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only fine radial structures, but also complex azimuthal and
vertical features: wakes, kinks, braids, arcs, spokes, etc.We examine the resonant forcing of a narrow ringlet by a

nearby satellite on an inclined, but circular, orbit. The general Although the spatial extents of these structures remain
techniques that we develop are used to study the dynamics of small compared to the global dimensions of the rings, they
Neptune’s ring arcs, near the 43:42 mean motion resonances are nevertheless interesting because they are clues of
with the satellite Galatea. More specifically, the averaged equa- ongoing processes in these evolving systems.
tions of motions are used to analyze the coupling between the We focus in this paper on a detailed analysis of the
various resonances at work, while a mapping integrator allows dynamics of Neptune’s arcs. Although arc structures have
us to integrate the motion of up to 104 particles for several been detected in other ring systems, Neptune’s arcs occupy
centuries. We show that even in the absence of dissipation, the

for the moment a unique position. In effect, both ground-coupling between the horizontal and vertical motions of the
based and Voyager observations provide us with accurateparticles can lead to a stochastic migration of the particles for
measurements of their mean motion, physical width, azi-one to the other of the 43 3 2 5 86 corotation sites where the
muthal extension, radial distortion, optical depth, etc.arcs are assumed to be trapped. The pressure of solar radiation
Also, precise locations of the resonances associated withsweeps out from the arcs the particles with a ratio b( of pressure
the nearby satellite Galatea can now be derived from theof radiation to solar gravitation larger than p0.01, correspond-

ing to p50 mm-sized icy particles in the limit of geometrical Voyager results (see Section 2).
optics. Poynting–Robertson (PR) drag, on the other hand, has Numerical simulations have tested the various analytical
only a small effect on dust particles already inside the corotation models proposed to explain the arc stability, but they had
sites. In contrast, PR drag rapidly drives the particles lying to use scaling factors in order to avoid vanishingly small
outside these sites on unstable orbits. Inelastic collisions be- perturbing terms, and thus, unacceptably long computer
tween the larger particles remain the most serious problem runs. Our purpose here is to study the effect of a small
for the arc stability. We discuss the implications of these re-

satellite on a narrow ringlet, using the real parameters ofsults in terms of a population of large particles being the
the system. We have derived two methods for that.source of dusty arcs. We show in particular that such structures,

First, we write the averaged equations of motion nearwhile not permanent, can be nevertheless statistically common
an m 1 1:m mean motion resonance. These equationsat corotation resonances with a nearby satellite such as
keep only the resonant terms arising from the satelliteGalatea.  1996 Academic Press, Inc.

potential (plus the secular terms caused by the planet’s
oblateness). Up to three resonant arguments, associated

1. INTRODUCTION with the particle orbital eccentricity and inclination and
with the satellite inclination, couple together, describing

Both ground-based and space observations have shown the complex 3-D motion of a particle near the m 1 1:m
in the last two decades that planetary rings present not resonance. The advantage of this method is to allow a

better insight of the global dynamics of the arcs, through
classical methods of study of dynamical systems, like sur-* Present address: Universidade Federal do Paraná, Dpto de Fı́sica,
faces of section. Moreover, the equations are written inCentro Politécnico, CP 19081, 81531-990 Curitiba, Paraná, Brazil. E-mail:

foryta@fisica.ufpr.br. nondimensional units, so that applications to other ringlets
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can easily be considered by just changing a few numeri- These detections were confirmed and complemented by
the Voyager observations, during its flyby of Neptune incal coefficients.

In a second approach, we use a 3-D mapping integrator. August 1989. The Voyager mission brought a wealth of
information on the neptunian ring system. The three mainThe mapping assumes that the orbital (epicyclic) elements

of a particle are instantaneously changed at each conjunc- arcs detected by the spacecraft, Liberté, Egalité and Fra-
ternité, in order of increasing longitude, share the sametion with the satellite. It yields the new elements as a

function of the old ones. The advantage of the mapping orbit at 62,932 km from the planet center. These three
features span respectively 48, 48, and 108 in longitude atis that it is very fast and allows us to follow up to 104

particles having up to 104 conjunctions with the perturbing half-maximum and have roughly the same brightness. They
are preceded by a smaller arc, Courage, which spans 28 orsatellite. Again, the mapping is written in nondimensional

units and can thus be implemented in any configuration so and is about three times fainter than the main arcs. All
of these structures are embedded in a continuous ringwhere a ringlet is perturbed by one or more satellites. The

mapping must reproduce both the high-frequency terms (Adams) about 10 times fainter than the main arcs. From
a more global point of view, the arc region appears as aarising from individual conjunctions, and the low-fre-

quency terms associated with possible resonances. relatively compact interval of p408 in longitude, containing
denser material, while the continuous Adams ring reachesThe two methods outlined above are described in appen-

dixes, which can be read independently in a quite general a minimum of brightness 1808 away from the arc region
(Showalter and Cuzzi 1992).context. Also, more details on some technical aspects of

this paper can be found in their original form in Foryta The physical width W of the arcs (resolved during
ground-based stellar occultations) is typically 15 km, while(1993).

The main body of this article is devoted to Neptune’s the optical depth t lies in the range 0.05–0.08, depending
on the event (Nicholson et al. 1990, Sicardy et al. 1991).ring arcs. Section 2 gives an overview of the problem.

Section 3 presents the averaged equations of motion near Both ground-based and Voyager observations give a typical
equivalent width (optical depth 3 physical width) ofthe 42:43 resonance with Galatea. The basic frequencies

entering in the motion of the arcs are calculated in Sec- p1 km for the arcs, and less than 0.1 km for the continuous
part of Adams ring. The photometric properties of thetion 4. The couplings between the various resonant argu-

ments, and the origin of the possible chaoticity of the arc ring and the arcs suggest (although not unequivocally) a
significant presence of dust particles both in the arcs andmotion are examined in Section 5. Section 6 presents the

mapping method, and Section 7 makes use of it to describe in the ring (Ferrari and Brahic 1994, Porco et al. 1995).
No individual moonlet has been so far detected insidethe stochastic migration of some arc particles from site

to site. The effects of radiation forces are investigated in Adams ring, down to a limit of about 10 km in diameter
(Smith et al. 1989). However, clumps of material with aSection 8 and collisions are discussed in Section 9. Sec-

tion 10 presents a discussion and concluding remarks. typical length of 500–1000 km are observed in the highest
resolution images of the arcs. Moreover, no arc structures

2. OVERVIEW have been clearly identified in any of the Neptune rings
other than Adams.

A brief summary of the main physical and dynamical
properties of Neptune’s arcs are given in this section. More

2.2. Dynamical Problemscomplete reviews can be found in Lissauer and Nicholson
(1990), Sicardy and Lissauer (1992), Goldreich (1992), as If it were only for the Keplerian differential motion,
well as in the comprehensive chapter by Porco et al. (1995), particles with semi-major axes differing by Da would
and in the references therein. spread at an angular rate of d(Du)/dt 5 3/2 (Da/a)n, where

n is the mean motion. If Da were equal to the observed
2.1. Physical Properties of Neptune’s Arcs

physical width, say W p 15 km, each of Neptune’s arcs
should disappear, as individual structures, in a matter ofNeptune’s ring arcs were first discovered from the

ground in 1984, during a campaign of observations of stellar weeks. In any case, it would take an initially condensed
arc less than four years to form a roughly uniform ringoccultations by the planet and its surroundings (Hubbard

et al. 1986; Sicardy et al. 1991). Subsequent observations around the planet. In contrast, the ground-based observa-
tions, combined to the Voyager data indicate that the arcsshowed intermittent evidence for material around Neptune

(Covault et al. 1986; Nicholson et al. 1990, 1995). Every- are stable over a period of at least five years.
More precisely, these observations are consistent withthing considered, the frequency of ground-based detec-

tions implies that the azimuthal coverage of the ring arc the three main arcs having a common orbit with two possi-
ble mean motions n, confined in very narrow intervals:material is about 10% of the total orbit during the 1980

decade. n 5 820.11948 6 0.00068 day21 or 820.11188 6 0.00068 day21
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FIG. 1. Radii of three mean motion resonances m:m 1 1 with Galatea. umu 5 43 means that the particle completes 42 orbits when the satellite
completes 43. The slight splitting of the resonances with a same m is caused by the oblateness of the planet. On the right of the figure, the radial
scale has been expanded by a factor 20 to better show the splitting between the three resonances CIR, LIR, and LER (see the Section 3 for the
nomenclature used here). The vertical error bar on the CIR radius shows the uncertainty on the resonance locations. The two dots just right of the
error bar show the two possible geometrical radii of the arcs, as derived from their expected mean motion. The internal uncertainty attached to
those radii is comparable to the size of the dots (see the text and Nicholson et al. 1990, 1995). A few trajectories of particles’ guiding centers near
the corotation sites are overlaid on top of the CIR radius. They illustrate the expected sites’ widths (p0.5 km), using the nominal orbital inclination
of Galatea (0.05448). The longitudinal extension 4.1868 5 3608/2umu represents the regular partitioning of the corotation sites around the planet.

(Nicholson et al. 1990, 1995; Porco et al. 1995). Interestingly arcs as derived from their mean motion. In particular, a
fortuitous coincidence of the arc semi-major axis and theenough, these two possible mean motions place the arcs

very near the mean motion resonance 42:43 with the satel- corotation resonance radius can be ruled out with a proba-
bility of p99%, considering (i) the typical spacing betweenlite Galatea, the latter completing 43 revolutions while the

arcs complete 42 revolutions (see Fig. 1, Porco 1991, and successive corotation resonances (p23 km) and (ii) the
error bars attached to the various radii plotted in Fig. 1.the discussion in Section 3).

Resonance trapping has actually been invoked shortly Another point in favor of the 42:43 corotation resonance
model is the forced eccentricity expected from the proxim-after Neptune’s arcs discovery to explain their azimuthal

confinement. In Lissauer’s model (1985), the stable La- ity of the 42:43 Lindblad resonance. The forced value is
proportional to the inverse of the distance between thegrange points L4 and L5 due to a moonlet sharing the arc

orbit would ensure the azimuthal confinement, while a arc semi-major axis and the Lindblad resonance radius
(i.e., about 1.65 km in our case, see Fig. 1), and is directlysecond satellite provides the energy the arcs lose through

inelastic collisions. Another model, developed by Gold- proportional to the mass of the satellite, see Eq. (13). If
due to a resonant forcing, the observed arc eccentricityreich et al. (1986), requires only one satellite which creates

at the same time the ‘‘corotation resonances’’ where the provides an estimation of Galatea’s mass (2.12 6 0.21 3
1021 g) and density r 5 1.0 6 0.5 g cm23 (Porco 1991, Porcoarcs can be confined, and the ‘‘Lindblad resonances’’ which

provide the particles the energy they dissipate through et al. 1995). The latter value is quite reasonable for a small
icy satellite.collisions (see Section 3 for the nomenclature). Both

mechanisms were successfully tested in numerical simu- Finally, the phase of the radial distorsion with respect
to the satellite also argues in favor of a resonant driving,lations by Lin et al. (1987) and by Sicardy (1991).

The work of Porco (1991) pleads in favor of Goldreich as opposed to a mere wake forced by a single encounter
with Galatea (Porco et al. 1995). More specifically, the 42-et al.’s model in the sense that the mean motion of the arcs

places them right on top of the 42:43 corotation inclined lobed radial distorsion detected in the arcs is such that a
given particle is at apocenter (farther away from Galatea)resonance with Galatea, see Fig. 1. Note in this diagram

the very small error bars associated with the radius of the at the conjunction with the satellite, see Fig. 14.
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TABLE IAlthough a general picture of Neptune’s arcs seems to
Dynamical Parameters of Neptune’s Arcsemerge from the previous model, several problems are still

unresolved in this corotation resonance model (see also
Porco 1991 and Porco et al. 1995). Among them, we
note that:

• The azimuthal extensions of the arcs should be con-
sistent with a regular partitioning of Adams ring in
43 3 2 5 86 corotation sites, spanning each 3608/86 p
4.188. This is roughly correct for Liberté and Egalité, but
Fraternité is then sitting on top of three sites, an a priori
quite unstable situation. Moreover, the arcs are concen-
trated in a relatively narrow azimuthal range, a nonrandom
distribution which requires explanation.

• The estimated mass of Galatea, combined to its mea-
sured orbital inclination, yields the spread of semi-major
axes for which the particles are trapped in corotation sites
(Eq. (9)). The derived value, about 0.5 km, is substantially
smaller than the actual physical width W p 15 km. This angle (m 1 1)ls 2 ml is almost stationary. We examine
requires a strong eccentricity gradient across the arc, re- for the moment the average effect of such a commensura-
sulting in uncomfortably high relative velocities (and thus bility. We thus ignore, in this section at least, the high-
large dissipation rate) between colliding particles. frequency terms arising from the conjunctions with the

satellite. Also, we ignore for the moment the effects ofTo resolve these apparent contradictions, we must go
other nearby resonances, corresponding to different m’s.through a detailed analysis of each step leading to the

Near the resonance radius, the perturbing function Rcorotation resonance model. First, we will show that a test
acting on the particle contains in principle four kinds ofparticle at a mean motion resonance exhibits a surprisingly
trigonometric terms, with four slowly variable argumentscomplex behavior. This is due to nonlinear couplings be-
C (see Appendix A). These four resonant arguments Ctween various resonant terms overlapping in a small inter-
are obtained by substracting g̃, g̃s, V and Vs fromval (Fig. 1). For certain initial conditions, a stochastic mo-
(m 1 1)ls 2 ml (see Table II). The amplitude of thesetion from site to site is possible, even without any
trigonometric terms are respectively proportional to thedissipative forces or collisions being introduced. Second,
orbital eccentricities e and es of the particle and the satel-nongravitational processes (radiation forces, Poynting–
lite, and to the square of the orbital inclinations I and IsRobertson drag or collisions) are quite important and act
of these two objects.on particles of quite different sizes. It is our aim in this

Each of the angles CCE , CLE , CLI , CCI of Table IIpaper to address these questions. We certainly cannot be
describes a resonance, referred to as:exhaustive in our analysis, owing to the complexity of the

various phenomena entering in this problem. We think, • the corotation inclined resonance (CIR), associated
however, that these steps must be quantitatively discussed with CCI ,
before any conclusion be derived as to the arc origin • the Lindblad eccentric resonance (LER), associated
and evolution. with CLE ,

• the Lindblad inclined resonance (LIR), associated with
3. DYNAMICAL STRUCTURE OF THE PROBLEM: CLI , and

THE AVERAGED EQUATIONS • the corotation eccentric resonance (CER), associated
with CCE .

Henceforth, a, e, I, V and g̃ denote the usual Keplerian
elements: semi-major axis, eccentricity, inclination, longi- The perturbing function R contains furthermore the sec-

ular terms due to the planet’s oblateness. Only terms intude of the node, longitude of the periapse. The quantities
n and l denote the mean motion and the mean longitude, J2 are considered in R. Terms in J4 would unnecessarily

complicate the equations without bringing more informa-respectively, and the subscript s refers to the perturbing
satellite Galatea. The main dynamical parameters of the tion. However, in the calculation of the absolute resonance

radii, the terms in J4 have also been included (Eqs. A6),arcs and Galatea are summarized in Table I.
Let us consider a first-order mean motion resonance in order to be consistent with other authors, and also with

the accuracy now reached on the arc geometrical radiusm 1 1:m (m integer) between the satellite and a ring
particle. This corresponds to (m 1 1)ns 2 mn ! n; i.e. the (Porco 1991, Porco et al. 1995). We do not take into account
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TABLE II
Resonance Nomenclature and Locations

here the secular perturbation forced by the satellite, as radius aCI . The quantity x, together with CCI , describes the
motion of the particle guiding center near a corotation site.described out by Horanyi and Porco (1993). This effect

shifts all the resonance radii by p0.2 km, but it does not The vector (h, k) will be referred to as the resonant
eccentricity vector of the particle. Its position angle CLEchange the dynamical structure of the problem.

The orbital eccentricity of Galatea is compatible with is directly linked to the orbital phase of the particle at the
conjunction with the satellite, i.e., also to the orientationzero, es 5 1.20 (61.49) 3 1024 (Owen et al. 1991, see

Table I). Its orbital inclination, in the meantime, is non- of the particle scalloped trajectory as observed from the
satellite (see Porco et al. 1995, and Fig. 14).zero: Is 5 0.05448 6 0.01328 (Ibid.). We will thus take from

now on es 5 0, so that no term containing CCE will appear Similarly, (u, v) represents the resonant inclination vec-
tor of the particle. Its argument CCI /2 is linked to theanymore. This simplifies the equations of motion, preserv-

ing however the essential coupling between the vertical orientation of the vertical arches followed by the particle
above and below the planet equatorial plane, as observedand the horizontal motions of the particle.

In the case of Adams ring and Galatea, we have m 5 from the satellite.
Finally, it will be useful to define a resonant inclination243. The geometrical radii aCI , aLE , aLI , aCE of the corre-

sponding resonances are given in Table II. Note the close vector (us , vs ) for the satellite, as well as the mutual inclina-
tion vector (U, V ) of the particle with respect to the sat-packing of the four resonances. There is another set of

four resonances, corresponding to m 5 244, located at ellite:
22.7 km inside the arcs radius, while the resonances corre-
sponding to m 5 242 lie 23.8 km outside it (Fig. 1). The us ; Is · cos(CCI /2)
two possible geometrical radii of the arcs are also marked vs ; Is · sin(CCI /2) (2)
with dots for comparison.

Near a mean motion resonance, the average motion of U ; u 2 us

the particle is described by six scalar quantities
V ; v 2 vs .

The mutual inclination is then Im 5 ÏU 2 1 V 2. Thex ; 3
2

m
Da
aCI

CCI

TABLE III
h ; e · cos(CLE ) (1) Nondimensional Resonant Forcing Terms
k ; e · sin(CLE )

u ; I · cos(CLI /2)

v ; I · sin(CLI /2),

where Da ; a 2 aCI . Physically, x is the nondimensional
distance of the particle guiding center to the corotation
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method to calculate the rates of change of x, CCI , h, k, u, ized to the mean motion n of the particle. The quantity
jn represents the differential nodal precession rate of theand v forced by the three resonances (CIR, LER, and LIR)

is outlined in Appendix A. These rates are satellite and the particle. Because both nodes precess in
the same (retrograde) direction, jn is much smaller than
jp . We will see the importance of this result later.dx

dt
5 13m2[4«i(u 2 us)(v 2 vs) 1 «e k] Finally, the quantities «e and «i are both proportional to

the mass of the satellite. Their numerical values represent
the efficiency of the satellite to force the eccentric anddCCI

dt
5 12x

inclined motions on the particle, respectively, near the
corresponding resonances. Considering the mass estimateddh

dt
5 2(x 1 jp)k

(3)
for Galatea (Ms/MN p 2.1 3 1028, see Porco 1991, and
Table I), one gets the values of «e and «i given in Table III.

The system (3) can be split into three subsystems of twodk
dt

5 1(x 1 jp)h 2 «e equations each, describing respectively the CIR (variation
of x and CCI ), the LER (variations of h and k), and the
LIR (variations of u and v). The mixing of the variables in

du
dt

5 2(x 1 jn)v 2 2«i(v 2 vs)
this system indicates the coupling between the resonances.
Note the nonlinearity of the system.dv

dt
5 1(x 1 jn)u 2 2«i(u 2 us), The small, but nonvanishing value of jp causes the

splitting of the LER and CIR radii (about 1.65 km, see
Table II and Fig. 1), and the smaller value of jn causeswhere we have defined, for sake of simplicity,
the splitting of the CIR and LIR (about 0.045 km). The
smallness of jp and jn is responsible for the strong couplingt ; nt
between the resonances.

jp ;
V
.

s 2 g̃
.

n 4. MAIN FREQUENCIES OF THE SYSTEM

4.1. Corotation Inclined Resonancejn ;
V
.

s 2 V
.

n
(4)

Neglecting for the moment the effect of the Lindblad
resonances on the CIR, the system (3) reduces to the pen-«e ; 2aA

Ms

MN dulum equation

«i ; 1aV
Ms

MN
, d 2CCI

dt 2 5 12m2«i I 2
s sin(CCI ), (6)

where V
.

s , V
.

, and g̃
.

are the nodal and apsidal precession
rates caused by the planet’s oblateness. The numerical with the integral of motion C 5 x 2/(6m2 ) 1 «i I 2

s cos(CCI ).
coefficients A and V are defined in Appendix A, and This yields the total width of the libration zone where the
a 5 a/as . The numerical values of jp , jn , «e and «i corre- particle guiding center can be trapped (we will call such
sponding to m 5 243 are given in Table III. The system zone a corotation site):
(3) admits the following integral of motion

WCI 5 aCI Is !16
3

«i , (7)
C 5

x 2

6m2 1 «i[(us 2 u)2 2 (vs 2 v)2 ]
(5)

and the libration period near the center of the corotation2
jp

2
[(h 2 h0 )2 1 k2 ] 2 jn

I 2

2
,

site (CCI 5 1808, x 5 0):

where h0 ; «e /jp is the eccentricity forced by the LER at
the center of the arc (see Eq. (11)). TCI 5

4
3m

aCI

WCI
T, (8)

The numerical values of jp , jn , «e , and «i are given in
Table III, for the specific case of the satellite Galatea and
Adams ring. The quantity jp is the satellite nodal precession where T 5 2f/n is the orbital period of the particle.

The numerical values given in Tables I and II yieldrate relative to the particle apsidal precession rate, normal-
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WCI p 8.9I 8s km
(9) eforced p 2.0 3 104 Ms

MN (13)
TCI p

0.26

I 8s
years, Tforced p 0.57 years.

Note again that Tforced may be much longer if (h, k) followswhere I 8s is the satellite orbital inclination expressed in
a trajectory close to a separatrix.degrees. For the nominal value of Is 5 0.05448, we get

WCI 5 0.48 km and TCI 5 4.8 years. This typical libration
4.3. Modulation of the Mutual Inclination

period can be noted in Fig. 6b, for instance.
The width of a corotation site at a given moment actuallyIt is important to note that the libration period is given

depends on the mutual inclination Im 5 ÏU 2 1 V 2 of thehere for the center of the corotation site. As one moves
particle and the satellite at that moment. Thus, Im shouldtoward the separatrix of the site, TCI actually tends to
appear in place of Is in Eq. (7), in the 3-D case. Now,infinity. Thus, many of the arc particles observed in Adams
because of the differential nodal precession rate of thering have expected libration periods much longer than the
particle and the satellite, Im is slowly modulated with time.value p5 years quoted above.
More precisely, the last two equations in (3) yield

4.2. Lindblad Eccentric Resonance

We now consider the LER acting alone, i.e., with only d
dt

(I 2
m) 5 28«i UV 1 2 jn Is I sin(Vs 2 V). (14)

planar motions (I 5 Is 5 0) and with a circular orbit for
the satellite. The system (3) then becomes

Since we have UV 5 O (Is I), «i p 3.3 3 1026, and jn p
24.6 3 1025, the dominating term on the right-hand sidedh

dt
5 2(x 1 jp)k

of the equation above is that containing sin(Vs 2 V). The
latter is in turn modulated by the differential nodal preces-dk

dt
5 1(x 1 jp)h 2 «e

(10)
sion rate between the satellite and the particle, with the
period 2f/(njn). In other words, the forcing term due to
the satellite (28«i UV) is too small, by a small margin, todx

dt
5 3m2«ek control the variations of the mutual inclination (U, V).

The modulation period of Im is thus
dCCI

dt
5 2x .

Tmodul 5
T

u jnu
p 26.7 years. (15)

This two degree of freedom system admits two integrals
of motion, J ; e2 1 2(x 1 jp)/3m2 and K ; e4 2 2 Je2 1

In conclusion, the Lindblad eccentric resonance forces(8«e/3m2 )h, and is thus integrable. The quantity J is the
a period of p7 months or more on the eccentricity of theaveraged value of the Jacobi constant.
particle. The corotation inclined resonance forces librationThe fixed points of the System 10 must verify h

.
5 0

motions for the guiding centers of the particles of p5 years(i.e., k 5 0) and k
.

5 0, which yields the forced eccentricity
or more, for Is 5 0.05448. Finally, the very small differential
nodal precession of the particle and the satellite creates a

eforced 5 uhu 5
«e

ux 1 jpu
. (11) slow modulation (p27 years) of the mutual inclination of

the satellite and the particle.
From a more physical point of view, the resonant motionPorco (1991) uses this relation in the middle of the arcs

of a particle in Adams ring is akin to that of a pendulum(x 5 0) and the observed forced eccentricity of the arcs,
with a period of order 5 years, and whose length is slowly4.7 3 1024, to derive «e , and thus the nominal value of
varied over a period of order 27 years, while it receivesMs/MN 5 2.07 3 1028 that we use in this paper.
(or loses) energy over a typical period of 7 months.The linearization of the system (10) near the stable fixed

points showsthat theoscillationof(h,k) aroundthesepoints
5. COUPLING BETWEEN THE RESONANCEShas a frequency nforced 5 3m2 Ï( J 2 h2)( J 2 3h2 )n/2.

Thus,
The original descriptions of corotation trapping assume

that the motion driven by the CIR potential entirely de-
nforced 5 nux 1 jpu !1 2 3m2 «2

e

(x 1 jp)3 . (12) couples from the LER potential, and also that the vertical
motion entirely decouples from the horizontal motion. Be-
cause the three resonances considered here are so closeAt the center of the corotation site (x 5 0), we obtain
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FIG. 2. Actual evolution of the particle orbital eccentricity with time (solid line) compared with the eccentricity expected from an adiabatic
invariant argument (dot–dashed line), see Section 5.1 for discussion.

together, we will see that the actual motion of the particle line) is plotted together with the ‘‘adiabatic’’ value,
«e/(x 1 jp). One can note the excellent agreement betweencan be quite complicated.
these two values at any moment.

As a consequence, and for such particles, there exists5.1. Adiabatic Invariance Associated with the Eccentricity
an eccentricity gradient between the inner and outer edges

Before embarking in a more complete analysis, we note of the corotation site. In the extreme case where a particle
that there is a situation where the system (3) is relatively explores the full width of a corotation site, its semi-major
simple to solve, at least approximately. The stable equilib- axis varies by 6WCI/2 5 60.24 km, corresponding to
rium point of this system (obtained when all the time deriv- x 5 62.3 3 1024, while jp p 21.7 3 1023. This creates an
atives are zero) must satisfy x 5 0, CCI 5 1808, h 5 h0 5 eccentricity gradient aDe/a 5 3m«e/2 j 2

p p 216.3. The phys-
«e/ jp , and k 5 0. In other words, the particle must be right ical width W of the arcs is then dominated by this gradient
at the center of the corotation site and have the equilibrium and can reach a value of p7 km across the full width of
eccentricity u«e/jpu. the corotation site. This point will be discussed again later,

As we get away from this equilibrium situation, the parti- especially when collisions are considered.
cle guiding center starts a slow (p5 years) libration motion
in the corotation site, while the eccentricity vector oscil-
lates on a quite shorter time scale (p7 months or more).

5.2. The Semi-planar Problem: Regular and
We are thus ensured in this case of the adiabatic invariance

Chaotic Motion
of the area enclosed in the trajectory of (h, k).

In particular, suppose we start with a particle at x ? 0, We may have a good insight of the dynamics of a test
particle by first considering the case where the satellite haswith the forced eccentricity «e/(x 1 jp) corresponding to

that radius. Then the eccentricity must keep the value an inclined orbit, thus creating a corotation site, but where
the particle is forced (artificially) to move in the equatorial«e/(x 1 jp) as the particle slowly drifts back and forth

across the corotation site, exploring various values of x. plane of the planet, i.e., with u 5 v 5 0. We loosely refer
to this case as the ‘‘semi-planar’’ problem. It allows us toThis is because the forced value corresponds to a zero area

enclosed in the (h, k) trajectory, and also because this area better understand the 3-D structure of the problem, but it
remains simple enough for the classical surface of sectionmust keep its zero value by the adiabatic invariance. This

is illustrated in Fig. 2, where the actual eccentricity (solid method to be used. The system (3) then turns into
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Consequently, the particle cannot escape the corotationdx

dt
5 13m2[2«i I 2

s sin(CCI ) 1 «e k] site in this case. An example of such a surface of section
is shown in Fig. 3a. In contrast, if the value of C0 is increased
above «i I 2

s , some particles have access to the circulatingdCCI

dt
5 12x

(16) region, see Fig. 3b.
We see that the surfaces of section reproduce the generaldh

dt
5 2(x 1 jp)k structure of the pendulum phase portrait. Note, however,

the distortion induced by the coupling between the CIR
and LER. For instance, the libration center in Fig. 3b isdk

dt
5 1(x 1 jp)h 2 «e .

located at p20.8 km from the CIR radius. Remember also
that the actual motion of the particle guiding center is quite
more complicated than the trajectories shown in Fig. 3b.The integral of motion of this system is obtained from

An example is given in Fig. 4, where (CCI , Da) is plottedEq. (5), where u 5 v 5 I 5 0:
not only when k 5 0, but also at every time step (18.25
days in this particular integration). The guiding center of

C0 5
x 2

6m2 1 «i I 2
s cos(CCI ) 2

jp

2
[(h 2 h0)2 1 k2 ]. (17) the particle is initially placed at 21.05 km from the CIR

radius, and at CCI 5 1808. The eccentricity vector of the
particle is then h 5 26.54 3 1025, k 5 0. The total integra-

The subscript 0 in C0 reminds us that we force here the tion time represents 200 years. Note that the guiding center
particle to have a zero inclination. of the particle actually explores a symmetrical region

The system (16) admits a stable fixed point at x 5 0, around Da 5 0, due to the variation in free eccentricity of
CCI 5 1808 (center of the corotation site), with the forced the orbit with time. This radial forcing has the typical
eccentricity h ; h0 5 «e/jp , k 5 0. We would like to know period of p7 months or more calculated in Eq. (13). Super-
what happens as we get farther away from this fixed point. imposed to that relatively fast period is the slower p5

The system (16) describes a two-degree of freedom years libration motion estimated in Eq. (8).
dynamical system (essentially a pendulum receiving or Even though the corotation site in the surface of section
yielding energy from or to the Lindblad resonance) with has a width of p0.75 km (Fig. 3b), the guiding center is
an integral of motion, C0 . Consequently, surfaces of section actually able to explore a much larger region of width
can be made to disentangle the complex motion of the p2.15 km. It is even able to reach or go beyond the unstable
particle. saddle points at CCI 5 08 or 3608, while remaining trapped

Namely, we fix a value for C0 , and we plot the value of in the corotation site. This may have important conse-
(CCI , Da 5 2xaCI/3m) every time the trajectory goes quences for the material distribution in Neptune’s arcs:
through the surface k 5 0. Actually, there are two possible particles can cross the separatrix between two arcs, but
trajectories going through the point (CCI , Da), corre- have nevertheless a stable motion in one of them.
sponding to the two roots h1 and h2 of the equation in h, As noted above, this effect is caused by the free eccen-
C0 5 x 2/6m2 1 «i I 2

s cos(CCI ) 2 jp/2(h 2 h0 )2. Choosing tricity of the particle. In the present simulation, the particle
always the larger root then ensures the uniqueness of does not suffer any collisions with other particles. In a real
the orbit. We do not use the criterion k

.
. 0 (or k

.
, 0), arc, however, collisions will randomize the free eccentricity

because two different trajectories going through the point and result in a motion even more complicated than in
(CCI , Da) may have both k

.
. 0 (or both k

.
, 0). Fig. 4. The eventual stability of the particle motion in the

Physically, the surface of section shows the position of corotation site is thus a more subtle matter than just having
the particle guiding center every time the conjunction with the semi-major axis of the particle at 60.24 km from the
the satellite occurs at the periapse or the apoapse of the CIR radius (see Eq. (7)).
particle. As C0 is increased, a chaotic zone appears in the surface

Because jp , 0, Eq. (17) shows that we always have of section, see Fig. 5. The initial conditions for the particles
C0 $ 2«i I 2

s. Also, the existence of two real roots h1 and having a chaotic motion are still quite plausible in the case
h2 requires x 2/6m2 1 «i I 2

s cos(CCI ) # C0 . This in turn of Neptune’s arcs. For instance, the particle in the chaotic
defines an accessible region for the guiding center in the zone of Fig. 5a starts with an eccentricity p1024, on the
(CCI , x) plane, once C0 has been given. In particular, for order of magnitude of the eccentricity of the arcs, p4.7 3

1024. Note also that the chaotic zone does not affect the
2«i I 2

s # C0 # «i I 2
s (18) stability of the corotation sites themselves, which stay in

the regular part of the diagram. This is true in the semi-
planar problem we are considering here, but not anymorethe surface of section is confined in a finite interval of

CCI inside 08–3608, and also in a finite interval of Da. in the full 3-D problem we will investigate now.
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FIG. 3. (a) Surface of section showing the topology of the dynamical system described by the semi-planar system (16). The latter describes
the average motion of a particle orbiting in the equatorial plane of the planet and perturbed by an inclined satellite. The positions of the particle
guiding centers are plotted every time k 5 0. The reference radius (Da 5 0) corresponds to the corotation inclined resonance (CIR) radius.
The actual mean longitude of the particle inside the corotation site is l 5 CCI /2umu, with m 5 243. In this example, the constant C0 (Eq. (17))
is 2.933522 ... 3 10212, and all the particles remain trapped in the corotation site because C0 , «i I 2

s (Eq. (18)). Note, however, the distortion
of the site due to the interaction with the LER, with respect to the classical pendulum phase portrait. (b) Another surface of section, with
C0 5 212.996 ... 3 10212. Some particles can now have libration motions. Note the change of the radial scale between (a) and (b).
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FIG. 4. Actual motion of the guiding center for one of the particles of Fig. 3b. The guiding center of the particle is plotted every 18.25 days,
and the overall duration of the integration is 200 years. The larger dots at the bottom are those corresponding to one of the surfaces of section
k 5 0 already shown in Fig. 3b. Note that the particle semi-major axis actually explores a quite wider region than indicated by the surface of section
itself. Note also that although CCI can go just beyond 08 or 3608, the particle is still stably trapped into the libration site. See the text for discussion.

5.3. The 3-D Case: Stochastic Migration from Site to Site This slow modulation modifies the width the actual corota-
tion site felt by the particle, as explained in Section 4.3

We now relax the constraint u 5 v 5 0 (planar motion
(see also Fig. 6a). Of course, we can choose particles which

of the particle), and we integrate the full 3-D system (3).
are sufficiently inside the corotation site for this migration

Figure 6a shows the position of the guiding center of a
to be inhibited, or sufficiently outside the site for any cap-

particle whenever k 5 0, superimposed to the surface of
ture to be impossible. The important point is that even the

section already shown in Fig. 3b. Note that each point
averaged problem exhibits an inherently chaotic nature.

(CCI , Da) does not define uniquely an orbit anymore, since
This allows the particles to diffuse from arc to arc even in

we have a new degree of freedom associated with the
the absence of any dissipation.

vertical motion of the particle. We see that the particle can
As expected, this character will be confirmed when we

now explore successively the libration and the circulation
integrate the motion of the particles with the mapping

regions of the phase space.
method, which takes into account the high-frequency terms

This behavior is shown more readily in Fig. 6b, where
of the satellite perturbations.

the longitude l of the particle is plotted in a frame rotating
with the corotation potential, which revolves at the angular

6. THE MAPPING METHODvelocity nCI 5 [(m 1 1)ns 2 V
.

s ]/m. The angle lCI thus
denotes the quantity nCIt in this diagram and some of the The general philosophy adopted now is to consider that
followings. We clearly see the wandering of the particle the particle orbits close enough to the satellite so that the
from one site to the other during the 1200 years of the latter gives little instantaneous ‘‘kicks’’ to the particle at
integration. Episodes of captures, which may last up to each conjunction. These kicks remain small if the particle
p50 years, are irregularly interrupted by migrations from does not orbit too close to the satellite, or more precisely,
one site to the adjacent site. Also plotted for comparison to its Hill radius RH 5 as H, where the reduced Hill radius
is the (regular) libration of the particle in the semi- H is
planar case.

This wandering is modulated by the p27 years oscillation
of the mutual inclination Im forced by the differential nodal H ; S Ms

3MN
D1/3

. (19)
precession rate of the particle and the satellite (Eq. (15)).
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FIG. 5. (a) Same as described in the legend to Fig. 3, but with C0 5 1155.3744 ... 3 10212. Note the appearance of a chaotic zone just below
the corotation site. Note also that the corotation site itself is not affected by chaoticity. (b) Same as above, but with C0 5 5155.3744 ... 3 10212.
The islands near 08 or 3608, and Da 5 22 km, do not correspond to stable libration motions, but to circulation of CCI .

The kicks cause small discontinuities in the orbital integrators (see, for instance, the discussion by Kolvoord
and Burns, 1992). Some care must be taken, however, inelements of the particle and are described by a 3-D

mapping. the derivation of the mapping, as explained in Appendix
B. Also, the mapping is very general and can readily makeThe advantage of the mapping in this context is that

it is tremendously fast compared to classical numerical use of any small mass for the satellite, at any distance
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FIG. 6. (a) The regular curves are a part of the surface of section of Fig. 3b (semi-planar problem), while the scattered points are a surface of
section where the particle is allowed to have a 3-D motion. This new degree of freedom allows the particle to alternate chaotically between libration
and circulation motions. (b) The longitude of the particle shown in (a) is plotted vs time, in a frame revolving with the corotation potential. This
plot is obtained by integrating the averaged equations of system (3). Note the sudden jumps from one corotation site to the other. For comparison,
we also plot the regular motion of a particle starting with the same initial conditions, but that we force to have a 2-D motion (semi-planar problem,
integration of system (16)).
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FIG. 7. Test of the validity of the mapping integration. We have chosen to compare the phase portrait of the LER, assuming a 2-D motion
for both the satellite and the particle, and a circular orbit for the satellite. (a) Result using the averaged equations (10), with a fixed value of J and
various values of K. (b) Result using the mapping. Each trajectory shown in (a) has been reintegrated by the mapping, using the same initial
conditions in each case. See Section 6 for discussion.

from the ringlet (within the constraints listed below). This • The orbital separation ua 2 asu is large compared to
the Hill radius RH 5 as H of the satellite.contrasts from Showalter and Burns’ (1982) 2-D approach,

for which a specific tabulation of the perturbation integrals • The orbital separation ua 2 asu oscillates around a con-
stant average value (i.e., there is no long-term drift of theis necessary for each new case of interest.

We derive the mapping expression from the 3-D Hill particle semi-major axis).
• The radial and vertical displacements of the satelliteequations of motion. In this context, the particle motion

is described by a set of six epicyclic elements, which are and the particle are small compared to the orbital separa-
tion: ases , asis , ae, ai ! ua 2 asu.constant when no perturbation is applied, and which vary

suddenly at each conjunction with the satellite. These epi-
These conditions hold for the Adams ring and Galatea,cyclic elements are the equivalent of the osculating orbital

since Ms 5 2.12 3 1021 g, ua 2 asu 5 980 km, RH 5 119 km,elements in the perturbed Keplerian motion. They are used
i.e., Ms/MN p 2.07 3 1028 ! 1, ua 2 asu/a p 1.6 3 1022 ! 1,here because they are better adapted to the particular
RH/ ua 2 asu p 0.12, and the radial and vertical excursionsgeometry of our problem. The mapping thus provides the
of the arcs (p30 km, Porco 1991) are small compared todiscontinuous variations of these epicyclic elements during
ua 2 asu p 980 km.a conjunction with the satellite.

The mapping must have several qualities: (i) give anThe practical implementation of the mapping is de-
accurate description of the effect of an individual conjunc-scribed in Appendix B. It is derived under the following as-
tion with the satellite, (ii) conserve the Jacobi constantsumptions:
(Eq. (B14)), (iii) conserve the areas in the planes of the
eccentricity and inclination vectors (symplecticity), and• The mass of the satellite is much smaller than the mass

of the planet: Ms ! MN . (iv) reproduce on the long term the phase portraits of the
resonances. The methods used to fulfill these requirements• The ring particles are massless.

• The orbital separation of the particle and the satellite are discussed in Appendix B.
We test the mapping in the simplest case where bothis small compared to the orbital radius of the satellite or

the particle: ua 2 asu ! as , a. the particle and the satellite have zero orbital inclinations,
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FIG. 8. The mean longitude of three test particles as a function of time. Their motions have been integrated by the mapping method, with no
dissipation applied. The longitude is plotted in a frame revolving with the corotation sites. We used three slightly different initial positions for the
particles, to show the transition between a stochastic migration from site to site (particle 1) to a stable libration inside the initial site (particle 3).
Compare with the behavior observed in Fig. 6b. Note the smoothness of the curves in the latter diagram compared to those here, which was due
to the averaging of the high-frequency terms.

and the satellite has a circular orbit. There is in this case to the conjunctions with the satellite will be accounted
for. As we have already pointed out in the Introduction,only one resonance at work, namely the LER. The corre-

sponding averaged problem has been described in Section it is important to note that the mapping is actually an
integrator. Consequently, it takes into account both high-4.2, system (10), and the corresponding phase portrait is

shown in Fig. 7a. Figure 7b shows the results of the mapping frequency terms and resonant terms of any order, whether
they are overlapping or not.integration. More precisely, for each invariant curve shown

in Fig. 7a, we have integrated in Fig. 7b the motion of the In a first step, we consider only test particles perturbed
by gravitational conservative forces from the satellite andparticle with the mapping, using the same initial conditions.

One can note the excellent qualitative and quantitative from the planet’s oblateness. This case is relevant to large
particles inside the Adams ring, for which dissipative forcesagreements between the two methods at low eccentricity.

Note, however, the ‘‘islands’’ which appear in the mapping may be neglected.
integrations for eccentricities larger than p1.2 3 1023.
They are due to higher order terms in the perturbing poten-

7.1. Site to Site Migration: Effect of Initial Conditionstial of the satellite and to the couplings with the nearby
mean motion resonances corresponding to m 5 242 and We consider the motion of three test particles with differ-
m 5 244. ent initial conditions (Fig. 8). Particle 1 is placed near the

separatrix between two adjacent sites, while particles 2
and 3 are located further inside. Figure 8 shows the mean
longitude of each particle as a function of time, in a frame7. STOCHASTIC MIGRATION IN ADAMS RING:
corotating with the arcs. While particle 3 remains trappedTHE GRAVITATIONAL CASE
for 1500 years (more than 106 revolutions), particle 2 and
especially particle 1 suffer a stochastic diffusion from oneFrom now on, we use the mapping to integrate the mo-

tion of the particles. Thus, the high-frequency terms due site to the other. This confirms the behavior found in



144 FORYTA AND SICARDY

FIG. 9. (a) Close-up of the motion of particle 1 shown in Fig. 8 at small times. (b) The mutual inclination Im of the particle and the perturbing
satellite as a function of time. Note the clear correlation between the migration from site to site and the fact that Im reaches a minimum value. See
the discussion in Section 5.3.

Section 5.3, using the averaged equations, as illustrated in the times when the mutual inclination Im of the particle
and the satellite is minimum. This is in agreement with theFig. 6b.

Figure 9 shows the clear correlation between the migra- results shown in Fig. 6a: the migrations occur when the
corotation site is narrowest, i.e., when Im is smallest.tion phases of particle 1 from one site to the other, and
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FIG. 10. Evolution of 104 test particles released at time t 5 0 at the location of particle 3 of Fig. 8, but with a random 3-D velocity ranging
from 0 to 1 cm sec21, simulating the effect of dust ejection from a parent body. (a) Azimuthal density distribution of the particles after t 5 500
years. (b) Positions of the particles in a longitude-radius diagram at the same time. The radial distances are counted from the CIR radius.

7.2. Site to Site Migration: Particles Released at the tion is applied yet). The aim pursued here is to see how a
cloud of particles released from a parent body will diffuseSame Location

in an arc, and eventually in the continuous part of the ring.We now consider the effect of slightly different initial con-
To do so, we consider 104 particles launched from the sameditions on the evolution of a swarm of particles (no dissipa-
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FIG. 11. Same as described in the legend to Fig. 10, but with 104 particles initially released from particle 2 of Fig. 8. No dissipation is applied.
The system is shown after 450 years. In this figure and in those following, the vertical lines mark the boundaries of the corotation site where the
particles are initially released. (a) Positions of the particles in a longitude-radius diagram. An arc is still clearly visible around the parent body.
Many particles have escaped the site, forming a continuous ring of width p50 km. The structure of the latter is examined more globally in Figs.
15 and 16. The sine-shaped structure of amplitude p30 km is forced by the nearby Lindblad resonance (see Eq. (11)). (b) Positions of the guiding
centers of the particle motion in a longitude-semi-major axis diagram. Note the change of scale between (a) and (b). Although stably trapped in
the site, the particles have semi-major axes spanning a radial interval quite larger than the expected width of the corotation site (WCI p 0.5 km,
see Eq. (9)). This behavior has already been illustrated in Fig. 4 and is discussed in Section 5.2. (c) Azimuthal density distribution. Note the structures
inside the arc, with the accumulations of material near the separatrixes with adjacent sites (vertical lines). This is caused by the slower libration
motion of the particles there. Note also the absence of clear structures in the continuous part of the ring. (d) Mutual inclinations Im of the particles
and the satellite vs longitude.
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FIG. 11—Continued

‘‘parent body’’ (particle 1, 2, or 3 of Fig. 8), but with a certain body. We have chosen a typical value of vmax 5 1 cm sec21

because, for larger velocities, the particles leave rapidlyvelocity dispersion with respect to that body.
More precisely, these 104 particles have relative veloci- the arc region, especially under the effect of Poynting–

Robertson drag (Section 8.2). On the other hand, smallerties randomly distributed in the 3-D space, with a modulus
randomly chosen between 0 and vmax 5 1 cm sec21 . This values of vmax would give very similar initial conditions,

and thus would yield little information on the spreadingejection velocity can be the result of a collision by another
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FIG. 12. Same as described in the legend to Fig. 11, but after 500 years. At that time, the arc particles are reaching their maximum values of
Im , see (d). This explains why they are more efficiently confined in the arcs. Compare in particular the conspicuous arc structures observed in (c)
and the corresponding Fig. 11c.

of the cloud of particles. Thus, the value of vmax taken here tions). All the particles remain trapped in the corotation
site. As the parent body gets closer to the separatrix, how-is justified as long as we want to know how particles ejected

from a parent body will fill in the corotation sites. ever, the ejected particles can escape from the site. Exam-
ples are given in Figs. 11 and 12, corresponding to ejectionFigure 10 shows the positions of particles ejected from

particle 3, after 500 years of integration (p4 3 105 revolu- of dust from particle 2. Note the continuous component
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FIG. 12—Continued

of the ring created by the particles which have escaped the saddle points connecting adjacent sites (vertical lines).
Note also that the border with the site just right of thefrom the site. Note also that the arc remains nevertheless

well defined, although its azimuthal structure may vary in main arc is not well defined. This is because particles are
migrating to that adjacent site. This migration is correlatedtime (compare Figs. 11c and 12c).

In Fig. 11c, particles statistically accumulate near the two with the mutual inclinations Im of the arc particles and
the satellite being minimum, see Fig. 11d. In Fig. 12c, inseparatrixes, due to the slower azimuthal drift rate near
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FIG. 13. Same as described in the legend to 12c, but with 104 particles initially released from the particle 1 of Fig. 8. The system is shown after
500 years. The initial arc region (delimited by vertical lines) is still visible, but will be rapidly erased by ongoing migrations from site to site.

contrast, the main arc is much better defined. The borders of the arcs at a given time will cross the trajectories of
particles at the inner part every half period, resulting inat the left and the right of this arc are quite sharp. Corre-

spondingly, the mutual inclinations Im are at their maxima collisions.
(Fig. 12d), so that no migrations to neighbor sites are tak-

7.3. Azimuthal Structure of the Arcs
ing place.

In the last run of this series, particles are ejected from
particle 1. Because this particle is closest to the separatrix, We now examine some interesting azimuthal structures

caused by the stochastic migration of the particles betweencompared to particles 3 and 2, more escapes take place.
After 500 years (Fig. 13), most of the particles have left sites. Once again, it is important to note that these struc-

tures appear without any dissipative processes; i.e., theythe initial site and have populated the neighbor sites. Al-
though the signatures of the various arcs are still visible, are solely due to the chaotic nature of the gravitational

perturbations of the satellite. In that sense, the structuresthese structures will rapidly disappear due to the mixing
of particles from site to site. we will describe concern the larger particles of Adams ring

(parent bodies), from which dust can be ejected.In all the diagrams showing the position of the particles,
it is interesting to note that the physical width of the arcs Figure 15 presents a general pole-on view of the ring

already shown in Fig. 12. One can see the radial forcing(p50 km) is quite larger than the width expected from the
eccentricity gradient caused by the LER across the arc, due to the LER (exaggerated by a factor 100 for sake of

clarity), the clustering of particles around the parent bodyp7 km (see Section 5.1). Clearly, this is due to the fact
the particles do not have initially the forced eccentricity (particle 2), as well as the continuous component due to

those particles which escaped the initial corotation site.given by Eq. (11). Instead, they follow more complicated
trajectories, an example of which is given in Fig. 4. The A close up view of the parent body region is shown in

Fig. 15b. One can note the dense arc, accompanied by threeimplications of this effect for the arc stability are discussed
in Section 10. We note for the moment that this relatively fainter leading arcs (already visible in Fig. 12c). Finally, a

global azimuthal density profile of the ring is shown inlarge width is maintained during one revolution of the arcs
(p10.5 hr), as illustrated in Fig. 14. This figure shows a Fig. 16. One can note the densely populated arc region,

and also the general bowl-shaped ring profile which reachessequence of six images taken every 2 hr, covering 10 hr.
As we discuss in Section 9, the particles at the outer part a minimum 1808 away from the densest region. This is



NEPTUNE’S ARCS DYNAMICS 151

reminiscent of the density profile observed in Adams ring the results in terms of b(, the conversion to the particle
size being provided by the equation above.(Showalter and Cuzzi 1992).

More complicated patterns can be generated, as shown

8.1. Pressure of Radiation
in Fig. 17. Several groups of particles were released from
different parent bodies, at various locations and at different
moments. In the example shown in Fig. 17, six releases of The pressure of radiation FP(() due the Sun is
particles have been triggered during the 500 years of the f(AQ(/c, where f( is the solar constant at the particle, A
simulation (one at the initial time, and the most recent is its geometrical cross-section, and c is the speed of light.
one 250 years later). The times and locations of these The same expression holds for the planetary pressure of
releases were chosen to crudely reproduce the azimuthal radiation FP(N), with subscripts N instead of (. Thus,
profile of Adams ring arcs, with Liberté, Egalité, and Fra-
ternité. Note in particular the trailing arc spanning two
corotation sites, between the longitudes p58 and p138,

FP(N)
FP(()

5 SfN

f(
DSQN

Q(
D . (21)

which is reminiscent of arc Fraternité. This phenomena is
actually due to the merging of two previously isolated arcs.

Of course, the choice of the times and the locations We have fN/ f( p p(RN/a)2, where the geometrical albedo
where the particle were released are completely ad hoc, of Neptune is p p 0.3, its radius is RN p 25,000 km, and
since they are intended to reproduce the present structure the distance to the planet is a p 63,000 km, so that
of Neptune’s arcs system. Nevertheless, this shows at least fN/ f( & 0.05. If we consider the solar reflected light from
that it is possible to reproduce this general structure, using Neptune, then QN 5 Q(. If we consider the IR emission
only random events. A more complete study must of course of the planet (at 50 em and larger wavelengths), then
take into account much more complex processes, such as QN ! Q( because the wavelength becomes larger than the
drag forces (Poynting–Robertson or even a planet exo- particles. In any case, we see that fP(N)/ fP(() ! 1. The
sphere) or collisions. Some aspects of these processes are pressure of radiation of the Sun thus dominates by far that
now examined. of the planet.

Strictly speaking, however, the effect of the pressure of
radiation from Neptune is to replace the mass of the planet

8. RADIATION FORCES
by (1 2 bN )MN . This in turn shifts the location of a given
resonance by da 5 abN/3, from Kepler’s third law. EvenWe address here the question of the arc stability against
if this effect is not dominant compared to the solar pressureradiation forces. We are thus concerned now with the pop-
of radiation, it should be quantified, especially because ofulation of p1–100 em-sized particles. These forces can be
the close packing of the resonances (Fig. 1). We havedivided in two classes: the pressure of radiation and the

Poynting–Robertson (PR) drag. An exhaustive description
of these forces and their effects can be found in Burns, bN

b(

5 SfN

f(
DSQN

Q(
DSFG(()

FG(N)D . (22)Lamy, and Soter (1979), thereafter referred to as BLS.
Each of these forces arises from two sources: the Sun

and Neptune. Their intensity is conveniently expressed in
Using the typical values of the gravitational forces FG(N)terms of the ratio b( (bN ) between the radiation pressure
and FG(() at Adams ring, one gets bN/b( , p2 3 1027.FP(() (FP(N)) due to the Sun (Neptune) and the gravita-
Finally, from Eq. (20), one obtains bN , p1027Q(/rs.tional force FG(() (FG(N)) due to the Sun (Neptune).
Even for s 5 1 em, Q( 5 1, and r 5 1 g cm23, we seeEach b depends on the optical properties of the grain and
that bN , p1027. Thus, the pressure of radiation from theof the source of light. We shall see that the planetary
planet causes, at most, a shift of the resonance radius ofcontribution (bN ) can actually be neglected in our case.
da p 2 m. In view of other, quite larger, perturbations,For spherical particles of radius s and density r illuminated
this shift can be neglected here. Note also that the night-by the Sun, BLS obtain
side asymmetry has not been considered here, since the
planetocentric elevation of the Sun is presently large
enough for the Adams ring to be permanently illuminatedb( p 0.57Q( S1 g cm23

r
DS1 em

s D , (20)
by the solar light.

Introducing the pressure of radiation FP(() due to the
Sun is a more arduous task, at least from an analyticalwhere Q( is the radiation pressure efficiency for the solar

light. Unless otherwise stated, when numerical applications point of view. Its effects have been extensively described
by Mignard (1982, 1984) and Mignard and Hénon (1984).are required, s and r will respectively be expressed in

micrometers and grams per centimeter3. We will discuss They showed that in the case of a spherical planet, the
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FIG. 14. (a) Same as described in the legend to Fig. 12a. (b)–(f) Positions of the particles every 2 hours. The total time span, 10 hours, represents
approximately one orbital revolution of the arc (p10.5 hr). In this frame, corotating with the corotation site, the arc keeps a constant longitude.
The general sine-shaped structure, on the other hand, is forced by the LER and follows the satellite. The longitude of the satellite (but not its real
radial position) is marked by the dot labeled S.
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FIG. 14—Continued

problem is integrable. In particular, the semi-major axis used in our numerical code the perturbation equations
of the particle is conserved, but quite large eccentricities derived by Hamilton (1993). His equations (10a)–(10e)
can be forced. In the case of an oblate planet, however, provide the rates of change of the particle orbital elements
the eccentricity forced by FP(() is very much reduced, caused by FP(().

We consider again the particle 3 of Fig. 8, but now, itessentially due to the fast precession rate induced on the
periapse. Instead of taking an analytical approach, we have is submitted to the solar pressure of radiation. We have
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FIG. 14—Continued

taken various values for the coefficient b(, namely 0.2, Figure 18 shows the motion of the particle in the corotat-
0.02, 0.004, and 0.002. Considering a rocky particle with a ing frame, for 500 years. Particles with b( . p0.01 are
density r 5 3 g cm23 in the geometrical optics approxima- blown away from the corotation sites in a few years only,

although some transient captures in other sites may oc-tion (Q( 5 1), Eq. (20) yields corresponding particle sizes
of s 5 1, 10, 50, and 100 em, respectively. cur subsequently.
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FIG. 15. (a) Complete pole-on view of the simulation already shown in Fig. 12. For sake of clarity, the radial distorsion of the ring has been
expanded by a factor 100 with respect to the CIR radius. Note the gradual fading of the ring density as one gets away from the initial arc region.
(b) Close-up view of the arc region, as observed from an elevation of 58 above the ring plane. Note the finite width of the ring.

8.2. Poynting–Robertson Drag particle to reach an equilibrium configuration. The damp-
ing rates given in Eqs. (23) and (24), combined with the

Like the pressure of radiation, the PR drag arises
system (16), provide the new system:

from both Neptune and the Sun. Each source creates a
dissipative force, namely FPR(N) 5 2bN FG(N)v/c and
FPR(() 5 2b( FG(()v/c, where v is the orbital ve-

dx

dt
5 13m2[2«i I 2

s sin(CCI ) 1 «e k] 2
6a(

5n
m

locity of the particle around Neptune. Again we have
FPR(N)/FPR(() 5 ( fN/ f()(QN/Q() ! 1. Consequently, dCCI

dt
5 12x

(25)
only the solar PR drag will be considered here.

In the limiting case where the eccentricity is zero, the
PR drag damps the semi-major axis and orbital eccentricity dh

dt
5 2(x 1 jp)k 2

a(

n
h

of the particle at rates (BLS):

dk
dt

5 1(x 1 jp)h 2 «e 2
a(

n
k.S1

a
da
dtDPR

5 2
4
5

a( (23)

Inside a corotation site, an equilibrium is possible at the
pointS1

e
de
dtDPR

5 2a( , (24)

sin(CCI ) p
a(

5mn«i I 2
s

p 20.52b(
with a( 5 b( (5GM()/(2ca2

() p 5.5 3 10214b( sec21, where
M( and a( are the mass and distance of the Sun, respec-

x 5 0
(26)

tively. At the radius of Adams ring, this implies a decay
rate of (da/dt)PR p 2110b( m year21. At first glance, this

h 5
jp«e

(a( /n)2 1 j 2
p

p
«e

jpseems quite a rapid decay. For instance, a particle with
s 5 1 em, Q( 5 1, and r 5 1 g cm23 would cross the entire
corotation site in less than 8 years. However, the CIR and k 5

2(a( /n)«e

(a( /n)2 1 j 2
p

p 0,
LER resonances interact with the PR drag, allowing the
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FIG. 16. Azimuthal distribution of the particles shown in the previous figure. (a) General view showing the main arc and the leading secondary
arcs. (b) Vertically expanded view showing the overall bowl shape of the continuous ring component, with the minimum reached 1808 away from
the arc region. Recall this distribution is the result of conservative stochastic diffusion only.

the approximations stemming from the smallness of a( /n mains very close to the equilibrium point correspond-
ing to the conservative case, namely CCI 5 1808, x 5 0,with respect to jp .

Near this equilibrium point, the satellite provides, h 5 «e/ jp , and k 5 0. For instance, even with the high
value of b( 5 0.57 previously used, we get an equilibriumthrough the corotation resonance, the energy dissipated

by PR drag. One can see that the particle actually re- value CCI p 1808 1 178, corresponding to a shift in longi-
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FIG. 17. (a) Azimuthal distribution resulting from the release of 104 particles at six different times in a 500-year interval. These times have
been chosen so that to crudely reproduce the density azimuthal profile of Neptune’s arcs. The vertical lines in the close-up view of (b) delineate
the boundaries between corotation sites. See the text for discussion.
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FIG. 18. Mean longitude (in the corotating frame) vs time of a particle subjected to a solar pressure of radiation of various intensities. The
initial conditions for that particle is that of particle 3 of Fig. 8. The values of the ratios of the solar radiation pressure to the solar gravity force are
as follows: (a) b( 5 0.2, (b) b( 5 0.02, (c) b( 5 0.004, (d) b( 5 0.002. See the text for discussion.

tudes of only 178/2umu p 0.28 with respect to the center of year integration, with b( 5 0.57. The slow libration motion
has a center which is slightly shifted with respect to 1808,the corotation site.

An example of motion with PR drag (using the mapping, as expected from Eq. (26). Figure 20 shows the eccentricity
of the particle on a 1000-year time span (lower curve).not the system (25)) is shown in Fig. 19. The dots represent

the positions of the particle guiding center during a 10,000- The eccentricity slowly oscillates around the equilibrium
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FIG. 18—Continued

value «e/ jp p 4.3 3 1024. The oscillations of eccentricity Once a particle escapes from a corotation site, it begins
its decay toward the LER radius (1.65 km away) at theobserved in Fig. 20 are expected to damp on a time scale

of 1/a( p 106 years, according to the system (25). It is thus rate p2110b( m year21. Then, the particle orbital eccen-
tricity is pumped up by the LER, at a rate depending onlynot surprising that they appear essentially unaltered in

these relatively short integrations. on a( and m (and not on the satellite mass, see Sicardy
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FIG. 19. Stability of an arc particle against the solar Poynting–Robertson drag. Two integrations (using the mapping method) are shown here.
In both cases the total time span of each integration is 10,000 years and the ratio b( for the particle is 0.57. This value corresponds to an icy 1-em-
sized particle in the limit of geometrical optics. The output shows the guiding center of the particle at successive time steps, namely the distance
Da of the particle guiding center to the CIR radius vs the critical angle CCI . Dots: the particle is initially released at the center of the corotation
site (CIR radius, CCI 5 08, Da 5 0 km), and then remains stably trapped in the site. Crosses: the particle is initially released 1 km below the CIR
radius. It decays toward the Lindblad resonance (LIR) and then suffers a secular increase of eccentricity, see Fig. 20. No trapping in the corotation
site is observed in this case.

et al. 1993, Weidenshilling and Jackson 1993). Namely, eccentricities. Apart from the highly unstable nature of
this configuration against collisions, this geometry is at
contrast with observations.e(t) p Ï4a(t/5umu p Ï3.21 3 1028b( tyears (27)

First, the corotation sites are fully occupied by material,
implying a dispersion of semi-major axes, Da 5 WCI pwhen e is small.
0.5 km (Eq. (9)). Second, the observed physical width ofExample of such captures are shown in Fig. 21. Two
the arcs (p15 km from the ground-based observations) isparticles with b( 5 0.57 are released at Da 5 14 and
quite larger than p0.5 km. This requires a gradient of21 km from the CIR radius, respectively. During their
eccentricity aDe/Da across the arcs. This point is discusseddecay, they cross the LER radius, where they remain
by Porco et al. (1995) and in Section 5.1, where Eq. (11)trapped. In the meantime, their eccentricity increases as
was used to derive an expected value aDe/Da p 216.3,expected from Eq. (27), see Fig. 20. This situation is not
and thus a width of W p 7 km. This is still too smallstable because the eccentricity keeps on increasing until
compared to the observed widths, W p 15 km quotedsome new equilibrium is reached, for a very high eccentric-
above.ity, estimated to be p Ï2/5umu p 0.1 (Ibid.). Before this

A third point concerns collisions in the arcs. Even in thehappens, however, violent collisions with the arcs or the
most favorable case where all the particles have at all timescontinuous ring are likely to remove the particles trapped
the forced eccentricity given by Eq. 11, the streamlinesin the LER.
still cross near quadrature (see Fig. 2 of Goldreich et al.
1986 or Fig. 24 of Porco et al. 1995). The relative velocity9. COLLISIONS
of two particles having extreme semi-major axes differing

One of the most puzzling problems about the arcs is their by p0.5 km is then
apparent robustness against collisions. Avoiding collisions
can be achieved by placing all the particles in nested epi-
cycles with the same semi-major axis, but with different Dvr p an De p 1.4 m sec21, (28)
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FIG. 20. Orbital eccentricities of the particles shown in Fig. 19 vs time. The lower curve shows the stable oscillations of the orbital eccentricity
of the particle initially released in the corotation site. The upper curve illustrates how the eccentricity of the particle released just below the corotation
site is pumped up by the LER. The dot–dashed curve shows the theoretical expected behavior of the eccentricity in this latter case (Eq. (27)).

FIG. 21. Solid line: semi-major axes (with respect to the CIR radius) vs time of the particle shown as dots in Fig. 19. Dotted line: same, but
for the particle shown as crosses in Fig. 19. A third integration (dot–dash line) is shown, corresponding to a particle initially released 4 km above
the corotation site. Although the latter particles seem to be trapped at the LER resonance, they are not in a stable configuration, since their
eccentricities keep on increasing, see Fig. 20.
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where we used again aDe/Da p 216.3. The index r indi- though the semi-major axis falls out of the p0.48-km-wide
zone predicted by Eq. (7). As discussed in Section 5.2, thiscates that the relative preimpact velocity is essentially ra-

dial in this case. is due to the free eccentricity of the particles, which in
turn can be caused by interparticle collisions. It is out ofThis preimpact relative velocity Dvr will cause a variation

of both the longitudinal and radial velocities of the particles the scope of this paper to analyze the global effect of
collisions on the arc stability, but this effect should be keptinvolved in the collision. The ‘‘worst case’’ (in the sense

of the stability of the arcs) occurs for relatively elastic in mind when discussing the disruptive effect of collisions
on the arcs. Recent results of collisional simulations ofcollisions, where a significant part of the energy of the

collision may be redistributed in the longitudinal direc- Neptune arcs are presented by Hänninen and Porco (1996),
who show that meter-size and larger particles can actuallytion. This yields a variation of the longitudinal velocity

Dvu p Dvr p 1 m sec21 (where vu p an p 10.5 km sec21 is be confined in a corotation site in spite of collisions.
the tangential velocity of the arc particles). This implies a
change in semi-major axis of

10. DISCUSSION

Da p 2a
vu Dvu

(an)2 p 10 km, (29) We have studied in this paper the 3-D behavior of ring
particles near a m 1 1:m mean motion resonance with a
perturbing satellite on an inclined (but circular) orbit.

a very large value, considering the narrowness of the coro- Three resonances, acting together, define the long-term
tation site (see also the discussion by Porco 1991). motion of the particles, namely the CIR, the LER, and

A possibility to solve this problem is that the changes the LIR. The oblateness of the planet causes slight differ-
of velocity of both particles remain essentially radial, ences in the radial locations of these resonances, in spite
through a mechanism which should be explicited. When of the high value of umu (5 43 in the case of Adams ring).
they collide near quadrature, the particles have a radial Consequently, the relevant resonant interactions of the
velocity of vr p ean. Thus, a variation of the radial velocity particles and the satellite are found to occur in an interval
on the order of Dvr p 1 m sec21 implies a variation of of semi-major axes smaller than p2 km. The averaged
semi-major axis of motion of the particles is described by the system (3),

where the strong couplings between the resonances stem
from the smallness of jp and jn .Da p 2a

vr Dvr

(an)2 p 5 m, (30)
As long as the particle guiding centers remain close to

the center of the corotation sites, with orbital eccentric-
ities close to the eccentricity eforced forced by the LERwhich is now quite smaller than the width of the corota-
(Eq. (11)), then the particles remain stably trapped in coro-tion site.
tation sites of azimuthal extension 3608/2m p 4.188 each.A further ‘‘improvement’’ can be achieved if the colli-

The complexity of the motion appears rapidly, however,sions are inelastic enough for the particles to damp
as one gets away from that ideal situation. In effect, thecompletely their relative velocities (zero rebound coef-
eccentricity gradient forced by the LER across the corota-ficient). Then, the total energy lost during the collision is
tion site results in potential collisions with typical relativep(Dvr)2/4, implying a change in the semi-major axis of the
velocities on the order of 1 m sec21. This in turn kicks thesystem of the two particles
particles outside the site, or for the least, drives them into
quite complicated motions inside the arc. See, for instance,
Fig. 4, where the particle semi-major axis explores a regionDa p

a
2 SDvr

an D2

p 0.25 m, (31)
2 km wide and can reach the unstable points at CCI 5 08
or 3608, and yet remain stably trapped in the site.

We have shown that the coupling between the horizontalan even safer value. The problem with that scenario is that
it should lead to a rapid accretion of the particles in a few and the vertical motions is instrumental for driving the

particle into a chaotic motion, tossing stochastically the par-larger bodies. Thus, some disruptive (but not too cata-
strophic) mechanism is required to recreate smaller parti- ticle from site to site, see Figs. 6 and 9. The migration from

one site to the other occurs when the mutual inclinationcles. Tidal forces could, for instance, do the job since the
arcs are close to the Neptune’s Roche limit. between the arc and the satellite is the smallest. This con-

figuration happens every 30 years or so and is driven byA point worth being mentioned here is the stability of
the libration motion in a corotation site, once the semi- the small, but not zero, differential nodal precession rate

of the satellite and the particle. This modulation has im-major axis of the particle has been changed. As shown in
Fig. 4 for a single particle, or in Figs. 11b and 12b for a portant effects as to the aspect of the arcs at different

moments; compare, for instance, the azimuthal profiles incollection of them, the libration motion may be stable even
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Figs. 11c and 12c, taken 50 years apart. If left alone, and necessary to form new rings. Outside the corotation sites,
these rings are rapidly washed out by Poynting–Robertsoneven without any dissipative processes, the initial arc is
drag, on scales of decades or centuries only. Inside thescattered along the whole orbit in a few thousands years
corotation sites, a quasi-equilibrium can be reached forat most. See, for instance, Fig. 16, showing the azimuthal
those dust particles which maintain an eccentricity closeprofile of a ring after 500 years, with an initial velocity
to the forced value eforced . Thus, and independent of thedispersion between the 104 particles as low as 1 cm sec21.
physical lifetime of the grains (e.g., against micrometeoroidThe solar pressure of radiation will furthermore sweep
bombardment), corotation sites may correspond to loca-out from the arcs, in a matter of decades, all the particles
tions where particles statistically accumulate. The stochas-with a b( (ratio of the pressure of radiation to the solar
tic migration of the few fragments which are the source ofgravitation) larger than p0.01, see Fig. 18. This corre-
this dust can then explain the present distribution of mate-sponds to particles of size s & 50 em for icy particle, in
rial observed in Neptune’s arcs, see Fig. 17 and the accom-the limit of geometrical optics.
panying discussion. For this scenario to be valid, the largeThe results presented above seem to point toward the
particles must not suffer too frequent collisions betweenimpossibility of maintaining ring arcs in the frame of the
themselves, and this is the case if the large particles arecorotation resonance model. So, what is the status of such
not too numerous. The ultimate time scale over whicha model when confronted with the present arguments? The
arcs can be visible, as features concentrated in a limitedanswer may lie in the fact that we are seeing ephemereal
longitude range, is then the time scale for complete spread-structures. The problem is then to know whether these
ing by stochastic diffusion, i.e., several thousand years ac-structures are frequent enough to be statistically observable
cording to our simulations.over time spans of billions of years. Also, there should be

We note that the total mass of Neptune’s arcs wouldenough material available for renewing these structures
represent, if merged into a single satellite, a rather smallover such long periods. Finally, one should explain why
body with a size certainly not larger than p1 km, andarcs are observed at corotation resonances after all.
probably quite smaller (Sicardy and Lissauer 1992). InThe dust that we observe in the arcs must come from
contrast, Voyager has found several satellites whose orbitslarger particles embedded in Adams ring, which are too
are intertwined with Neptune’s rings. For instance, if La-rarefied to be detected, and which release the dust through
rissa, Galatea, Despina, Thalassa, and Naiad are mergedmeteoroid impacts and interparticle collisions (Colwell and
together, the resulting body would have a radius largerEsposito 1990). This population probably exists as a result
than p120 km (Smith et al. 1989). In other words, theof continuous meteoroid bombardment, disruption, and
bulk of material already contained in the known satellitesreaccretion (Colwell and Esposito 1992, 1993). These large
represents several million times the present mass of theparticles, however, should be found everywhere in Adams
arcs. This can provide over time scales of a billion yearsring region, i.e., not only in the corotation sites themselves,
the necessary source for ringlets of the type of Adams,but also in the space between two adjacent m 1 1:m reso-
each of them having a time life of some thousands years.nances. Note in passing that even then the percentage of
In that sense, an individual arc would be a rather short-particles right inside a corotation site is not so small, since
lived feature by solar system standards, but the chance toadjacent resonances are separated by only p23 km near the
observe some of them at a corotation resonance and at a62,932-km radius (Fig. 1). Considering that each corotation
given moment would not be so meager.site has a width of p0.5 km, this percentage should amount

A natural continuation of this work is of course the studyto about 1%.
of other arc structures, as observed for instance in Saturn’sAs shown by Figs. 19 and 21, the Poynting–Robertson
F ring, and the relation it bears with the satellites Pandora

drag has only a mild effect on dust particles already inside and Prometheus. Another direction to pursue, which was
the corotation site, and which have the forced eccentricity not considered here, is the influence of self-gravity in ring-
eforced . It just shifts by a small fraction of a degree the lets which orbit close to the Roche limit of the planet they
longitude of the particles with respect to the center of the circle (Canup and Esposito 1995). Corotation sites could
corotation site. This is no longer the case, however, for be in this context preferential locations where ongoing
particles which escape the corotation site, or which are accretion forms objects intermediate between particulate
formed from the beginning outside the arc region. These rings and compact satellites.
particles fall rapidly onto the nearest LER (Fig. 21), where
their eccentricity is equally rapidly pumped up (Fig. 20).

APPENDIX A: MEAN MOTION RESONANCESIn that sense, it is interesting to note that the corotation
sites ‘‘protect’’ particles against a secular increase of eccen-

Expansion of the Perturbing Potentialtricity caused by the nearby LER.
If this model is correct, then a small number of large Considering the Keplerian motion as the unperturbed one, the

particle is submitted to the perturbing potentials from (i) the satellite,particles continuously provides the dust and small particles
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Fs , and (ii) the planet’s oblateness, FJ2
. The perturbing potential of CLE , CCI , and CLI . The problem is then simplified, but it keeps neverthe-

less its 3-D aspect, and in particular, the couplings between the horizontalthe satellite
and the vertical resonances.

Fs 5 2GMs F 1
ur 2 rs u

2
r.rs

r3
s
G , (A1) Rates of Change of the Orbital Elements

The variations of the particle’s orbital elements are derived from the
total averaged Hamiltonian H

can be Fourier expanded in series containing trigonometric terms with
arguments (m 1 k 1 ks )ls 2 ml 2 kg̃ 2 ks g̃s or 2[(m 1 l 1 ls )ls 2

ml 2 lV 2 lsVs ], where the coefficients are all integers. We keep only
H 5

GMN

2a
1 R 2 L, (A5)the first-order terms in eccentricity and the second-order terms in inclina-

tion. This corresponds to first-order eccentric resonances, i.e., k 1 ks 5 1,
and to second-order inclined resonances, i.e., 2(l 1 ls) 5 2.

where the action L is the conjugate of the time (Brouwer and Clem-The Fourier expansion of Fs is straightforward, although rather tedious.
ence 1961).The general technique is detailed in Brouwer and Clemence (1961), or

The equations are simplified if we choose for the origin of the semi-in Shu (1984). A more specific expansion, applied to planetary arcs, can
major axes the radius aCI corresponding to the inclined corotation reso-be found in Sicardy (1991).
nance. This is the most natural origin for semi-major axes, since the arcsOn the other hand, the dominant term arising from the planet’s oblate-
are in principle confined near this radius.ness reads

The averaged Hamiltonian H can then be expressed in terms of the
quantities x, CCI , h, k, u, v, us , and vs defined in Eqs. (1), in the main
text. The calculation of the rates of change of the first six quantities

FJ2
5

GMN

r
J2 SRN

r D2

P2(cos u), (A2)
is then a matter of lengthy, but straightforward algebra (Brouwer and
Clemence 1961), yielding the system (3) in the main text.

where J2 is the second zonal harmonic, r, u, f are the usual spherical
Location of the Resonancescoordinates, and P2 is a Legendre polynomial. Other terms in J4 , J6

could in principle be included. However, due to their smallness, they The absolute geometrical radius of a resonance can be found from the
would not change the form of the equations of motion, nor the basic condition C

.
5 0, where C is any of the resonant angles of Table II.

couplings between the resonances. These terms are considered, however, For instance, to find the radius of the LER, one must fix C
.

LE 5
in Eqs. (A6) in order to derive accurately the locations of the reso- (m 1 1)ns 2 mn 2 g̃

.
5 0. We know ns from the Voyager observations

nances. (see Table I), and we can relate the mean motion n and the precession
The expression for the perturbing function R (opposite of the perturbing rate g̃

.
of the particle to its geometrical radius a and to the planet’s

potential) is then, to lowest possible orders in e, es , I, Is , and J2 , gravitational moments. Then one can solve for a. We have used the
following relations between the mean motion, precession rates, and geo-
metrical radius (Nicholson and Porco 1988, Borderies-Rappaport and

R 5 2as ns
Ms

MN
[Ae cos(CLE ) 1 Ees cos(CCE )] Longaretti 1994)

1 as ns
Ms

MN
V FI 2 cos(CLI ) 1 I 2

s cos(CCI )
(A3) n 5 SGMN

a3 D1/2F1 1
3
4 SRN

a D2

J2 2
9

32 SRN

a D4

J 2
2 2

15
16 SRN

a D4

J4G
2 2IIs cos SCLI 1 CCI

2 DG
V
.

5 SGMN

a3 D1/2F2
3
2 SRN

a D2

J2 1
9
4 SRN

a D4

J 2
2 1

15
4 SRN

a D4

J4G (A6)

1
1
2

a2n2J2 SRN

a D2S1 2
3
2

e2DS1 2
3
2

I 2D ,

g̃
.

5 SGMN

a3 D1/2F1
3
2 SRN

a D2

J2 2
15
4 SRN

a D4

J4G ,

where CLE , CCE , CLI , and CCI are the four resonant angles defined in
Table II. The coefficients A, E, and V are combinations of Laplace

where J2 and J4 are given in Table I. The equation (m 1 1)ns 2 mn 2coefficients b(m)
c

g̃
.

5 0 is then solved iteratively for a, and similar procedures are used
for the other resonances.

A ; 1
2 F2(m 1 1)b(m11)

1/2 1 a
db(m11)

1/2

da G
APPENDIX B: THE MAPPING

E ; 1
2 F(2m 1 1)b(m)

1/2 1 a
db(m)

1/2

da G (A4)
Hill’s Equation

We seek the variations of the epicyclic elements of a test particleV ; 1
8

ab(2m11)
3/2 ,

during a conjunction with a satellite. These variations are derived
using the 3-D Hill equations of motion. We will not enter in the
details of this derivation, extensively discussed elsewhere, see Hénonwhere a stands for a/as . For order of magnitude considerations, it is

useful to note that A and 2E are of order m, and that V is of order m2. and Petit (1986), Nakazawa et al. (1989a,b), and Hasegawa and Naka-
zawa (1990). However, we also take into account the planet’s oblatenessFor large umu, we have A/m p 2E/m p 0.802 and V/m2 p 0.085.

From now on, we assume that the satellite has a circular orbit in our model, which slightly changes some of the equations pre-
viously derived.(es 5 0, see the text). This leaves us with only three resonant angles



NEPTUNE’S ARCS DYNAMICS 165

The position of the particle (x, y, z) is measured in a Cartesian frame particle and the satellite is minimum (relative periapse). Similarly, tV is the
time when the particle crosses the satellite orbital plane in the ascendingOxyz centered on the planet. Oxy is the equatorial plane of the planet,

Ox is directed toward the satellite, Oy is perpendicular to Ox, in the direction (relative node).
We finally define the usual complex eccentricity and inclination of thedirection of motion, and Oz is aligned with the planet rotation axis.

We define the variables X ; (x 2 xs )/RH , Y ; (y 2 ys )/RH , and particle and satellite as
Z ; (z 2 zs )/RH , where RH 5 as H is the satellite Hill radius (Eq. (19)),
and (xs , ys , zs ) is the satellite position. In the limiting case where

p ; e · exp( jg̃) (B8)Ms /MN and (a 2 as)/as tend to zero, the equations of motion for the
particle relative to the satellite read q ; i · exp( jV) (B9)

ps ; es · exp( jg̃s ) (B10)Ẍ 5 [4n2
0 2 e2

0]X 1 2n0Y
.

1 FX

qs ; is · exp( jVs ). (B11)
Ÿ 5 22n0 X

.
1 FY (B1)

Z̈ 5 2n 2
0 Z 1 FZ , Considering that the integrated apsidal and nodal precessions are small

during the time of interaction (i.e., during a conjunction), we have

with

p* 5
1
H

[p 2 ps ] exp(2jlc) (B12)

F 5 (FX , FY , FZ ) 5 23 fn2
0

D

D3 , (B2)

q* 5
1
H

[q 2 qs ] exp(2jlc ), (B13)

D ; (X, Y, Z) and f ; GMN/a3
0 n2

0 . Note that the mass of the satellite
does not appear in these equations (it is actually absorbed in RH ). The

where lc is the (common) longitude of the two bodies at conjunction.frequencies n0 , e0 , and n0 are respectively the mean motion, the horizontal
When the force F is nonzero, Eqs. (B4) and (B5) still formally provideand vertical epicyclic frequencies in the satellite region. We also define

the solution of (B1), except that the quantities b, p1 , p2 , q1 , and q2 are nowthe frequency j0 :
osculating epicyclic elements. The system (B1) then admits an integral of
motion called the Jacobi constant

j0 ;
4n2

0 2 e2
0

3n0
. (B3)

J 5 e 2
0

e*2

2
1 n 2

0
i*2

2
2

3
8

e 2
0

j0

n0
b2 2

3 fn2
0

D
, (B14)

In the Keplerian case, n0 5 e0 5 n0 5 j0 and f 5 1.
a generalization of the usual Jacobi constant of the Hill problem in theIf the satellite has a zero mass (F 5 0), the general solution of (B1) is
case of an oblate planet. We calculate only the variations of p1 , p2 , q1 ,
and q2 over a conjunction, and the conservation of J then provides the

X 5 b 2[p1 cos(e0 t) 1 p2 sin(e0 t)] variation of b.
The variations of p1 , p2 , q1 , and q2 due to F are given, e.g., by Hasegawa

and Nakazawa (1990) for the Keplerian case. We have slightly differentY 5 2
3
2

j0b(t 2 t0) 1 2
n0

e0
[p1 sin(e0 t) 2 p2 cos(e0 t)] (B4)

expressions in the case of an oblate planet, i.e., to lowest order in
1/b 5 RH/(a 2 as ):Z 5 [q1 sin(n0 t) 2 q2 cos(n0 t)]

X
.

5 e0[p1 sin(e0 t) 2 p2 cos(e0 t)]
Dp1 5 0

Y
.

5 2
3
2

j0b 1 2n0[p1 cos(e0 t) 1 p2 sin(e0 t)] (B5)
Dp2 5 A

b
ubu3

(B15)Z
.

5 n0[q1 cos(n0 t) 1 q2 sin(n0 t)],

Dq1 5 B
q2

ubu3where b, t0 , p1 , p2 , q1 , and q2 are constants of integration. Without loss
of generality, the origin of time can be chosen at the moment of the

Dq2 5 2C
q1

ubu3
,conjunction, i.e., t0 5 0.

Variations of the Epicyclic Elements
with

We define the reduced, relative eccentricity p* and inclination q* of
the system satellite–particle as

A ; f Sn0

j0
D2F16

3 Sn0

e0
DK0 S2e0

3j0
D1

8
3

K1 S2e0

3j0
DG

p* ; p1 1 jp2 5 e* exp( je0 tg̃ ) (B6)

q* ; q1 1 jq2 5 i* exp( jn0 tV ), (B7) B ; f Sn0

j0
D2F2Sj0

n0
D1

8
3

K1 S4n0

3j0
DG (B16)

where e* and i* are called the reduced relative eccentricity and inclination C ; f Sn0

j0
D2F2 Sj0

n0
D2

8
3

K1 S4n0

3j0
DG ,

and j ; Ï21. tg̃ is the time when the radial separation x 2 xs of the
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and where Kl (z) are the modified Bessel functions. In the Keplerian case, mapping is close to the original mapping. We have B p 3 and
C p 1, and in the case of Galatea and Neptune, Ms/MN P 2.1 3 1028,n0 5 e0 5 n0 5 j0 and f 5 1, and we retrieve the results of Hasegawa

and Nakazawa (1990), with A 5 8.71 ..., B 5 2.94 ..., C 5 1.05.... as P 61952 km, and a 2 as P 980 km, so that RH P 119 km and b P 8.3.
Consequently, the terms in D and E represent respectively a fraction of
p1.8 3 1023 and p3.6 3 1023 of the main terms. The validity of theSymplectic Mapping
mapping, and in particular its ability to reproduce the various resonance

The variations of p1 , p2 , q1 , q2 can be given in a Hamiltonian form phase portrait, is examined in the text, see Section 6.

Implementation of the Mappingp
.

1 5 1
1
e0

­fs

­p2
Consider a ring particle in conjunction with the satellite at time tc , at

the common mean longitude lc . The various frequencies n0 , e0 , n0 , and
p
.

2 5 2
1
e0

­fs

­p1
(B17)

j0 , the satellite’s Hill’s sphere radius RH and the coefficients b0 , A, B,
C, D, and E entering in the mapping can be calculated once for all
from the particle epicyclic elements and from Eqs. (A6), (B16), andq

.
1 5 1

1
n0

­fs

­q2 (B20). Then:

(1) We first calculate the complex eccentricities and inclinations ofq
.

2 5 2
1
n0

­fs

­q1
,

the particle and the satellite (Eqs. (B8)–(B11)), the reduced relative
eccentricity p* and inclination q* (Eqs. (B6) and (B7)), and the reduced
impact parameter b.where fs 5 23 fn2

0 /D is the perturbing potential of the satellite. Thus, the
(2) We apply the mapping (B21) to p* and q* to get the new valuesflows of (p1 , p2 ) and (q1 , q2 ) are area-preserving.

p*9 and q*9.The mapping (B15) is not area-preserving, even if higher order
(3) The new value of b is derived from the conservation of the Jacobiterms in 1/b are included, as in Hasegawa and Nakazawa (1990). To

constant J (Eq. (B14)).make the mapping area-preserving, we first note that for a narrow
(4) The new complex eccentricity and inclination, and the new semi-ring, the variations of semi-major axis over many conjunctions are very

major axis of the particle are thensmall with respect to the distance of the satellite, i.e., Db ! b. Typical
values in the case of Adams ring are, for instance, Da p 0.5 km, while
a 2 as p 980 km, i.e., Db/b p 5 3 1024. Also, if the value of b does not

p9 5 Hp*9 exp( jlc ) 1 pssuffer systematic drift during time, as for those particles trapped in the
arcs, then it can be maintained to its initial value b0 over the entire q9 5 Hq*9 exp( jlc ) 1 qs (B22)
integration. The mapping (p1 , p2 ) R (p1 1 Dp1 , p2 1 Dp2 ) is then

a9 5 as(1 1 Hb9).obviously area-preserving since it is just a translation.
This is not the case for the mapping (q1 , q2 ) R (q1 1 Dq1 , q2 1 Dq2 ).

We thus look for a mapping of the form
(5) The common mean longitude l9c of the two bodies at the next

conjunction is

Dq1 5 B
q2

ub0u3
1 Dq1 (B18)

l9c 5 lc 1 n9 Dt, (B23)Dq2 5 2C
q1

ub0u3
1 Eq2 , (B19)

wherewhere D and E are constants adjusted so that the Jacobian of the above
mapping, 1 1 D 1 E 1 DE 1 BC/ ub0u6, is unity. Among the infinity of
solutions for D and E, we choose the smallest possible values, namely,

Dt 5
2f

uns 2 n9 u
. (B24)

D 5 E 5 2
BC/ ub0u6

1 1 Ï1 2 BC/ ub0u6
. (B20)

The satellite mean motion ns is taken from the Voyager observations
The final version of the mapping is thus (Owen et al. 1991, and see Table II). The particle mean motion and

precession rates are related to the geometric mean orbital radius a through
Eqs. (A6). This provides the new values of g̃, V, g̃s , and Vs at the nextDp1 5 0
conjunction, and the code returns to step (1).

Dp2 5 A
b

ub0u3
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Dq1 5 B
q2

ub0u3
1 Dq1
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