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Abstract. We review here some relevant problems connected to the evolution of circumstellar dust 
grains, subjected to Poynting-Robertson (PR) drag, and perturbed by first-order resonances with a 
planet on a circular orbit. We show that only outer mean motion resonances are able to counteract 
the damping effect of PR drag. However, the high orbital eccentricities reached by the particle lead 
to orbit crossings with the planet. This is a serious difficulty for a permanent trapping to be achieved. 
In any case, we show that the time spent in the resonance is long enough for statistical effects 
(accumulation at the resonant radius) to be significant. We underline some difficulties associated with 
this problem, namely, the non-adiabaticity of motion in the resonance phase space and the existence 
of close encounters with the planet at high eccentricities. 
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1. Introduction 

Dissipative effects, when combined to resonance phenomena, may lead to complex 
and often counter-intuitive, dynamical behaviours. One of the first examples of 
this kind was given by the locking of natural satellites in mean motion resonances 
through the slow and irreversible tidal evolution (Goldreich, 1964, and see the 
review by Peale, 1986). Tidal effects can then account for most of the orbit-orbit 
and spin-orbit resonances now observed among planets and satellites. 

Another field of interest is the influence of gas drag on planetesimal orbits in 
the primordial solar system. Such a drag, when combined to the perturbations of a 
jovian planet, can cause some trapping and eccentricity pumping of the planetesimal 
orbits near resonance radii (Greenberg, 1978, Weidenschilling and Davis, 1985, 
Patterson, 1987). 

Planetary rings also exhibit resonance-dissipation coupling phenomena. It is 
now widely accepted that inelastic collisions, combined to collective effects and 
resonant perturbations from satellites, can lead to sharp edges in rings, confining of 
ringlets, opening of gaps, etc... (see the reviews by Goldreich and Tremaine, 1982, 
Borderies, Goldreich and Tremaine, 1984, Meyer-Vemet and Sicardy, 1987). 
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In this paper, we will review a new kind of dissipative process, acting together 
with the resonant perturbation of a planet. Namely, we investigate the effect of 
Poynting-Robertson (PR) drag on particles orbiting the Sun (or another star), while 
they enter the region of influence of a mean-motion resonance with the planet, 
in the course of their slow orbital decay towards the central body. Because the 
radiation forces responsible for the PR drag essentially act on particles with radius 
comparable to the wavelength (see section 2), dynamical effects will be mainly 
noticeable for #m-sized dust particles. 

In contrast with the previous studies quoted above, PR drag vs. resonance 
dynamics is a relatively new subject and the full implications of the interplay 
between these two effects is far from being fully analyzed. Consequently, the aim 
of this paper is to present some review of what has been done to our knowledge on 
that topic, but also to underline some of the difficulties of the problem and possible 
future directions of investigation. 

Pioneering work in this field has been achieved by Gonczi, Froeschl6 and 
Froeschl6 (1982), and by Jackson and Zook (1989). The former authors studied the 
passage of dust grains through the inner 2:1 mean motion resonance with Jupiter and 
pointed out that this passage may cause large variations in the particle osculating 
elements. The latter showed that particles may be trapped in outer resonances 
with the Earth. Jackson and Zook (1992) analyzed the orbital evolution of dust 
particles originating from comets or asteroids, while Dermott et al. (1992) reviewed 
the effects of planetary perturbations on the zodiacal dust cloud. Also, Scholl, 
Roques and Sicardy (1992) examined the collective response of a circumstellar 
disk perturbed by Earth-like or jovian planets showing that the global morphology 
of the disk may be strongly affected by resonance effects, with potential applications 
to the structure of the fl-Pictoris circumstellar dust disk. 

Without being exhaustive here, we may think of several situations of interest, 
where PR drag and resonances have significant dynamical consequences. First, we 
must note here that PR drag is a quite "unavoidable" effect, since it appears as 
soon as photons hit a small particle. This contrasts with gas drag, which pertains 
to the primordial (and thus largely unknown) solar system. Actually, PR drag is an 
on-going process, effective at any time around any star. Among the possible fields 
of investigation, we may quote: 

- The evolution of dust in the solar system: 
• Zodiacal dust bands in the asteroid belt. 

• Cometary dust. 
• rings around planets. 

- Cosmogonic implications of resonance trapping: 
• Confining or clearing of dusty material in the early solar system. 
• Comparison with other confining or clearing mechanisms. 

- On-going processes around other stars: 
• Effect of a hypothetical planet on a circumstellar disk subjected to PR drag. 
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• Inverse problem: derivation of a planet mass and orbital elements from its 
effects on a circumstellar disk. 

Although the PR drag problem bears some resemblance with the topics described 
at the beginning of this Section, it allows, nevertheless, the particle to reach very 
high orbital eccentricities, with correlated difficulties, like the crossing of  the planet 
orbit and the non validity of the usual expansions of the disturbing potential. 

We will mainly deal in this paper about orders of magnitude and also about 
some relevant mechanisms, even though the formalism we use is not necessarily 
valid for high eccentricities. We will restrict ourselves to the simplest case, i.e. a 
test particle orbiting a star and perturbed by a planet with circular orbit, with no 
mutual inclination (planar circular restricted problem), in the presence of PR drag. 
We will be concerned more precisely with the following points: 
- Derive some order of magnitude results on the PR drag itself. 
- Present a simple dynamical formulation which describes both the effect of  the 

resonance and that of  the PR drag. 
- Look in this frame for the existence of periodic orbits, deriving some con- 

straints on the planet mass. 
- Discuss the difficulties inherent to PR drag (high eccentricities, orbit crossing, 

no adiabaticity of the motion). 
- Discuss some future directions of investigation. 

2. O r d e r  o f  M a g n i t u d e  C o n s i d e r a t i o n s  

We give here some figures which will be useful in the rest of  the paper. Most of  
them come from the seminal paper of Bums, Lamy and Soter (1979, thereafter 
referred to as BLS) on radiation forces in the solar system. 

The radiation force acting on a particle is: 

(1)  

where/3 = SAsQRp/cFg is the (constant) ratio of the force SAsQRp/c due to the 
pressure of radiation, and the gravitational force F a due to the central star. Here, S 
is the stellar flux at the particle, As is the geometrical cross section of the latter, c is 
the speed of light, QRP is the radiation pressure efficiency, v and ÷ are the total and 
radial velocities of the particle, and S is the unit vector of the incident radiation. The 
radiation force may be split into a main radial component,/3Fg,~ (the "pressure of 
radiation"), and a velocity dependent component (the "Poynting-Robertson drag"). 

The net effect of the radiation pressure component/3Fg S is to replace the central 
star of  mass M. by an "apparent" mass M':  

M "  --  (1 - (2)  

Numerical calculations (BLS) show that/3 ~ 5.7 × IO-7QRp/ps for a spherical 
particle orbiting the Sun, where the radius ~ and the density p are expressed in cgs 
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units. For typical m ateri als of  density p = 3 g cm-3 and in the frame of geometrical 
optics (QRp= 1, a reasonable assumption at this stage), one gets: 

0.2 
/3 ~ , (3) 

S/zra 

where Sum is the radius expressed in pm. For a star of  luminosity L, and with a 
spectrum comparable to that of  the Sun, one would get/3 ~ (0.2/s~,m) x (L/L®), 
where L® is the Sun luminosity. 

An important consequence of Eq. (2) is that the mean motion, and thus file 
corresponding resonant semi-major axis of  a particle, are changed by the radiation 
pressure term. This is far from being negligible, since/3 is a substantial fraction of 
unity for #m-sized particles. 

The average decay rates of semi-major axis a and eccentricity e due to PR drag 
are (BLS): 

< a/a > =  - ~  (l_eZ)3/2 

5~7 1 
< e / e  > =  --~--~a -(1_p)1/2 , 

(4) 

where ~ = / 3 G M . / c .  It is worth emphasizing that when we consider only the part 
of  the drag proportional to v in Eq. (1), the results are different. The term < i~/a > 
is affected by O(e 2) and the numerical coefficient of  < ~/e > becomes 2 (instead 
of 2)" In this review the drag proportional to ÷ is also considered since the effects 
of  the two terms of the Poynting-Robertson drag cannot be physically separated. 
For almost circular orbits (e << 1), one gets: 

< 8/a > =  -4C/5 

< e/e >=  - C ,  
(5) 

where the the damping coefficient C is given by C = 5r//2a z. The characteristic 
decay time around the Sun is thus: 

1 ~ 3200R2us~,,~ tdecay ~ --~ years, (6) 

where RAU is the orbital radius in astronomical radius. This time must be multiplied 
by L®/L for another star of  mass comparable to that of  the Sun. Note that the 
decay time is short compared to stellar, or planetary, ages for typical R of a few 
astronomical units. Only for particles of a few mm in radius, located beyond 
Uranus's orbit, is the decay time comparable to the age of the solar system. 
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Another quantity of  interest is the "fractional loss" per orbit, i.e. the dimension- 
less ratio of  C to the mean motion n of  the particle: 

C 5 x 10 -5 

n Sum Rx/-R~' (7) 

for a circumsolar grain. Thus, the relative damping of eccentricity during one 
revolution is small compared to unity. This contrasts with other problems like 
collisions in a dense ring, or gas drag in the early solar system, where the damping 
per orbit may be a substantial fraction of unity. This smallness allows typical 
dust particles to get quite high orbital eccentricities, with the associated problems 
discussed in Section 5. 

3. Dynamical Model of PR Drag-Resonance Interaction 

In order to simplify as much as possible our problem, we will consider here a 
massless particle orbiting a star of  mass Mr., perturbed by a planet of  mass Mp 
with circular orbit, near a first order resonance m : m +  1, i.e. ( m +  1)np -mn  ~ O, 
where n (resp. np) is the particle (resp. the planet) mean motion. Furthermore, all 
the orbits are coplanar. Close to the resonance, the dynamics of the motion is 
governed by the terms in the planet perturbing potential which are slowly varying 
with time (averaging principle). 

The analysis in this Section and the following is based on the work of  Greenberg 
(1978). However, we extend his study by taking into account the variation of the 
semi-major axis a associated to the variation of the eccentricity e (while Greenberg 
assumed that the semi-major axis is fixed during the trapping in the resonance). 
The simultaneous variation of a and e is actually required by the conservation of 
the Jacobi constant. This results in a dependence of the particle mean motion on 
the eccentricity (see Eq. (15)), and allows one to obtain the phase space diagrams 
shown in Figs. 3 and 4. We assume here that the orbital eccentricity of the particle 
is small, which allows us to keep only the term to first order in eccentricity in 
the perturbing potential, (/)p, due to the planet (see, e.g., Brouwer and Clemence, 
1961): 

~Pp = a2n2 eeA.cos(VL ), (8) 

where a0 and no are the reference values of the semi-major axis and mean motion 
of the particle at the resonance, e is the (small) ratio e = _/llp/M., WL is the critical 
argument of  the (Lindblad) resonance, and A is a dimensionless coefficient which 

t,(m). depend on the Laplace coefficients v 1/2. 

2 '/t'('~+~ ) ~ 
1~h('~+1) c~ 1/2 

A = ~- (To, -1- i ] ~ l / 2  + da (9) 
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Fig. 1. The geometrical interpretation of the Lindblad resonance critical argument. The 
orbit of the particle P around the star S is plotted is the frame rotating with the planet PI. 
This motion corresponds to the 5:4 outer Lindblad resonance (m = -5 ,  see the text). 

where c~ = a/ap is the ratio of  the particle semi-major axis to that of the planet. 
For numerical purposes, one can note that A is of  order m. For large values of  m, 
A/m tends to 0.802... 

The critical argument WL is given by: 

q ' c  = ( m  + 1) p - - (10) 

where ,~ is the mean longitude, ~ is the longitude of  periapsis of  the particle and 
the subscript p refers to the planet. 

The term proportional to ee.cos(WL), in Eq. (8), couples the elements of  the 
particle orbit to the gravitational influence of  the planet. The angle WL can be 
interpreted as the orbital phase lag of  the particle as observed from the planet (Fig. 
1). This lag allows the planet to exchange energy and angular momentum with the 
particle and, in particular, to pump up the eccentricity of  the latter (Sicardy, 1991). 

If the planet orbit is elliptic, another term, proportional to the planet orbital 
eccentricity ep, will appear in the perturbing potential Op. This term contains a 
new critical argument Wc = (m + 1 )~p - m~ - ~p, corresponding to a corotation 
resonance (see the discussion by Sicardy, 1991, for the geometrical and physical 
interpretation of  Lindblad vs. corotation resonances). This more complete approach 
is followed by Beaug6 and Ferraz-Mello (1992) who take into account the planet 
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orbital eccentricity and, in the case of PR drag, use an asymmetric expansion of the 
perturbing potential valid for very high eccentricities (see Ferraz-Mello and Sato, 
1989). 

It is convenient to define the eccentricity (h, k) vector as: 

h = e.cO~WL ) 

k = e .s in(WL),  
(11) 

and the "distance", in mean motion, to the exact resonance by: 

An = (m + 1)np - ran. (12) 

The classical techniques of perturbation theory then yields: 

]z = - A n . k  

k = A n . h  + c a n ,  

(13) 

where the dots stand for time derivatives. 
It is important to note that hereafter the quantities A and n are considered 

as constant. They actually represent the values around which the equations are 
expanded. 

From the above system, one can derive de2/d t  = 2eAnk .  From a physical point 
of  view, this stems from the exchange of angular momentum between the planet 
and the particle, at a rate which is proportional to k = e . s in (WL) .  In other words, 
the torque applied to the particle orbit is proportional to the distortion e of the orbit, 
and to the sine of the phase lag tPL (Fig. 1). 

Energy is also exchanged between the two bodies, so that An varies at a rate: 

A n  = - 3 m 2 n 2 ~ A k .  (14) 

This ensures that the quantity: 

J = 3m2ne  2 + 2An (15) 

is conserved. Actually, J is nothing but the expansion in e 2 and An of the Jacobi 
constant, or more precisely, the Jacobi constant averaged over one sidereal period. 
From J = c~te, one can derive: 

de 2 
h = - r a a  d-T" (16) 

This shows in particular that for a particle orbiting outside the planet orbit (outer 
Lindblad resonance, ra < 0), h and de2/d t  have the same sign. Thus, if a particle 
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gains energy, its eccentricity is also increased. The opposite is true for inner Lind- 
blad resonances. This has an important consequence when dissipative processes 
are included: a particle at an outer Lindblad resonance will receive energy from 
the planet, thus increasing its eccentricity, which can compensate in principle for 
the damping effect of  dissipation. At an inner Lindblad resonance, the planet will 
act to decrease the particle orbital eccentricity as it provides energy, so that no 
equilibrium is a priori possible. This is a particular case of a more general phe- 
nomenon, which tends to push the particle away from the planet orbit as soon as 
some collective or irreversible effects are introduced in the system (the so-called 
"shepherding mechanism", see the reviews by Goldreich and Tremaine, 1982, and 
Meyer-Vemet and Sicardy, 1987). 

The secular effect of  gas drag can be derived from Eqs. (5), assuming again small 
eccentricity for the particle. The complete set of  equations (PR drag + resonance) 
then reads: 

h =  - A n . k  - Ch 

k = A n . h +  e A n -  Ck.  

(17) 

4. Evolution of the Particle in the Resonance 

4.1. STATIONARY ORBITS 

One may ask whether the system (17) has fixed points, corresponding to stationary 
orbits. By setting all the time derivatives to zero, one can easily show that there are 
actually two fixed points: 

hy = - e A n  cz-~a2n 

ky = eAn-~+aZn, 

where An has the two opposite values defined by: 

A2n = - [ 5 m n 2 A 2 c  2 + C 2 ] .  

08) 

(19) 

Since A2n ~ 0, we retrieve the necessary condition that m should be negative, 
i.e. the particle should be in an outer Lindblad resonance for a fixed point to exist. 
Assuming from now on that ra _< 0, we get the final expressions for hy and ky: 

h] = 

ky = 
51-~1 

(20) 
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where the sign + (resp. - )  applies to An positive (resp. negative). This shows that 

the fixed points correspond to a "universal eccentricity" ef = .x//-~/+ k~, which is 
independent of the damping coefficient C: 

2 

= 51ml" 
(21) 

A more exact calculation following what was done by Beaug6 and Ferraz-Mello 
(1992) shows that the universal eccentricity is given by the root of the equation 
[ml(1 - e2) 3/2 - (Iml - 1)(1 + 1.5e 2) = 0, Actually, one can see that Eq. (21) is 
a good approximation of the root of the latter equation. For Iml=2 and [ml= 3, one 
gets el= 0.45 and 0.36 respectively, while the exact equation yields 0.48 and 0.37, 
respectively. For large [ml, the exact equation gives ef ~ 1 / ~ ,  close to the 
result of Eq. (21). The critical angles corresponding to each of the fixed points are: 

egLf = atan (---~n) ' WLy = atan (---~n) + Tr' (22) 

for An positive and negative, respectively, where the argument atan is always 
taken between -7r/2 and 7r/2. 

The independence of the eccentricity ef with respect to dissipation may appear 
puzzling a priori. Physically, it comes from the fact that when C increases, the 
critical argument WL] gets closer to -7r/2, i.e. farther away from the symmetry 
values 0 or 7r, so that more energy may be exchanged between the planet and 
the particle, everything equal besides. Thus, although more energy is dissipated 
through PR drag, the eccentricity corresponding to the fixed point may remain the 
s a m e .  

4 .2 .  STABILITY OF THE FIXED POINTS 

The linear stability of the fixed points is determined by the eigenfrequencies A's 
of the system (17) near hf, kf and Any. The characteristic equation of the system 
(17) reads: 

(A q- 2C)(A 2 q- 3mnAnf /2)  = - ( fAn/ey) 2 A. (23) 

For Any < 0, the left-hand side of the equation is a third degree polynomial in A 
with only one, negative, real root ( -2C).  The right hand side is a linear function of 
A, with negative slope. Thus, the real roots of the complete Eq. (23) are bracketed 
by - 2 C  and 0. Since the sum of the three roots of Eq. (23) is - 2C ,  this requires 
that all the real parts of the roots are negative, which ensures the linear stability of 
the corresponding fixed point. On the contrary, ifAnf > 0, the left hand side has a 
positive real root and has a negative value at A = 0. This shows that Eq. (23) has 
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at least one positive root and, thus, that the corresponding fixed point is linearly 
unstable. 

One can note from Eqs. (22) that the solution corresponding to Any <_ 0 has 
WLI closer to 7r (apocentric librator), and the solution corresponding to Any >__ 0 
has WLy closer to zero (pericentric librator). Thus, the apocentric librating resonant 
orbit is linearly stable, while the pericentric one is unstable. The value of WLI closer 
to 7r provides a "protection mechanism", in which the conjunction of the planet 
and the particle tend to occur when the two bodies are farthest away (see Fig. 1). 
This result is known in the conservative case and appears to be valid also in the 
presence of PR drag. 

4.3. MINIMUM PLANETARY MASS FOR STATIONARY ORBITS 

A consequence of Eqs. (22) is that the critical argument corresponding to the stable 
stationary orbits tends to 7r for vanishing C, and tends to -7r /2  for increasing C. 
This is a classical result of forced oscillators in the presence of damping: while 
they are in phase with the forcing term in the conservative case, they tend to be in 
quadrature for high dissipation. This is because more and more energy has to be 
provided by the perturber. 

Beyond a certain value of C, however, the condition (19) cannot be achieved 
any more. Then, the planet is unable to provide enough energy to the particle 
through the Lindblad resonance, even though ~PLy = -7r/2.  The condition for 
(19) being possible is thus: 

c j2  
(24) 

Numerical applications for a star of  luminosity L yields: 

3.2 x 10 -5 1 1 L 
e >,,~ (25) 

- Iml3/2 s.m ~ L®" 

It is interesting to note that this order of magnitude calculation provides mini- 
mum masses which lie in the range of typical planetary masses, for #m-sized par- 
titles at a few or several astronomical units from the star (recall that c ,~ 3 x 10 -6 
for the Earth, ~ 5 x 10 -5 for Uranus and Neptune and ,,~ 10 -3 for Jupiter). 

5. Limitations and Difficulties 

5.1. HIGH ECCENTRICITIES 

A first limitation of our approach is that the eccentricity corresponding to the 

orbit, 5~@1' is not small compared to unity for small values of I q. stationary 

However, we have seen that the order of magnitude of the universal eccentricity 
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derived with our approach was the same as that derived following Beaug6 and 
Ferraz-Mello (1992), once second order terms in eccentricity are taken into account 
in the perturbing potential. 

At that point, a second difficulty arises, because such a high eccentricity will 
cause the particle to cross the planet orbit. The distance in semi-major axis between 
the two bodies is of order 2a/3]m l, so that orbit crossing will occur for aef >_ 
2a/3lra[, i.e. Ira] ___~ 8/9. In other words, all the outer Lindblad resonances 
yield stationary orbits which cross the planet orbit. Thus, although these orbits are 
interesting as benchmarks, which define possible attractors for the particle motion, 
they are nevertheless difficult to reach. More precisely, a particle may collide with 
the planet before it settles in the stationary orbit. This depends on the efficiency of 
the protection mechanism which should keep the value of WE close to 7r. 

This situation is depicted in Fig. 2, in which we plot the osculating eccentricity 
e of a particle vs. its osculating semi-major axis a. The particle is assumed to orbit 
the star/3-Pictoris (--~ 1.5 solar mass, L / L  o ~ 6) and to have a radius of 3.6 pro, 
corresponding to a value of fl = 0.33. Finally, it is perturbed by a planet of  mass 

= 10 - 4 ,  orbiting at ap= 20 AU from the star. The continuous curve is the set 
of  points verifying a(1 - e) = ap. Above that curve, the pericenter of  the particle 
orbit lies inside the planet orbit, so that the two orbits intersect. 

The motion of the particle is calculated exactly, through a 4 th order Runge- 
Kutta integrator, with the full perturbing force of the planet taken into account, 
superimposed to the perturbing radiation force (Eq. (1)). In a first stage, the particle 
semi major axis decreases, due to PR drag. Then, the eccentricity increases, while 
the semi-major axis is locked at the value corresponding to the 2:1 outer Lindblad 
resonance. On its way to reach the periodic orbit defined by Eqs. (20), the particle 
orbit crosses that of  the planet. A more detailed analysis of the motion shows 
that the particle escapes the libration region of the resonance and then has a close 
encounter with the planet, which explains its sudden removal from the resonance 
region. We have performed several numerical integrations, with various initial 
conditions. Although the particles may stay for a rather long time in the resonance 
region (1.6 Myears in the case of Fig. 2), they eventually all have a close encounter 
with the planet. 

5.2. NON ADIABATICITY OF TttE MOTION 

Before reaching the periodic orbit, the particle must first be captured in a stable 
libration. Then, a slow evolution of the phase space, due to PR drag, must increase 
the particle orbital eccentricity to el, while avoiding collision with the planet by 
an appropriate range of values for WL. In the mean time, the particle may escape 
the resonance region by crossing the separatrix between libration and circulation. 

This problem is much more difficult to solve than merely determining the fixed 
points in Eqs. (17). This requires numerical integrations rather than an analytical 
approach. We note here that an adiabatic invariant method could in principle be used 
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Fig. 2. The osculating eccentricity e of a particle is plotted against its semi-major axis a. 
The particle is perturbed by a planet of mass c = 10 - 4  stellar mass, revolving on a circular 
orbit at 20 A.U. from the star fl-Pic (1.5 Mo). The time step beween two points is 100 
planetary revolutions, i.e. 7300 years. The particle spends 1.6 x 106 years in the resonance 
region. The curve in the lower right of the figure is the set of points where the pericenter of 
the particle orbit intersect the planet orbit. Above that curve, the two orbits cross. See the 
text for a more detailed description. 

to follow the particle motion in some suitable phase space, since the dissipation 
term is small (Eq. (7)). Unfortunately, we will now show that this is not the case 
for a typical #m-sized particle perturbed by a typical planet. 

More specifically, we want here to compare the libration period of  the eccen- 
tricity vector, and the time scale over which the phase space itself evolves, due 
to PR drag. We turn back to the system (17), and we examine the conservative 
case, i.e. setting C to zero. Then, it is easy to show that besides the Jacobi constant 
J = 3raZne 2 + 2An, there is a second integral of  motion, K:  

e 4 - J e  2+ E .A h  = K ,  (26) 

where the constant coefficients are defined by: 

{ f f  = 2J/3mZn = 

A = - 8 A / 3 m  2. 

2(e 2 + 2An/3rn2n) 
(27) 
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Fig. 3. Definitions of the various quantities used in the eccentricity vector (h, k) space. The 
quantities h and k are defined in Eqs. (11). 

Note that because we are dealing with outer Lindblad resonances (m _< 0), we have 
A > 0, since A and ra have the same sign. Also, because A ,,~ ra, A ~ - 8 / ( 3 m ) .  

Eq. (26) entirely defines the trajectory followed by the eccentricity vector, 
once J and K are fixed. These curves are the projections on the (h, k) plane 
of the surfaces, in the (h, k, z) space, defined by z = e 4 - J e  2 = e s t e  and  

z = e A h  = e s t e .  T h e  first surface is axisymmetric around the z axis, and the 
second surface is a plane parallel to the h axis, with a very small inclination 
with respect to the (h, k) plane, since e is very small. A complete analysis of  the 
morphology of the trajectories is given, e.g., by Ferraz-Mello (1985). 

In particular, this analysis shows that the critical points corresponding to periodic 
orbits are given by k = 0 and h 4 - J h  2 + e A h  extremum, i.e.: 

4h 3 - 2 , f h  + ~A = 0. (28) 

This third degree polynomial equation yields the classical equilibrium points that 
one can see in Fig. 3. One can note the stable libration point L, surrounded by 
bean-shaped or banana-shaped trajectories, themselves enclosed in the separatrix 
which connect itself through the unstable saddle point S (at least if ,7 _> 0). Then, 
in the inner circulating region lies the third, stable, equilibrium point, C. 

Due to fainmess of the factor ~, it is easy to show that the stable libration point 
L is given by h l i  b , .o - x/'-ff-/2 ' corresponding to an eccentricity of: 

elib = ]hlib] = ~ J - ) 2 .  (29) 
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Fig. 4. The evolution of the eccentricity vector (h, k) of a particle around ¢~-Pic, with/3= 
0.3, perturbed by a planet of mass e = 10-5, orbiting at 20 A.U. from the star. The diagram 
corresponds to a 2:1 outer Lindblad resonance. The position of the particle is these diagrams 
is plotted as a dot. The time step AT corresponds to 10 planetary revolutions, i.e. 730 years. 
The units for h and k are arbitrary. See the text for details. 

Moreover, the maximum width of  the libration region enclosed in the separatrix is: 

Wllb ~ ~ /2Ae /e l ib  (30) 
V - -  

Finally, a classical analysis o f  libration motion close to a stable equilibrium point 
provides the fol lowing libration period around L: 

4Tomb 
Tub ~ (31) 3 m 2 ~ '  

where Torb is the orbital period of  the planet. 
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Fig. 5. Continuation of Fig. 4 

Due to PR drag, the quantity ,7 will slowly evolve, and so will the position of  
the instantaneous stable libration point L. Reintroducing the value of  ,7 as defined 
in Eq. (27), in the complete system (17) with dissipation, one can derive: 

, j .  8C 
5Ira[' (32) 

in the approximation e 2 <~< 1. Since the stable libration point L corresponds to 
J = 2ezib, the forced eccentricity etib varies like: 

el b ~ V (33) 

with time t. This result is interesting, because it tells us that the time scale to build 
up a significant eccentricity is ~,, m / C ,  i.e. of  the same order of  magnitude as 
the decay time calculated in (6), 1 /C.  In other words, even though the trapping 
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in the resonance is not permanent, it is nevertheless long enough for the particles 
to statistically accumulate at the resonance. In this case, particles ejected through 
close encounters with the planet are replaced by new particles brought into the 
resonance from the outer regions of  the system. 

For the motion to be adiabatic, the libration period calculated in Eq. (31) should 
be very small compared to the time scale of  evolution Tevol of the phase space itself. 
The latter time scale can be defined by the time it takes to the forced eccentricity elib 
to increase its value by an amount corresponding to the width WZlb of the libration 
region. The comparison of  Eqs. (30) and (33) shows that: 

51ml 
Te~ol "~ 2 C  (34) 

so that the motion is adiabatic if: 

Tlib 4CTorb 
~ 151. 13A ez b << 1. (35) 

The combination of  Eq. (7) and .A ,,~ - 8 / ( 3 m )  yields: 

Ttib 1 3 × 10 -5 1 

T~vo----~l "~ m 2 s u , ~  ¢Clib" (36) 

Because m is a few times unity, e is in the range 10 . 6  -- 10 - 3 ,  and elib is small 
compared to unity at the entrance in the resonance, this means that for #m-sized 
grains, the adiabaticity condition (35) is not satisfied for typical situations of  
interest. 

This problem is illustrated in Figs. 4 and 5. We consider a particle orbiting the 
star/3-Pictoris ( L / L ®  ,,~ 6), with the coefficient/3 set to 0.3 (corresponding to a 
radius of  ~ 4 #m, according to Eq. (3)). The particle is perturbed by a hypothetical 
planet of  mass e ~ 10 -5, orbiting at 20 A.U. from the central star. The motion 
of  the particle is integrated near the 2:1 outer Lindblad resonance, by retaining 
only the resonant term in the planet perturbing potential. At each time step, the 
"osculating conservative phase space" was plotted, according to the instantaneous 
value of  , f  assumed by the particle (whose position in the phase space is plotted 
as a dot). Thus all the curves, in a given diagram in Fig. 4, or Fig. 5, have the same 
value of  if ,  but different values of  K. 

Following the motion of  the particle, it can be seen that it lies first in the 
circulation region, then enters the libration zone, and finally escapes the resonance 
by passing in the inner circulation zone. An important feature to be noted is that 
the time of  libration of  the particle is comparable to the time of  evolution of  the 
libration zone itself. From the analysis of  such a figure, it is possible to conclude 
that the crossing of a resonance, even if smooth, cannot be considered as adiabatic, 
at least with the parameters used in this case. 
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We have restricted ourselves to a rather specific problem, namely a massless particle 
orbiting a star and perturbed by (i) a planet on a circular orbit and (ii) radiation 
forces, including PR drag, with no mutual inclination between the particle and the 
planet. A simple approach, summarized by the equations of motion (17), allows us 
to draw several qualitative and quantitative conclusions: 

- Only outer Lindblad resonances are able to counteract the dissipative effect 
of  PR drag. 

- For a given dissipation coefficient C (see Eq. (7)), there exists one linearly 
stable periodic orbit where the energy dissipated by the drag is balanced by 
the energy provided by the resonance. 

- However, the eccentricity of this periodic orbit is of order 2x /~]ml ,  where m 
refers to the m : m + 1 resonance. Besides the technical difficulties associated 
to this high eccentricity (expansion of the perturbing potential), this means 
that the particle orbit will cross that of  the planet at some point, a highly 
precarious situation for keeping the particle in the resonance region. 

- A closer look at the equations of motion at small eccentricities shows that 
the eccentricity first increases like x/4Ct/5lml, which means that the particle 
may spend a large time in the resonance before colliding with the planet. This 
may account for statistical accumulation of particles at the resonance radii. 

- For typical #m-sized particles perturbed by typical planets with masses 
10 -6 - 10 -3 stellar mass, the motion of the particle eccentricity vector is 
not adiabatic in the phase space. This prevents the classical techniques of 
adiabatic invariant being used to derive the probability of capture into the 
resonance, the time of escape from the resonance, etc... 

Several points remain to be studied at that point. The periodic orbits deserve a 
study of their own. After all, they could be reached directly by particles on elliptic 
orbits from the beginning (cometary origin). They could avoid close encounters 
with the planet through an efficient protection mechanism, associated to special 
initial conditions. Also, statistical methods, using many numerical integrations, 
are now necessary to derive the probability of capture in resonance of randomly 
distributed particles. Third, a more detailed description of the close encounters 
with the planet should be presented. In particular, one would like to know the 
percentage of particles ejected in the outer regions of the system, or sent onto the 
central star, during such encounters. Finally, the full problem, which takes into 
account the planet orbital eccentricity, as well as mutual inclinations of  the planet 
and the particles, could exhibit a much more complicated dynamics, through the 
appearance of new kinds of resonances (corotation and inclined resonances). 
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