LESIA - Observatoire de Paris

  • Monday 3 October 2011 à 11h00 (Salle de conférence du bât. 17)

    Coronal heating in coupled photosphere-chromosphere-coronal systems: turbulence and leakage

    Roland Grappin (LUTH)

    Coronal loops act as a resonant cavity for low frequency fluctuations that are transmitted from the deeper layers of the solar atmosphere. Such fluctuations are amplified in the corona and lead to the development of turbulence that in turn is able to dissipate the accumulated energy, thus heating the corona. However trapping is not perfect, some energy leaks down to the chromosphere on a long timescale, thus limiting the turbulent heating.

    We consider the combined effects of turbulence and energy leakage from the corona to the photosphere in determining the turbulent energy level and associated heating rate in models of coronal loops which include the chromosphere and transition region. We use a piece-wise constant model for the Alfvén speed in loops and a Reduced MHD - Shell model to describe the interplay between turbulent dynamics in the direction perpendicular to the mean field and propagation along the field. Turbulence is sustained by incoming fluctuations which are equivalent, in the line-tied case, to forcing by the photospheric shear flows. We find that: (i) Leakage always plays a role, whatever the intensity of the photospheric forcing; the dissipation time never becomes much lower than the leakage time, at least in the three-layer model. Hence, the energy as well as the dissipation levels are systematically lower than in the line-tied model. (ii) In all models, the energy level is close to the resonant prediction, i.e., assuming effective turbulent correlation time longer than the Alfvén coronal crossing time. (iii) The heating rate is approximately given by the ratio of photospheric energy divided by the Alfvén crossing time. (iv) The coronal spectral range is divided in two, an inertial range with 5/3 spectral slope, and a large scale peak where nonlinear couplings are inhibited by trapped resonant modes. (v) In the realistic 3-layer model, the two-component spectrum leads to a global decrease of damping equal to Kolmogorov damping reduced by a factor urms/B0.

    Seminar in french


  • Friday 23 September 2011 à 11h00 (Salle de conférence du bât. 17)

    Nonlinear dynamics of the stellar-planetary environment: A cosmic vision of Poincare & Lagrange

    Abraham Chian (LESIA & National Institute for Space Research, Sao Jose dos Campos-SP, Brazil)

    Lecture 1/4 of a series of open lectures on “Nonlinear dynamics of the stellar-planetary environment".

    Reference: ApJL 733, L34 (2011); ApJL 735, L9 (2011); PRL 104, 254102 (2010)


  • Jeudi 1er septembre 2011 à 10h30 (Salle de conférence du bât. 17)

    Les pièges de l’imagerie directe des exoplanètes par LOCI, détection des planètes HR8799 en bande M et le survey IDPS

    Raphaël Galicher (Herzberg Institute of Astrophysics Université de Montréal)

    La majorité des exoplanètes connues à ce jour est découverte par des techniques de détection indirecte, c’est-à-dire sans détecter le flux lumineux provenant de la planète. De plus, à cause des biais observationnels, les planètes détectées orbitent généralement proche de leur étoile (<1UA). Afin de compléter l’échantillon des exoplanètes connues (orbites > qq UA) pour mieux contraindre les modèles de formation planétaire et afin de déterminer la composition de leur atmosphère, l’actuelle unique solution est l’imagerie directe. Pendant ma présentation je décrirai très brièvement un instrument typique d’imagerie directe d’exoplanètes et le mode d’observations ADI. Je détaillerai ensuite la technique de traitement d’images LOCI/SOSIE. Je mettrai en évidence les biais sur la photométrie et l’astrométrie des planètes dans les images LOCI/SOSIE et je proposerai des solutions pour les éviter. Puis, je présenterai une technique de suppression du fond de ciel qui domine les données en bande L et M. J’appliquerai cette technique pour obtenir la première image des planètes HR8799 b, c et d en bande M. J’expliquerai l’importance de cette détection pour la connaissance des atmosphères de ces planètes (non-équilibre chimique, comparaison avec les naines L et T). Dans une dernière partie, je présenterai l’International Deep Planet Survey (IDPS) dédié à la recherche d’exoplanètes par imagerie directe. Je ferai part des résultats actuels et des études en cours.


0 | 10 | 20