
ities. These terms always have Fð�; e; e0Þ < 0, so the corre-
sponding arguments librate about 0. The j libration centers
on each ellipse are located at

� � �0 þ$0 þ ðj � 2Þ$þ 2�K

j
; for K 2 Z : ð16Þ

We reserve a discussion of the complicated secular dynamics
of these resonances for a future paper.

Figure 4 illustrates the pattern formed by particles in the
3�� �0 �$0 �$ term near a planet with e0 ¼ 0:6. Once a
particle is trapped in resonance, its secular evolution no lon-
ger obeys the Laplace-Lagrange solution, but the libration
centers of the trapped particles will still occupy a closed
curve in the (h, k)-plane. Figure 4a shows such a variety of
orbits centered on h ¼ 0:58e0, k ¼ 0. Orbits that are close to
apse alignment with the planet have higher eccentricities.
Like the Laplace-Lagrange orbit distributions discussed by
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Dermott et al. (1985) and Wyatt et al. (1999), these orbits
taken together form a pattern that is roughly circular, but
the center of the circle is offset from the star along the
planet’s apsidal line in the direction of the center of the
planet’s orbit.

Figure 4b shows the three libration centers on two of
these orbits, calculated from equation (16). By definition,
� ¼ M þ$, where M is the particle’s mean anomaly. For
particles at pericenter, M ¼ 0 and � ¼ $, so for particles
trapped in any j�� �0 �$0 � ðj � 2Þ$ term,

$ � M0

2
þ$0 þ �K ; for K 2 Z ; ð17Þ

whereM0 is the planet’s mean anomaly. In other words, the
libration centers for this family of terms reach pericenter at
two different longitudes, and these special longitudes pre-
cess at an angular frequency equal to half the Keplerian
angular frequency of the planet. When the planet reaches
pericenter (M0 ¼ 0), so do the particles on orbits that are
apse aligned or anti–apse aligned with the planet’s orbit.
Figures 4c and 4d show that the locus of libration centers
makes a characteristic two-lobed pattern, which appears to

rotate at half the mean angular frequency of the planet. The
center of this apparent rotation lies on the planet’s apsidal
line between the star and the center of the planet’s orbit.

3.4. Low-Mass Planets

The resonances populated near low-mass planets cluster
at semimajor axes near the planet’s semimajor axis, where
eforced � e0. In this vicinity, the resonant orbits can easily
become planet crossing unless they are roughly apse aligned
with the planet’s orbit, i.e., efree < eforced and $ � $0.
Figure 5a shows a collection of roughly apse-aligned orbits,
all with eforced ¼ 0:5 and efree ¼ 0:12. In the absence of
MMRs, the combination of these elliptical orbits would
appear as an elliptical ring.

For the case of the 3 : 2 MMR, a single one of these orbits
has three libration centers, shown in Figure 5b. For a family
of orbits that must remain roughly apse aligned with the
planet, the secular spread in the libration centers is necessa-
rily small, and the resonant arguments are all roughly equal.
Hence, as Figure 5c shows, we should expect the density
wave to resemble the pattern produced by the libration cen-
ters in any one orbit; the libration centers associated with

Fig. 4.—Libration centers of the 3�� �0 �$0 �$ term. (a) Several particle orbits with different e and$. (b) The libration centers on two of these orbits
when the planet is at pericenter. (c) All the libration centers. (d ) Clumps formed by particles trapped in this term appear to rotate at half the angular frequency
of the planet.
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any MMR of the form j : k form a set of j clumps. As Figure
5d shows, the locus of all the libration centers orbits at k/j
times the angular frequency of the planet; when the planet’s
mean anomaly changes by �/2, the mean anomalies of the
clumps of particles in the 3 : 2MMR change by �/3.

An exterior first-order MMR has two relevant terms (eqs.
[4a] and [4b]), and for the second term, F2ð�; e; e0Þ < 0. For
this case, equation (15) becomes

�0 ¼ �1

þ arctan
F2ð�; e; e0Þj j sin $�$0 þ �ð Þ

F1ð�; e; e0Þj j þ F2ð�; e; e0Þj j cos $�$0 þ �ð Þ

� �
:

ð18Þ

A key difference between the two terms is that one argument
librates around 0, the other around �.

Deciding which resonances dominate in the vicinity of a
low-mass planet on an eccentric orbit can be tricky. When
F1ð�; e; e0Þj j4 F2ð�; e; e0Þj j, �0 � �1. When F1ð�; e; e0Þj j5
F2ð�; e; e0Þj j, �0 � �2 þ �. However, when F1ð�; e; e0Þ �
F2ð�; e; e0Þ, the two terms tend to cancel each other, that is,

F 0j j � F1 � F2j j when$ � $0. This cancellation diminishes
the strength of the resonance.

Therefore, we should expect first-order resonances to be
relatively weak for a dust particle whose orbit has been secu-
larly apse aligned with the planet’s orbit. At e ¼ eforced, the
�1 resonance generally has the larger coefficient. The 2 : 1
MMR is an exception because F1 for the 2 : 1 is diminished
by an indirect term, so the �2 resonance easily dominates.
We leave it to numerical studies (Quillen & Thorndike 2002)
to decide which MMRs and terms dominate in a given sys-
tem containing a low-mass, high-eccentricity planet. How-
ever, no matter whichMMRs dominate, we expect the same
generic behavior: the trapped dust will form an eccentric
ring of dust clumps.

4. PLANETARY SIGNATURES

4.1. Four Basic Cloud Structures

The first column of Figure 3 illustrates the density waves
formed by the resonant terms we expect will dominate the

Fig. 5.—How dust confined to the 3 : 2 MMR near a planet on a moderately eccentric orbit might appear. (a) Several orbits with different e and $,
distributed in a Laplace-Lagrange circle with small efree. (b) Libration centers on two of these orbits when the planet is at pericenter. (c) All the libration centers.
(d ) Three dust clumps really do orbit at 23 of the planet’s orbital frequency.
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appearance of dust clouds near planets with low orbital
eccentricity. The second and third columns illustrate the
density waves formed by the resonant terms we expect will
dominate near planets with moderate orbital eccentricity:
the j�� ð j � 1Þ�0 �$0 terms for first-order resonances
and the j�� �0 �$0 � ð j � 2Þ$ terms for n : 1 resonances.
In the second column, the planet is at pericenter; in the third
column, the planet is atM0 ¼ �=2.

Our map of these basic patterns prepares us to consider
more generally the appearance of a dust disk in the vicinity
of a planet, where trapped dust occupies several MMRs.
Now we can describe the origin of the structures shown in
Figure 1: they are superpositions of the patterns shown in
Figure 3.

Cases I and II are superpositions of the patterns depicted
in the left-hand column of Figure 3. Cases III and IV are
superpositions of the patterns depicted in the right-hand
column of Figure 3 (and also in the middle column, at a dif-
ferent planetary orbital phase). In general, the rings created
by the low-eccentricity planets appear to corotate with the
planet, but the resonant structures created by moderate-
eccentricity planets do not because the density wave pat-
terns associated with the resonances they excite vary with
the planet’s orbital phase. The cases are as follows:

1. Case I: a low-mass planet with low orbital eccen-
tricity, like Earth or Neptune, traps dust in first-order
j�� ð j � 1Þ�0 �$ resonances. Case I shows a superposi-
tion of patterns produced by terms of this form, the patterns
in the upper left-hand column of Figure 3. Populating these
resonances creates a ring with a gap at the location of the
planet.
2. Case II: a higher mass planet on a low-eccentricity

orbit traps dust in more distant n : 1 resonances, in terms of
the form j�� �0 � ð j � 1Þ$. Case II shows superpositions
of patterns produced by such terms, the patterns in the
lower left-hand column of Figure 3. These resonances create
a larger ring with a smooth central hole.
3. Case III: a low-mass planet on a moderately eccentric

orbit traps dust in MMRs with small secular motion near
apse alignment with the planet, creating a blobby eccentric
ring. The blobs in this ring appear to be continually created
and destroyed, as dust clumps occupying different MMRs
pass through one another. The more highly concentrated
clumps are located near the apocenter of the planet’s orbit,
where all the particles in the j�� ð j � 1Þ�0 �$0 terms
(except for the 2 : 1) are constrained to have their conjunc-
tions. The planet may or may not be located near a gap in
the ring.
4. Case IV: a high-mass planet on a moderately eccentric

orbit creates a ring offset from the star containing a pair of
clumps, where the two-lobed patterns of all the n : 1 reso-
nances of the form j�� �0 � ð j � 2Þ$�$0 coincide. The
clumps appear to orbit a point along the planet’s apsidal
line, between the star and the planet, at half the mean orbital
frequency of the planet.

Naturally, intermediate cases will result in more than one
variety of resonance being populated by dust particles; these
clouds can possess features of more than one of the extreme
cases shown in Figure 1. For example, an intermediate-mass
planet on a low-eccentricity orbit will have a slightly larger
ring with a less prominent gap at the location of the planet
than case I. A planet with intermediate eccentricity may
have both a ring component and blobs, although librational

motion may smear these blobs so that they blend into the
ring.

4.2. Strong Drag Forces: Wakes

When the drag force is large and the planet’s mass is
small, the libration centers can shift substantially from �.
For anMMR containing a collection of resonant arguments
of the form � ¼ j�� k�0 � ð j � 1Þ$� ð� � 1Þð$0 �$Þ,
the resonant perturbations are

da

dt

� �
res

¼ �2janlF 0ð�; e; e0; $;$0Þ sin�0 ; ð19Þ

de

dt

� �
res

¼ �nlF 0ð�; e; e0; $;$0Þ sin�0 ; ð20Þ

where the particle’s angular frequency, n, on resonance is
nominally

n ¼ GM�ð1� �Þ
a3

� �1=2
: ð21Þ

P-R drag causes relatively slow changes in a and e (Wyatt &
Whipple 1950):

da

dt

� �
PR

¼ �GM��
ac

2þ 3e2ð Þ
1� e2ð Þ3=2

; ð22Þ

de

dt

� �
PR

¼ �5GM��
2a2c

2þ 3e2ð Þ
1� e2ð Þ1=2

; ð23Þ

where c is the speed of light. To locate the libration centers,
we set da=dt½ �PRþ da=dt½ �PR¼ 0 and find

sin�0 ¼ � ðGM�=aÞ1=2�ð1� �Þ
2jlcF 0ð�; e; e0; $;$0Þ

2þ 3e2ð Þ
1� e2ð Þ3=2

: ð24Þ

On resonance, �0 librates around �0, which is greater than �.
For the case of a planet on a circular orbit, the observable

effect on a dust cloud is a shift in the locations of the pericen-
ters of the orbits of the trapped particles. In the absence of
this effect, the libration centers first reach pericenter at an
angle �/k behind the planet. With this effect, the first peri-
center is located closer to the planet, at an angle
ð2�� �0Þ=k. This asymmetry concentrates the trapped dust
from Earth’s ring into a blob trailing Earth, sometimes
called Earth’s ‘‘ wake ’’ (Dermott et al. 1994; Reach et al.
1995).

Figure 6 shows an example of how cases I and III, as
illustrated in Figure 1, could appear when the perturber’s
gravity is weak compared to the drag force and the shifts in
the libration centers are substantial. Case I shows a wake
trailing the planet. For the terms illustrated in the second
and third columns of Figure 3, the shift in the libration cen-
ter appears as a displacement of the density enhancements.
The n : 1 resonance clumps will appear at $ ¼ K�þ
M0=2þ$0 þ ð�0 � �Þ=2; i.e., their longitudes shift by
ð�0 � �Þ=2. The first-order resonance clumps near low-mass
planets on moderately eccentric orbits (Case III) shift by
ð�0 � �Þ=k in the prograde direction.

This effect depends on the velocity of the dust [�(GM*/
a)1/2], on �, and on the mass of the planet; it is more pro-
nounced for small dust grains and low-mass planets close to
massive and luminous stars. It is negligible for patterns gen-
erated by more massive planets (cases II and IV), even if the
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planets are in 3 day orbits. Moreover, this effect does not
appear in simulations of Neptune’s ring (Liou & Zook
1999) since even Neptune has high mass (and low orbital
velocity) compared to Earth. The � Eridani ring seen by
JCMT (Holland et al. 1998) probably does not show this
effect either for the same reasons.

5. DISCUSSION

5.1. Observed Examples

Earth is the only planet in the solar system whose reso-
nant ring has been detected (Kuchner, Reach, & Brown
2000). This wake in this ring produces an asymmetry in the
thermal infrared background between the direction leading
Earth and the direction trailing Earth, which IRAS and
COBE/DIRBE detected (Reach 1991; Dermott et al. 1994;
Reach et al. 1995). Indeed, Earth’s ring is the only observed
resonant dust cloud structure—in the solar system or else-
where—identified with an independently observed planet!
However, models of Kuiper belt dust interacting with the
outer planets suggest that Neptune also creates a type I ring
with a characteristic hole at the location of the planet.

Images of nearby stars with debris disks supply further
examples of rings that point to undetected planets. Dust
clouds around Vega, � Pictoris, � Eridani, and Fomalhaut
have all been imaged at submillimeter wavelengths (Holland
et al. 1998, 2003; Greaves et al. 1998). The � Pictoris disk is
edge-on, making its resonant rings hard to distinguish, if it
has any. However, the other systems appear to contain
resonant rings that may be easier to classify:

1. Vega: the Vega debris disk may provide an example of
case IV. Submillimeter images of Vega (Wilner et al. 2002)
show two concentrations of emission that resemble those in
Figure 1; they are not colinear with the star, and one is
closer to the star than the other. Wilner et al. (2002) used
this model to estimate that the perturbing planet has mass
l � 10�3 and eccentricity e � 0:6 and used the locations of
the two knots of emission to infer the planet’s current
location.
2. � Eridani: case III may be a good model for the � Eri-

dani dust ring, which has roughly four major concentrations
of emission irregularly placed around the ring and an
apparent gap in the ring. As Figure 1 shows, the low-mass,
moderate-eccentricity planet model naturally explains the
presence of a few dust clumps of various concentrations.
Quillen & Thorndike (2002) have developed a numerical

model of type III for the � Eridani dust ring using the
numerical technique developed by Kuchner & Holman
(2001). They find that dust released just outside a planet
with eccentricity 0.3 and mass l ¼ 10�4 becomes trapped in
the 5 : 3 and the 3 : 2 MMRs with the planet and forms a
blobby eccentric ring like the one in Figure 1. The second
order 5 : 3 MMR may be relatively strong because the first-
order resonances suffer from the cancellation described in
x 3.4. Although dust trapped in these resonances probably
forms relatively narrow rings, the large beam of the JCMT
could easily blur such a narrow blobby ring into something
resembling the Holland et al. (1998) image, as Quillen &
Thorndike (2002) illustrate.
3. Fomalhaut: the A3 V star Fomalhaut has a circum-

stellar dust cloud, recently identified as a ring with an
azimuthal asymmetry representing �5% of the total flux
from the disk (Holland et al. 2003). This ring is difficult to
classify, since it is roughly 20	 from edge-on. Wyatt & Dent
(2002) suggest that the dust may be trapped in a 2 : 1 MMR
with a planet, and Holland et al. (2003) suggest that the dust
might be trapped in a 1 : 1 MMR with a planet. However,
the 1 : 1 MMRs are much harder to populate with dust than
the MMRs we consider here, and contrary to Ozernoy et al.
(2000), we consider it improbable that a single MMR, even
the 2 : 1, could dominate the appearance of a real dust cloud,
particularly one as collisional as Fomalhaut’s. More likely,
the structure in the Fomalhaut ring arises from collisions
(Wyatt & Dent 2002), or if resonant trapping is responsible
for the azimuthal structure, there is another clump to be
found, perhaps obscured by the limb brightening.

We know no observed examples of case II rings. How-
ever, the close-in extrasolar planets with periods less than
�30 days have nearly circular orbits, probably as a result of
tidal effects (Marcy & Butler 2000). Any dust disks associ-
ated with these planets could form examples of case II.

5.2. Other Considerations

We have only addressed the geometry of resonant dust
orbits. A variety of other phenomena may affect the appear-
ance of an actual debris disk. For example, we have not
discussed how the resonances are populated. Different reso-
nances may dominate when a disk is fed by a belt of
asteroids or comets whose orbits are restricted to a small
region of phase space.

Furthermore, many known dust disks are collisional. For
systems like the rings of Saturn, where each particle has a
collision roughly once per orbit, the collisions dominate the
resonant effects we catalog here, and a fluid description of
the particles becomes more appropriate. Collisions that
occur on intermediate timescales, however, may leave par-
ticles trammeled in the net of the underlying strong resonan-
ces, altering only the spectrum of populated MMRs. For
example, mutual collisions among dust grains may destroy
dust particles before they can access all the strong resonan-
ces; this effect would preserve the basic four structures
shown in Figure 1.

We have also neglected the terms in MMRs that depend
on the inclinations and restricted our analysis to planets
with moderate eccentricity. At high planet inclinations
(i2 � 1) and eccentricities (e2 � 1), many new terms in the
disturbing function become relevant. These effects can alter
the basic resonant geometries.

Fig. 6.—Cases I and III when the drag force is particularly strong and
the planet’s mass is small. Case I develops a ‘‘ wake ’’ trailing the planet.
The blobs in Case III shift in the prograde direction.
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Many planetary systems have more than one planet; we
have also only considered the effects of one planet. Since we
are only interested in high-contrast structures, we may jus-
tify this approach by saying that we only care about the first
massive planet to encounter the in-spiraling dust, that is,
massive enough to create a high-contrast structure by eject-
ingmost of the dust grains as they pass. For example, in sim-
ulations by Liou & Zook (1999), Neptune ejects most of the
in-spiraling Kuiper belt particles before they can encounter
any other planets; we are interested in analogous planets.
However, the secular evolution of a multiple-planet system
may affect how a planet interacts with a dust cloud, even if
little dust reaches most of the planets, and they do not carve
their own signatures.

Finally, we have tacitly assumed that the dust cloud is
observed face-on. Disks that are tilted from face-on may
show a variety of asymmetries due to effects other than reso-
nant trapping, such as the IRAS/DIRBE dust bands
(Hauser et al. 1984), secular warps (Augereau et al. 2001),
and limb brightening.

6. CONCLUSIONS

Four basic structures probably represent the range of
high-contrast resonant structures a planet with eccentricity
d0.6 can create in a disk of dust released on low-

eccentricity orbits: a ring with a gap at the location of the
planet, a smooth ring, a blobby eccentric ring, and an offset
ring plus a pair of clumps. Some of these structures have
slowly become revealed in numerical simulations of particu-
lar debris disks; we have chased them to their dens in the res-
onant landscape of the three-body problem. The crude key
we have assembled should help classify the debris disk struc-
tures seen by upcoming telescopes like SIRTF, SOFIA,
ALMA, JWST, andDarwin/TPF.

Observing one of these structures instantaneously should
allow us to categorize the planet as high or low mass (com-
pared to Jupiter orbiting the Sun) and low or moderate
eccentricity (compared to e0 � 0:2). In the case of a ring
with a gap or an offset ring plus a pair of clumps, the image
of the face-on cloud directly indicates the current location
of the planet and points to its longitude of perihelion. In the
case of a blobby eccentric ring, numerical modeling can
potentially reveal these parameters.
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