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Grains orbiting a star experience orbital decay due to Poyn-
ting—Robertson drag and can become trapped in commensurability
resonances with a planet. We examine conditions for trapping in
the circular restricted three-body problem, and derive criteria for
trapping in terms of the radiation pressure factor B8, planctary
mass, resonance location, and the grain’s orbital eccentricity.
These analytic criteria show good agreement with results of three-
body orbital integrations and more elaborate multiplanet simula-
tions by other researchers. We show that resonances under Poyn-
ting—Robertson drag are “metastable” because trapped grains inev-
itably acquire eccentricities large enough to cause their orbits to
cross that of the planet. © 1993 Academic Press, Inc.

[. INTRODUCTION

All objects orbiting the Sun are subject to gravitational
perturbations by the planets. Small bodies are also acted
upon by nongravitational forces. In the early solar system,
gas drag in the solar nebula was significant for planetesi-
mals up to at least kilometer size. At the present time,
radiation pressure and Poyating—Robertson drag affect
interplanetary dust particles of sizes' <1072 cm. It has
been known for some time that the combination of gravita-
tional and nongravitational forces can cause nonintuitive
dynamical behavior and produce orbital evolution qualita-
tively different from that due to either force acting alone.
For example, Greenberg (1978) examined effects of damp-
ing of eccentricity when a body was in a commensurability
resonance with a planet, and showed that the damping
resulted in a secular change in semimajor axis that pushed
the body’s orbit away from the planet. Weidenschilling
and Davis (1985) showed that when the resistive medium
itself also caused decay of the semimajor axis, then a
body could reach an orbit for which the drag and resonant
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perturbations were in equilibrium; the particle would be
trapped in a resonant orbit. They determined limits on size
(or gas drag force) that allowed such resonant trapping of
planetesimals in the solar nebula. This phenomenon has
recently been examined in more detail by Kary et al.
(1993).

Jackson and Zook (1989, 1992) discovered a similar
phenomenon of resonant trapping of small particles in the
present solar system. They numerically integrated orbits
of grains from asteroidal and cometary sources, subjected
to Poynting-Robertson drag. A typical dust orbit would
decay until it reached a commensurability resonance with
Earth or another terrestriat planet. The grain might then
pass through the resonance, or it could be trapped for a
period of time ranging from ~10? to more than 10° years.
While such resonances could be long-lived, they were
not permanent; eventually the grain would escape from
resonance and its orbit would resume its decay.

Resonant trapping by P-R drag has been studied by
other investigators. Marzari et af. (1991, 1993) and
Marzari and Vanzani (1993) integrated numerous orbits
perturbed by as many as five major planets, and developed
statistical criteria for trapping of grains of two sizes (15
and 30 wm) in various resonances with Earth. Scholil et
al. (1992) and Lazzaro et al, (1992) have studied the trap-
ping of particles in resonance with a hypothetical planet
in the Beta Pictoris disk suggest that resonant trapping
might keep the inner part of the disk relatively clear of
dust if a planet is present.

These previous investigations have been almost entirely
numerical, carried out by integration of huge numbers of
particle orbits. Most have involved multiple perturbing
planets, on eccentric, inclined orbits. While such cases
are more realistic representations of the behavior of dust
grains in the real solar system, they tend to obscure the
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basic physical mechanisms that are involved. The goal
of the present paper is to elucidate the phenomenon of
resonance trapping with P-R drag in the simplest case:
the circular restricted three-body problem. In particular,
we seek to answer the following questions: What deter-
mines whether a grain of a given size passes through a
given resonance, or is trapped there? How and why does
a trapped particle’s orbit evolve with time? Why are
P-R resonances only temporary, while gas-drag reso-
nances appear (o be stable? Our approach will be mainly
analytical, with specific examples from orbital integration
to illustrate and test our conclusions.

After this paper was submitted, we received a preprint
by Sicardy et al. (1993}, who have addressed some of these
same questions from a somewhat different perspective.
Their results and ours appear to be in good agreement.

II. P-R DRAG AND RESONANT PERTURBATIONS

A particle small enough to be affected by Poyn-
ting—Robertson drag is also subject to radiation pressure;
indeed, the two phenomena are inseparable, The ratio of
radiation pressure force to solar gravity, 8, is (Burns
et al. 1979)

3LoQu

B = TorGMocor n

where L, M are the solar luminosity and mass, G the
gravitational constant, ¢ the speed of light, and r, p are
the particle’s radius and density. The coefficient Q, de-
pends on the optical properties of the particle and its size
relative to the wavelength of light; a perfectly absorbing
particle much larger than the wavelength has Q, = 1.
For the examples presented in this paper, we assume that
B = 0.285/r, where r is in micrometers {corresponding to
p=2cm *and Q, = 1).

Wryatt and Whipple (1950} derived the rates at which a
body in a Keplerian orbit has its semimajor axis ¢ and
eccentricity ¢ decay due to P-R drag. Using Eq. (1), we
can express these in terms of 4:

da| _ ~GMoB (2 + 36% Q
dt |, ac (1 — &) )
[@] _ —GMB e 3
dt|,,  2d¢ (1 - )

These equations show that P-R drag always acts to de-
crease g and ¢, and that the rate of decay is proportional
to 8.

A particle is in resonance with a planet when the ratio
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of their mean motions is the ratio of two small integers.
More precisely, we define the resonance variable

o=+ DA —jr — @, (4)
where A is the mean longitude of the particle A, is the
mean longitude of the planet (assumed to be on a circular
orbit), and @ is the longitude of the particle’s perihelion.

The resonance number j is an integer. Then the rate of
change of ¢ is

d=(j+ Dn—jn— o, (3)
where n, ny are the mean motions of the particle and
planet. The geometrical meaning of ¢ is the angle from
the particle’s pericenter to the longitude of its conjunction
with the planet. Outside of resonance, ¢ circulates
through 360°, but in resonance ¢ librates about some mean
value; generally ¢ and & are small compared with » and
Hy SO WE can assume

2 ®)

for an exterior resonance (for an interior resonance, the
particle’s orbital period is shorter than the planet’s, and
ning = (j + Wit =jr —(j + DAy — ).

Radiation pressure effectively reduces the Sun’s at-
traction for the particle, so

GM(1 — 12
n= [—*Oiﬁ B)] , )
implying that in resonance
a i+ 1]’
—=(1-8" [_— ] . ®)
dy J

As B increases, the particle’s semimajor axis decreases.
Exterior resonances are shifted closer to the planet’s or-
bit, while interior resonances are farther from the planet
(closer to the Sun). This effect changes the strength of a
given resonance for different-sized particles.

We will consider explicitly only exterior resonances,
which are the only ones that can produce long-lived trap-

ping. The resonant perturbations are given by (Greenberg
1973)

d . .
[-&%I]RES = —(j + DaenuC;sin ¢ )]
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de| _ —pn_ .
[dt]m == C;sing, (10)

where u is the mass of the perturbing planet normalized
to M. C; is a Laplace coefficient that depends on the
resonance number j and on the ratio of semimajor axes
of the particle and planet. The values of C; can be calcu-
lated from the series expansion of the disturbing function
as described by Brouwer and Clemence {1961), using the
value of a/a, from Eq. (8). As mentioned above, the effect
of radiation pressure shifts the positions of the reso-
nances. Higher 8 means that exterior resonances are
closer to the planet and resonant perturbations stronger;
C; s thereby increased. For interior resonances, the reso-
nances are farther from the planet and correspondingly
weaker, and C; is smaller for a given j. Resonance posi-
tions (in units of the planet’s orbital radius ;) and Laplace
coefficients for different values of g8 are given in Table 1.
Note that for sufficiently large 8, some of the “exterior”
resonances are located at a < 1;i.e., a particle with semi-
major axis less than the planet’s can still have a smaller
mean motion. Our analysis loses its validity in that case.

ITII. CRITERIA FOR RESONANT TRAPPING

If we assume that a particle is trapped in resonance,
such that a is constant, then the orbital decay due to
P-R drag is balanced by resonant perturbations, i.e.,
ldaidtlpy + ldal/dtlz., = 0. From Egs. {2) and (9), this
implies

sin¢g =
—(GMgla)"? B ji 2 + 3eY)
we (1 _ ,G)ZB CJ(J + 1)41‘3 e(l _ 82)3/2

(11)

where we have assumed that the particle’s semimajor axis
is given by Eq. (8). [da/dt]pg is always negative, so in
order for the resonant torque to counteract PR drag,
sin ¢» must be negative. The geometrical definition of ¢
implies that for ¢ <0, conjunctions occur after the parti-
cle’s aphelion.

The maximum resonant torque occurs forsing = —1.
This corresponds to a value of 8 such that

B__ - pce G+ 1P el — &2
(1 — B*° ~(GMgla)'? (2 + 3eh)

(12)

Larger values of 8 (smaller particles) make P-R drag too
strong to be counteracted by the resonant torque. Like-
wise, for a given value of B, e must exceed a critical value
such that
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e(] _ 32)3/2>(GM®/GU)112 B jlfs
2+32 T pe  (1-RFCG+ DY

(13)

If terms of order ¢® are neglected, the minimum value of
e for trapping is

_ 2AGMplag)'?

€min =~

B J‘IB
pe (- PTCL+ D7

(14)

If terms through ¢ are retained, Eq. (13) can be expressed
as a quadratic and solved for e;,; the values are slightly
higher than given by (14), but the differences are signifi-
cant only for small j.

The requirement that ¢ be nonzero is implicit in Eq.
(9) where the resonant perturbation of g is proportional
to e. A physical explanation was given by Weidenschilling
and Davis (1985): If conjunction occurs after the grain’s
aphelion (sin ¢ <0), then the closest approach occurs
after conjunction. The grain lags slightly behind the
planet, so the planet’s gravitational pull has a component
in the forward direction. This impulse gives an increase
in the grain’s orbital energy, compensating for the energy
lost due to P-R drag between conjunctions.

From Eq. (14) we can see that for a given resonance,
a smaller grain (higher 8) needs a higher e to be trapped
(the dependence of C; on 8 is not sufficient to counteract
the factor /(1 — B)”3). Also, a less massive planet
{smaller u) has a higher threshold e,,, for trapping. These
resufts are consistent with the findings of Jackson and
Zook (1989) that particles with radii less than 60 um were
not trapped into resonance with Mars, while Earth and
Venus often trapped grains with r > 10 um. The factor
Cl+ 13 in the denominator implies that for a given
B, €., 18 less, and trapping easier, at higher values of j,
as found in the numerical study by Marzari et al. (1993).
Thus, a grain might pass through one or more resonances
before being trapped. One limit to this process is the fact
that for sufficiently large j (and 8), the grain’s perihelion
distance g(e;,) = af{l — ey;,) will be less than a,, allow-
ing close encounters with the planet before a stable reso-
nance is possible. The derivation of eg;, assumes
sin ¢ = —1 and therefore provides only a lower limit on
the required eccentricity; larger values of e allow a larger
range of ¢ that can sustain the resonance. These condi-
tions (e > e, ¢ > a) explain the finding of Marzari es
al. (1993) that the maximum probability of trapping into
a given resonance occurs for nearly tangent orbits, i.e.,
the highest values of e that do not allow close encounters
with the planet. In their simulations capture into reso-
nance is rare unless e is several times e,,,. This is probably
due to their choice of a substantial initial inclination of
10°, while Eq. (14) assumes that inclination is small. Table
IT gives values of e, and g(e;,) for 8 = 0.01 and 0.1,
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TABLE 1
Resonance Locations and Laplace Coefficients Exterior Resonances
B =0 B = 0.01 8 =0.1

J E c, E. Q Ay C

1 1.5874 0.857 1.5821 0.894 1.5326 1.253
2 1.3104 4.968 1.30609 5.029 1.2652 5.673
3 1.2114 6.567 1.2074 6.688 1.1696 8.048
4 1.1604 8.167 1.156% B.371 1.1204 10.773
S 1.1292 9.769 1.1255 10.075 1.0903 13,910
6 1.1082 11.372 1.1045 11.802 1.0700 17.541
7 1.0931 12.975 1.0895 13,550 1.0554 21.772
8 1.0817 14.578 1.0781 15.321 1.0444 26.748
9 1.0728 16.182 1.0692 17.113 1.0357 32.663
10 1.0656 17.785 1.0620 18,929 1.0288 39.799
11 1.0597 19.389 1.0562 20.767 1.0232 48.572
12 1.0548 20.992 1.0513 22.628 1.0184 59.634
13 1.0507 22.596 1.0471 24.512 1.0144 74.079
14 1.0471 24.200 1.0436 26.421 1.0109 93.914
15 1.0440 25.803 1.0405 28.353 1.0079 123.326
16 1.0412 27.407 1.0378 30.310 1.0053 172.923
17 1.0388 29.011 1.0354 32.291 1.0030 280.742
18 1.03867 30.615 1.0332 34.298 1.000%9 786.288

@ =3 x 1079 corresponding to an Earth-mass planet,
Note that for some combinations of j, 8, and w, capture
is impossible for any value of e (e.g.,j = 1,8 = 0.1 in
Table 1I).

One should note that e > e, is necessary, but not
sufficient, for capture into resonance. If sin ¢ > 0, then
the resonant perturbations will add to the P-R orbital
decay and drive the grain through the resonance.
Approach to, or passage through, a resonance will usually
change the grain’s orbital eccentricity, If e is initially
small, then da/dt is dominated by P-R drag (cf. Eq. (2)),

while de/dr is due to resonant perturbations (Eq. (10)).
Since (da/drf)pg varies only as 1/a, the time for a grain to
pass through successive resonances wiil be comparable.
From Eq. {(10) we can expect e to change by an amount
proportional to C; sin ¢ during each resonance passage.
Since C;increases with j, ¢ performs a random walk with
steps of increasing magnitude at each resonance. If e
exceeds e, and sin ¢ <0 at some resonance (before the
orbits cross and the grain has a close encounter with the
planet), the grain will be trapped there. This behavior is
seen in Fig. 1; where a grain with initial ¢ = 0 and a just
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TABLE I—Continued

g =0 g = 0.01 A =0.1

J P < a,., < Ay g,
18 .9646 30.615 .9614 27.473 .9313 11.422
17 .9626 29.011 .9594 26.188 .9294 11.373
16 .9604 27.407 .9572 24.887 .9273 11.295
15 L9579 25.803 .9547 23.571 .9248 11.183
14 .9551 24.200 .9519 22.238 .9221 11.036
13 .9518 22.596 .9486 20.888 .9150 10.848
12 .9480 20.992 .9449 19.522 .9153 10.61S
11 . 9436 19.389 .9405 18,139 .9111 10.332
10 .9384 17.785 .9353 16.739 .9061 9.995
9 .9322 16.1682 .9291 15.322 .9000 9.596
8 .9245 14.578 .9214 13.887 .8926 9.130
7 .9148 12.975 .9118 12.435 .8833 8.587
6 .9023 11.372 .8993 10.965 .8712 7.961
5 .B8SE 9.769 .BB26 9.477 .9550 7.240
4 .B618 8.167 .8589 7.971 .8320 6.414
3 .B255 6.567 .8227 6.448 .7970 5.470
2 .7631 4.968 . 7606 4,908 .7368 4.395
1 .6300 0.857 .6279 .820 . 6082 0.473

outside the 3/4 resonance passes through resonances with
J = 3 through 8 before being trapped in the (9/10) reso-
nance. This example and the others in this paper were
produced by numerical integration of orbits using the
Bulirsch-Stoer algorithm from Press ef al. (1986).

If a grain’s orbital eccentricity is sufficiently large be-
fore it approaches a resonance, then @ will not be changed
very much by the perturbations. The value of ¢ at the
time of resonance passage will then depend only on the
difference in the particles’ and planets’ mean longitudes.
In that case, the probability of trapping into a given reso-
nance should be roughly proportional to the range of ¢

that allows the resonant torque to counteract the P-R
drag; this probability should not exceed 0.5. However,
when e is small, @ can vary during resonance passage.
This variation will change the value of ¢ and affect the
trapping probability; its dependence on e, 8, j, and u
remains to be explored.

V. EVOLUTION WHILE IN RESONANCE

Numerical integrations of rescnant orbits show that
after a particle is trapped, a is essentially constant while
e Increases with time, If we take the “equilibrium” value
of sin ¢ from Eq. (11) and substitute it into Eq. (10),



RESONANCES AND POYNTING-ROBERTSON DRAG

249

For given values of £ and j, the term outside the brackets
is constant; call this A. After some manipulation and elimi-
nation of terms higher than €%, we have

2e@=d("2)=2A[ 2 (16)

_ 2
dr - di G+ Se}'

TABLE II
Minimum Eccentricities for Capture into Resonance (u = 3 x 1079)
g =o0.01 A= 0.1

] Ay €t Famin - By s Qoin

1 1.5821 .3506 1.027 1.5326 1.0000 0.000
2 1.3060 .0387 1.255 1.2652 .5032 0.628
3 1.2074 .0227 1.180 1.1696 .2144 0.919
4 1.1565 .0148 1.139 1.1204 .1253 0.980
5 1.1255 .0104 1.114 1.0903 . 0809 1.002
6 1.1045 .0077 1.096 1.0700 .0552 1.011
7 1.0895 .0059 1.083 1.0554 .0391 1.014
8 1.0781 .0046 1.073 1.0444 .0284 1.015
9 1.0692 .0038 1.065 1.0357 .0210 1.014
10 1.0620 .0031 1.059 1.0288 .0187 1.013
11 1.0562 .0026 1.053 1.0232 .0118 1.011
12 1.0513 .0022 1.049 1.0184 .0089 1.009
13 1.0471 .0019 1.045 1.0144 .0067 1.008
14 1.0436 .0016 1.042 1.0109 .0049 1.006
15 1.0405 .0014 1.039 1.0079 .0035 1.004
16 1.0378 .0013 1.036 1.0053 .0024 1.003
17 1.0354 .0011 1.034 1.0030 .0014 1.002
18 1.0332 .0010 1.032 1.0009 . 0008 1.000

de GMg B joye Neglecting the ¢? term, Eq. (16) implies e « 7'/, as found
dar 2akc (1 — B (j + 1) (15) by Sicardy et a_l. (1993). However, retaining the ¢? term
yields the solution
(2 + 3eH Se
[(J + De(l — 62)3/2 B (1 — 82)11‘2}‘

oty = {5y 0 - expl- D}, (7

where £, is the time at which trapping occurs. The time
constant 7 is equal to 1/104. For the parameters used to
produce Fig. 1, 7 = 6200 years. Equation (17) predicts
e = 0.077 at t — 1, = 10° years, in excellent agreement
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FIG. 1. Semimajor axis, eccentricity, and resonance angle for a 10-
um-diameter (8 = 0.057) particle started in a circular orbit at 1.2 AU
with i = (°. The particle passes through resonances j = 3 through 8
(labeled on the e vs ¢ plot), each causing a step in e. It is trapped in the
9/10 resonance for about 3000 years yntil a close encounter with the
planet removes it from resonance.

6000

with the actual value. Equation (17) also predicts that e
approaches a limiting value as ¢ becomes large:

2 112
emax = [S(j + 1)] -

The maximum eccentricity depends only on the reso-
nance number j, and is independent of 8 or g, This behav-

(18)
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ior is similar to that found by Weidenschilling and Davis
(1985) for resonances in the solar nebula with gas drag,
where the maximum eccentricity depended only onj and
the nebular structure. However, there is one important
difference. Gas drag is more effective in damping eccen-
tricity than is P-R drag. For plausible nebular models, the
maximum c¢ccentricity attained in resonances with gas
was significantly lower, so that the orbit of the planetesi-
mal never crossed that of the planet. For P-R drag, e_,,
is always large enough for the orbits to cross. Table III
shows the minimum perihelion distance q,;, = a(l —
€max) fOr a 20-um particle (8 = 0.0285). While e, is
independent of 8, a decreases for larger 8, so smaller
particles would have even smaller perihelia. Note that the
perihelia in Table III fall within a narrow range for all
values of j, even though their aphelia are spread over a
much wider range.

There are some caveats to our analysis. The values of
€max are large enough so that our neglect of terms higher
than ¢* may not always be valid. Also, our assumption
that while in resonance ¢ is an “equilibrium™ value given
by Eq. (11) is not strictly correct. In fact, ¢ can librate
about this value, sometimes with quite large amplitude.
The oscillations in ¢ are primarily due to changes in the
mean motion as a librates about the exact resonance,
There is also a secular decrease in the mean magnitude
of sin ¢ as e increases, as implied by Eq. (11). The large
e’s and librations of ¢ tend to destabilize the resonances.
In most cases, the grain is eventually removed from reso-
nance by a close encounter with the planet after e grows
large enough to allow the orbits to cross. More rarely,
the libration amplitude simply increases until ¢ circulates,
and the particle leaves the resonance. Figure 2 shows an
example of a marginally stable resonance with a large
libration amplitude. The grain is caught in the j = 8 reso-
nance for about 1500 years, with ¢ varying over a range
of 120°. The libration in ¢ is accompanied by oscillations
in a and e. The particle’s orbit becomes planet-crossing
about 500 years after entering the resonance, but it avoids
close approaches for another 1000 years. Eventually the
increasing e and librations of ¢ allow a close encounter,
which removes it from resonance and decreases a. Then
the particle is briefly trapped in the j = 10 interior reso-
nance. Here ¢ librates around =330°, meaning that
conjunctions occur before the particle’s perihelion. The
planets’ perturbations add angular momentum, giving
daldt > 0, but de/de < 0, and ¢ quickly falls below the
value needed to maintain a constant semimajor axis. For
this reason, interior resonances tend to be short-lived,

Figure 3 shows a 20-um particle in an unusually long-
lived resonance. Fortuitously, the particle enters the j =
8 resonance with ¢ very close to the equilibrium value,
and a small libration amplitude. However, the libration
amplitude slowly increases with time, and continues to
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TABLE III
Maximum Eccentricity and Corresponding Perihelion and Aphelion

1 A, * S (B} Qe
1 1.572 0.447 0.869 2.275
2 1.298 0.365 0.824 1.772
3 1.200 0.316 0.820 1.579
4 1.149 0.283 0.824 1.474
5 1.118 0.258 0.830 1.406
6 1.098 0.239 0.835 1.360
7 1.083 0.224 0.841 1.326
8 1.071 0.211 0.845 1.297
9 1.062 0.200 0.850 1.274
10 1.055 0.191 0.854 1.257
11 1.050 0.183 0.858 1,242
12 1.045 0.175 0.861 1.228

*Regcnance peosition corresponds to B

do so after e reaches a constant value. After more than
10° years in resonance, the particle is removed from reso-
nance by a close encounter with the planet.

V. CONTRAST WITH GAS DRAG

Poynting-Robertson resonances appear to be “metasta-
ble;” our orbital integrations yielded no example of a
permanently stable resonance. While this does not prove
that stable orbits do not exist, we suspect that they do
not. Even in the circular restricted three-body problem,
any stable resonant orbits must compose a statistically
insignificant fraction of orbital parameter space. In the
real solar system with a plurality of perturbing planets,
stable resonant orbits are even less plausible. This insta-
bility is due to the relatively ineffective eccentricity damp-
ing by P-R drag, which inevitably leads to crossing orbits.
In contrast, resonant orbits under the influence of gas
drag are gencrally stable. The greater damping by gas
leads to e, =~ [(AV/VI(j + DI1YZ, where (AV/Vy) is
the fractional deviation of the gas from Keplerian rotation
(Weidenschilling and Davis 1985). Since plausible models

0.0285, particle diameter 20 pm.

of the solar nebula have (AV/Vy) <1072 this gives €max
about an order of magnitude lower than that given by Eq.
(18). Because of the low e, (and the fact that resonances
are not shifted radially as they are by radiation pressure),
resonant orbits with gas drag never cross the orbit of the
planet.

The resonant perturbations increase in strength with j
as shown by the factor (j + I)C; in Eq. (9). In the gas
drag case, this implied that any drag force, however
strong, could be balanced in principle by some resonance
with j sufficiently large. The actual upper limit to the drag
(or lower limit to the size of a planetesimal) that allowed
trapping was set by the onset of resonance overlap at
7= 050" (Wisdom 1980). For Earth (u = 3 x 1079,
Jmax = 18. For P-R drag, the maximum value of j is limited
by radiation pressure. As 8 is increased, the resonance
locations are shifted inward, so that resonances with j
above some value are located inside the planet’s orbit.
Setting ¢ = g, in Eq. (8) we find

(1 _ 8)11‘2
1 _(1 _ B)UZ'

Jmax =

(19)
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An example of an unusually long-lived resonance. The 20-
was started at 1.5 AU with initial e = 0.02, i = 1°. The

libration amplitude of ¢ is initially small, but grows slowly, removing
the grain from resonance after more than 10° years. During this time,
@ circulates slowly with period of about 25,000 years.
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For 8 = 0.1, j,,,= 18 (independent of w). However, in
most cases of interest, resonant capture is limited not by
resonance overlap or resonance shifting, but by close
approaches to the planet.

Another apparent difference is the existence of a defi-
nite threshold e, for capture into resonance in the P-R
case {cf. Eq. (14)). In the gas drag case, Weidenschilling
and Davis (1985) and Kary et al. (1993) found that a plane-
tesimal with ¢ = 0 approaching a resonance was invari-
ably captured, unless the drag parameter exceeded a criti-
cal value that did not depend on ¢. In fact, since the
resonant perturbation of semimajor axis is the same for
gas drag and P-R drag (cf. Eq. (9)), there must be some
finite eccentricity for trapping to occur in either case.
However, e, is generally much lower for the gas drag
case; one can show that when the drag parameter is the
maximum value that allows trapping, ey, = 2(AV/V )/
(i + D, This value is small enough that in all of the
examples given by Weidenschilling and Davis (1985), the
approach to a given resonance was sufficient to increase
e and allow trapping at that resonance. In the P-R case,
enmin < B (Eq. (14)), so we can expect that sufficiently farge
particles (with small 3) could be captured into resonance
from initially circular orbits. However, the orbital evolu-
tion of such ohjects under P-R drag will be very stow,
and in the real solar system, gravitational perturbations
would control their evolution.

V. DISCUSSION

We have shown that the possibility of trapping a grain
into resonance with a planet depends on the combination
of parameters B, u, j, and e. These set necessary condi-
tions for trapping. It is also required that the relative
positions of grain and planet yield the appropriate sign of
the resonance angle ¢ at the time of resonance passage;
this condition introduces a stochastic element into the
capture process. In general, the peak eccentricity e,
and sometimes the threshold value e, are large enough
s0 that crossing orbits and close approaches {o the planet
can inhibit capture and aid escape from resonance.

The numerical examples presented here are based on
the parameters of the Sun-Earth system. However, our
analysis applies equally to other systems, such as Beta
Pictoris. This A-type star has a higher ratio of luminosity
to mass, so a given 8 corresponds to particles a few times
larger. The metastable character of the resonances and
their limited lifetime means that a planet is not a very
effective barrier to P-R decay of orbiting dust particles.
This conclusion is robust, because e, is independent of
the mass of any planet in the Beta Pictoris system. Orbital
lifetimes of individual particles will be extended, but the
long-term mean radial mass flux will not be affected sig-
nificantly by resonances alone. At best, resonances can

253

cause an increased concentration of dust near a planet’s
orbit (and extending slightly inside it), but will not produce
a clear “hole” in the inner part of a dust disk. Other
processes acting in concert with resonances may act to
produce such clearing, e.g., collisional destruction of
grains while they are trapped in eccentric resonant orbits,
combined with expulsion of fragments by radiation pres-
sure. The effectiveness of such a process will depend on
many factors, such as the size distribution of grains, their
impact strength, and the density of the swarm, and will
require more elaborate simulations than this analysis.
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Note added in proof. Rogues et al. (1993) have identified another
loss mechanism for grains. A trapped grain is usually removed from
resonance by a close encounter with the planet. If the velocity perturba-
tion due to that encounter is large enough, the grain may be placed into
a hyperbolic orbit or a short-lived orbit with small periastron distance.
Their simulations produced substantial clearing inside the orbit of a
hypothetical planet of 5Mg located 20 AU from Beta Pictoris. The
probability of a large orbital deflection in an encounter depends on the
planet’s mass and orbital radius, or more precisely its escape velocity
and orbital velocity (Weidenschilling 1975). A terrestrial-type planet
deep within a star's gravitational well is not effective at ejecting grains
from the system, and thus our simulations did not show this behavior.
A massive planet in a larger orbit can be an effective barrier and clear
a hole in a dust disk. I thank B. Sicardy and H. Schell for discussions
on this point,
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